

Great promoting effect of high irradiance from germination on flowering in *Arabidopsis thaliana* – a process of photo-acclimation

S. MOHAREKAR^{*,**,+}, S. MOHAREKAR^{*}, R. TANAKA^{*}, K.I. OGAWA^{**,**}, A. TANAKA^{*,**}, and T. HARA^{*,**}

The Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan^{*}

Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST)^{**}
Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Okayama 716-1241, Japan^{***}

Abstract

Arabidopsis thaliana L., *chl-1* (chlorophyll *b*-less mutant), *gi-1* (*GI* deficient mutant), *cry2-1* (blue-light-photoreceptor *CRY2* deficient mutant), and Columbia (Col; wild ecotype) were grown under broad range of irradiances (*I*) from the beginning of germination and the effect of *I* on the survival, development, and flowering was studied. Under low and moderate *I* (<300 $\mu\text{mol m}^{-2} \text{s}^{-1}$), flowering time and plant size at flowering showed great variations among *chl-1*, *gi-1*, *cry2-1*, and Col, whereas under higher *I* (>500 $\mu\text{mol m}^{-2} \text{s}^{-1}$), these characteristics were almost the same. Hence under high *I*, development and flowering of *chl-1*, *gi-1*, *cry2-1*, and Col converged to almost the same state. Flowering time was negatively correlated with *I*, and under high *I* acclimation in *A. thaliana* was associated with a decrease in chlorophyll (Chl) content and increases in xanthophyll cycle pool and membrane-bound APX activity (EC 1.11.1.11) suggesting that an increase in oxidative stress induces earlier flowering. The plants of *gi-1* and *cry2-1* survived but Col and *chl-1* died under 1 000 $\mu\text{mol m}^{-2} \text{s}^{-1}$, showing that mutants deficient in *GI* or *CRY2* are more photo-stress-tolerant than Col and the Chl *b*-less mutant. Hence high *I* promotes in plants of *Arabidopsis* raised from germination till flowering the development and flowering time involving modulation of the photosynthetic apparatus, and this promoting effect is independent of the functions of flower-inducing *GI* or *CRY2* gene. This can be regarded as photo-acclimation of *A. thaliana* for survival and reproduction under high *I*.

Additional key words: chlorophyll; flowering time; leaf number; rosette; xanthophyll de-epoxidation.

Introduction

Plant growth and development are regulated by both environmental and endogenous developmental programs (Lacey 1986, Koornneef *et al.* 1998). During their life cycle, plants are exposed to varying *I*. Acclimation to changing *I* is necessary, especially for the survival of sedentary organisms like plants. Plants need light not only for photosynthesis but also for precise regulation of their development (Kagawa *et al.* 2001). Stress such as high *I* or chilling generally impairs carbon fixation and the excess of photon energy not used for carbon fixation leads to the production of reactive oxygen species (ROS) such as hydrogen peroxide, superoxide, hydroxyl radicals, and singlet oxygen (Elstner and Osswald 1994,

Niyogi 1999).

An increase in *I* for a short period can be beneficial for photosynthetic yield in low-*I*-adapted plants (Long *et al.* 1994). However, prolonged exposure to high *I* can result in an increase in ROS generation (Karpinski *et al.* 1997). ROS have many adverse effects on the plants but they are also required for some developmental processes (Ogawa and Iwabuchi 2001, Lokhande *et al.* 2003). Many anti-oxidant enzymes and antioxidants play an important role in removing ROS. The capacity of the antioxidant defense system increases under adverse conditions (Jung *et al.* 2000), but when ROS accumulation exceeds the capacity of antioxidant systems that remove ROS, irreversible

Received 18 September 2006, accepted 6 November 2006.

⁺Author for correspondence; fax: +81-11-706-5455, e-mail: shubha@pop.lowtem.hokudai.ac.jp

Abbreviations: AsA – ascorbate; APX – ascorbate peroxidase; AZ/VAZ – de-epoxidation rate; Chl – chlorophyll; FLT – flowering time; FM – fresh mass; H₂O₂ – hydrogen peroxide; *I* – irradiance; LN – number of leaves per plant; PS – photosystem; RD – rosette diameter; ROS – reactive oxygen species; tAPX – membrane-bound APX; VAZ – xanthophyll cycle pool.

Acknowledgements: This study was partly supported by the MONBUSHO (The Ministry of Education, Science, Sports and Culture of Japan) fellowship to Shubhangi Moharekar (Lokhande). We also thank Japan Science and Technology for its financial support during this study.

photodamage may occur to plant cells (Karpinski *et al.* 1999). Additionally, under excess *I*, carotenoids of xanthophyll cycle [violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z)] play an important role in safe dissipation of excess energy as heat. Moreover, a decrease in lumen pH under high *I* causes de-epoxidation of V to Z via A and excess energy is dissipated as heat (Demmig-Adams *et al.* 1995, Gandul-Rojas *et al.* 2004).

Genetic analyses of *Arabidopsis* have identified a number of genes involved in flower induction (reviewed in Reeves and Coupland 2000). The circadian clock acts as a sensor in day-length measurement and is also involved in the regulation of floral transition (Thomas and Vince-Prue 1997, Mizoguchi *et al.* 2005). In *Arabidopsis*, *LATE ELONGATED HYPOCOTYLE* (*LHY*), *CIRCADIAN CLOCK ASSOCIATED 1* (*CCA1*), and *EARLY FLOWERING3* (*ELF3*) genes play a central role in generating circadian rhythms. These circadian clock genes regulate *GIGANTEA* (*GI*), *CONSTANS* (*CO*), and *FLOWERING LOCUS T* (*FT*) genes and thus promote flowering (Jeong and Clark 2005).

Materials and methods

We selected *chl-1*, *gi-1*, *cry2-1*, and Columbia (Col) (Table 1) of *Arabidopsis thaliana* L. to see the effects of low to extremely high *I* on their survival, development, and flowering. All the mutants used are in the wild ecotype Col background. Seeds of *chl-1*, *gi-1*, *cry2-1*, and Col were grown in plastic round pots (height 7.5 cm, diameter 4.5 cm) containing vermiculite. The pots were kept for cold dark pre-treatment at 4 °C for 4 d in growth chambers (*Nippon Medical and Chemical Instruments Co.*). After pre-treatment, pots were transferred to different *I* under long-day conditions (50, 150, 300, 500, 700, and 1 000 $\mu\text{mol m}^{-2} \text{s}^{-1}$; 16/8 h light/dark cycle) at 22 °C. Low (50 $\mu\text{mol m}^{-2} \text{s}^{-1}$) and moderate (150 and 300 $\mu\text{mol m}^{-2} \text{s}^{-1}$) *I* was provided by *NEC FL20SEX-N-HG* lamp (*Nec*, Japan). High *I* (500, 700, and 1 000 $\mu\text{mol m}^{-2} \text{s}^{-1}$) was provided by *Mitsubishi Osram* *MLBOC400C-U* lamp (*Mitsubishi*, Yokohama, Japan). On the sowing day, each tray was sufficiently supplied with 2 500-fold diluted *HYPONeX* nutrient solution (*HYPONeX*, Osaka, Japan). Nutrient solution (500 cm^3) was supplied to each tray once a week until the end of the experiment. Trays were watered well according to the necessity of watering under different *I*. Plants were harvested around flowering time (FLT). The day of harvest was different for each *I* treatment according to the FLT. At harvest, FLT, growth parameters such as rosette diameter (RD), the number of leaves per plant (LN), and fresh mass (FM) were determined. The day when flower buds were visually seen was recorded as FLT at each *I*. The growth experiment at each *I* was conducted 5 times for replication. One or two samples were taken from each experiment and as the result, the number of pooled samples in each *I* was *n* = 5 or 10.

CRYPTOCHROME2 (*CRY2*) and *PHYTOCHROME A* (*PHYA*) stabilize the CO protein and also promote flowering (Searle and Coupland 2004). *GI* and *CRY2* regulate *CO* at the post-transcriptional level or act independently for flower induction (Suarez-Lopez *et al.* 2001). Thus, *CO* plays a key role in activating transcription of several flower-inducing genes including *FT* (Samach *et al.* 2000).

Many reports indicate the promoting effect on flowering of high *I*, in which *A. thaliana* was grown under 500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ in long days (Ogawa *et al.* 2004) or under 600 $\mu\text{mol m}^{-2} \text{s}^{-1}$ in short days (Bailey *et al.* 2001). However, the effects of low to extremely high *I* (\sim 1 000 $\mu\text{mol m}^{-2} \text{s}^{-1}$) on the survival, development, and flowering of *A. thaliana* from the beginning of germination have not yet been investigated. To understand such effects, we carried out experiments with *A. thaliana* Columbia (Col) wild ecotype and three mutants, *chl-1*, *gi-1*, and *cry2-1* (Table 1), investigated their morphological and physiological parameters, and analysed inter-relationships between them.

Preparation of membrane-bound ascorbate peroxidase (APX) fraction and assay of APX activity: Frozen leaves were ground to fine powder by using a mortar and a pestle in liquid nitrogen. Plant tissue powder (50 mg) was homogenized with 500 mm^3 of 50 mM potassium phosphate buffer (pH 7.8) containing 50 mM ascorbate (AsA) and 1 mM EDTA. The homogenate was mixed well and centrifuged at 250 rps for 10 min. The pellet was collected and solubilised in 500 mm^3 of 50 mM potassium phosphate buffer (pH 7.8), 0.5 % (v/v) *Triton X-100*, and 50 mM AsA. After centrifugation at 250 rps for 10 min, the supernatant was collected and defined as the membrane fraction (enzyme extract). The activity of membrane-bound APX (tAPX) should be the same as that of thylakoid-bound APX (Amako *et al.* 1994, Matsuki *et al.* 2003).

The tAPX activity (EC 1.11.1.11) was determined according to Nakano and Asada (1987) using an UV-visible spectrophotometer (*Beckman DU 7400*). The reaction mixture contained 50 mM potassium phosphate buffer (pH 7.0), 0.1 mM hydrogen peroxide (H_2O_2), and 50 mM AsA and 10 mm^3 enzyme extract in a total volume of 1 cm^3 . The reaction was started by adding 0.1 mM H_2O_2 and performed at a temperature of 25 °C. The oxidation rate of AsA was determined by the decrease in absorbance at 290 nm, which is the typical wavelength for AsA. The tAPX activity was expressed using an extinction coefficient of 2.8 $\text{mM}^{-1} \text{cm}^{-1}$ for AsA at 290 nm.

Extraction and quantification of pigments (Chl *a*, Chl *b*, V, A, and Z) was done according to a modified method of Gilmore and Yamamoto (1991). Pigments were extracted by grinding the frozen samples in a mortar

Table 1. The summary of wild type Columbia (Col) and three mutants used in this study.

Name	Characteristics	References
Col	wild type, original habitat: N38.5°, E92.5°, little response to vernalization, early flowering	Bowman 1993
<i>chl-1</i>	Chl- <i>b</i> -less mutant, very small light harvesting antenna	Tanaka and Tanaka 2000
<i>gi-1</i>	deficient in <i>GI</i> (a flower-inducing gene), insensitive to photoperiod and vernalization, late flowering	Blázquez <i>et al.</i> 2003, Izawa <i>et al.</i> 2003, Jeong and Clark 2005
<i>cry2-1</i>	deficient in <i>CRY2</i> (blue-light-photoreceptor), day-neutral, <i>i.e.</i> insensitive to photoperiod, late flowering	Suarez-Lopez <i>et al.</i> 2001, Yanovsky and Kay 2002, Jeong and Clark 2005

with 100 % acetone. The extract was centrifuged at 240 rps for 3 min, and the supernatant was used for separating chlorophyll (Chl) and xanthophylls with HPLC (*Shimadzu*, Kyoto, Japan) on a *Shim-pack* CLC column (150 mm long, 6 mm i.d.; *Shimadzu*, Kyoto, Japan).

Statistical analysis: To check how the parameters, FLT, LN, RD, FM, Chl, Chl *a/b*, tAPX activity, VAZ, and AZ/VAZ (dependent variable, *y*) are affected by different *I* (independent variable, *x*), linear regression analysis was performed: $y = a_0 + a_1x$, where a_0 and a_1 are regression coefficients. Residual analyses were performed to study

Results

***I* dependence on establishment of Col, *chl-1*, *gi-1*, and *cry2-1*: linear regression analysis:** The late-flowering mutants *gi-1* and *cry2-1* grew under all tested irradiances, whereas wild ecotype Col and Chl *b*-less mutant *chl-1* died under 1 000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at the stage of two cotyledons just after germination (Fig. 1). Flowering time and the rate of plant growth in terms of LN, RD, and FM decreased with an increase in *I* in Col and all the three mutants ($p<0.01$ for Col and each mutant) (Figs. 1 and 2).

Total Chl (*a+b*) content decreased with an increase in *I* in Col and all three mutants ($p<0.01$ for Col and each mutant), although in Col and *cry2-1* it increased suddenly only under 300 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and then decreased (Fig. 3A). Chl *a/b* ratio did not show differences in trend with *I*; it increased from 50 to 300 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and then decreased under higher *I* in Col, *gi-1*, and *cry2-1* (Fig. 3B).

The soluble APX activity did not show any specific trend with an increase in *I* (data not shown). In *cry2-1*, the tAPX activity and VAZ increased from 50 to 500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and showed small decrease under 700 and 1 000 $\mu\text{mol m}^{-2} \text{s}^{-1}$. In total, tAPX activity, VAZ, and AZ/VAZ generally increased with an increase in *I* in Col and all the three mutants ($p<0.01$ for Col and each mutant) (Fig. 4).

Comparison between late-flowering mutants, Chl *b*-less mutant, and Col under low to extremely high *I*:

normality of the variables and homoscedasticity of residuals. A log-transformation of the variables was made when necessary.

In order to investigate the effects of each *I* on the parameters and to check differences among *chl-1*, *gi-1*, *cry2-1*, and Col in five *I* treatments, a Bonferroni multiple comparison was performed in ANOVA. In ANOVA, the variables were almost normally distributed and no transformation of the variables was made. All the statistical analysis was performed with *SPSS for Windows* (*SPSS*, Chicago, IL, USA).

Part of the full statistical results of the Bonferroni multiple comparisons among *chl-1*, *gi-1*, *cry2-1*, and Col under five *I* ranges (Figs. 1, 3, and 4) showed that under low and moderate *I* ($<300 \mu\text{mol m}^{-2} \text{s}^{-1}$), FLT, LN, and RD of *chl-1*, *gi-1*, or *cry2-1* were different from those of Col ($p<0.01$ for each *I*); however, under high *I* ($>500 \mu\text{mol m}^{-2} \text{s}^{-1}$), those of *gi-1* and/or *cry2-1* were the same as those of Col (Fig. 1). FM was different between Col and *gi-1* or *cry2-1* only under 50 and 150 $\mu\text{mol m}^{-2} \text{s}^{-1}$ ($p<0.01$ for each *I*) but under higher *I* there was no difference in FM among these genotypes (Fig. 1D).

Under low and moderate *I*, total Chl was different between *chl-1*, *gi-1*, *cry2-1*, and Col ($p<0.01$ for each *I*), whereas under higher *I* there was no difference in total Chl (Fig. 3A). Chl *a/b* ratio of Col was always higher than that of *gi-1* or *cry2-1* under low, moderate, and extremely high *I* ($p<0.01$ for each *I*) (Fig. 3B).

Under low *I*, tAPX activity was not different between Col and *chl-1*, *gi-1*, or *cry2-1*, whereas under moderate and high *I*, it was different ($p<0.01$ for each *I*) (Fig. 4A). Under low and moderate *I*, VAZ showed similar values for the tested genotypes, but under higher *I* differences in VAZ were found ($p<0.01$ for each *I*) (Fig. 4B). Under low *I*, AZ/VAZ of Col was different from that of *chl-1* and *cry2-1*, but under moderate and high *I*, it was different from that of *gi-1* and *cry2-1* ($p<0.01$ for each *I*) (Fig. 4C).

Discussion

Plant development and flowering under low to extremely high I : FLT, LN, RD, and FM at flowering significantly decreased with an increase in I suggesting that the vegetative developmental period gets shorter (Fig. 1). Under low and moderate I ($<300 \mu\text{mol m}^{-2} \text{s}^{-1}$), FLT was 40–70 d, LN 20–40, RD 4–7 cm, and FM 150–570 mg, showing great variations among *chl-1*, *gi-1*, *cry2-1*, and Col, whereas under higher I ($>500 \mu\text{mol m}^{-2} \text{s}^{-1}$), FLT was 15–20 d, LN 7–10, RD 0.4–0.7 cm, FM 2–8 mg, showing much smaller variations among them. Thus the development and flowering of late flowering mutants, *gi-1* and *cry2-1*, and Chl *b*-less mutant *chl-1* converge to the same state as early-flowering Col under extremely high I ($\sim 1000 \mu\text{mol m}^{-2} \text{s}^{-1}$).

Under high I , the rosette of *A. thaliana* became compact with a shorter petiole probably to escape from high I , whereas under low I , plants grew bigger in RD with a longer petiole to maximise I interception (Fig. 1C) (Bailey *et al.* 2001). In *A. thaliana*, during the induction of flowers, shoot apical meristem stops producing leaves and instead starts producing the floral meristem that gives rise to flowers (Ma 1998). Therefore, the number of leaves (LN) is commonly used as a measure of FLT (Blázquez *et al.* 2003, Ogawa *et al.* 2004). In our study, LN showed also a significant negative correlation with I and positive correlation with FLT in all the three mutants and Col (Fig. 1A,B). This result also indicates that the increase in I forced *A. thaliana* to stop leaf production and start early flowering; therefore, FM at flowering decreased significantly with an increase in I (Fig. 1D).

Lacey (1986) reported that relative growth rate and plant size determine flowering time. In contrast to this, in our experiment, under higher I ($>500 \mu\text{mol m}^{-2} \text{s}^{-1}$) not only Col and *chl-1* but also late flowering mutants were forced to flower early even though they were small in size and age (Figs. 1 and 2). This result suggests that I is important for flower induction which is independent of plant size (or RGR).

Effect of low to extremely high I on photo-acclimation of *A. thaliana*: The photo-acclimation in Col and all the three mutants with an increase in I is associated with a decrease in Chl content and increases in tAPX activity, VAZ, and AZ/VAZ, suggesting that an increase in oxidative stress causes a decrease in Chl content in *A. thaliana* with an increase in I (Figs. 3A and 4). This might be one of the photo-acclimation processes to avoid further photo-damage caused under high I by scavenging ROS or by dissipating excess energy as heat. In accordance with our results, under stressful conditions increases in antioxidant enzymes, VAZ, or AZ/VAZ are always negatively correlated with Chl content in wheat, moong, and four *A. thaliana* ecotypes (Lokhande *et al.* 2003, Moharekar *et al.* 2003).

The negative correlations between FLT and tAPX

activity, VAZ, or AZ/VAZ in Col and all the three mutants (Figs. 1A and 4) suggest that an increased oxidative stress with increasing I induced earlier

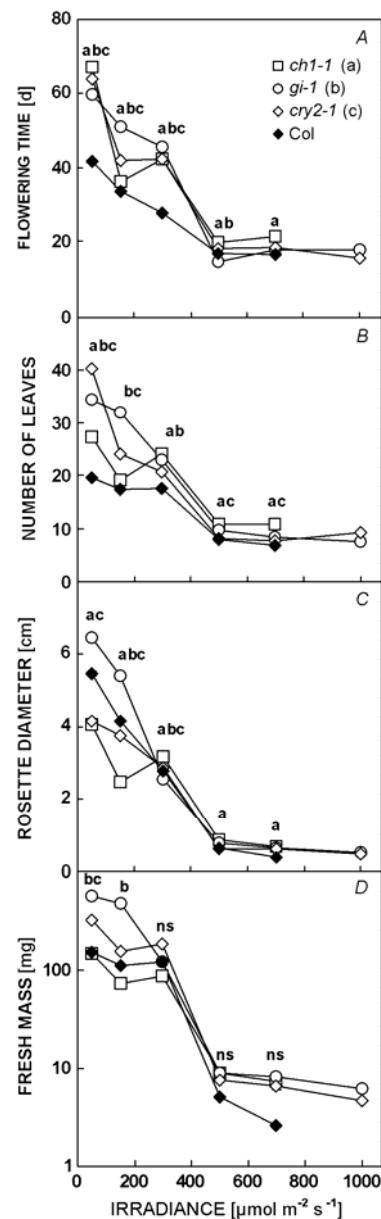


Fig. 1. Effects of irradiance (I) on (A) flowering time (FLT) ($n = 10$ in each I), (B) the number of leaves (LN) ($n = 5$ in each I), (C) rosette diameter (RD) ($n = 5$ in each I), and (D) fresh mass (FM) ($n = 5$ in each I) at flowering. Symbols of *chl-1* and Col are missing under $1000 \mu\text{mol m}^{-2} \text{s}^{-1}$ because they died under such extremely high I . Mean \pm SE for each mutant and ecotype; total n for regression analysis of FLT was 60 and that for RD, LN, and FM was 30. In all figures, a, b, and c indicate significant differences between Col and each of *chl-1*, *gi-1*, and *cry2-1*, respectively, at each I as part of the full results of the Bonferroni multiple comparison ($p < 0.05$). ns, not significantly different.

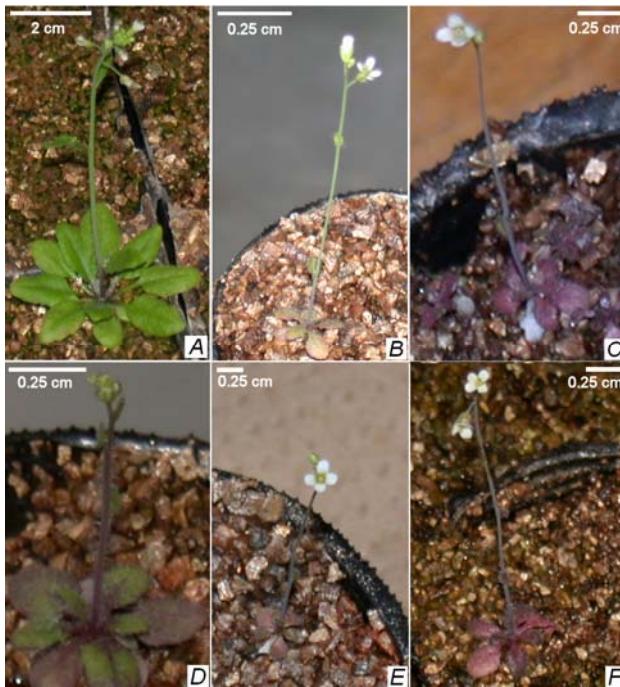


Fig. 2. Effects of irradiance on plant size at flowering of (A) Col under $50 \mu\text{mol m}^{-2} \text{s}^{-1}$ [42 d after germination, rosette diameter at flowering (RD) 5.4 cm; the number of leaves per plant at flowering (LN) 20, fresh mass per plant at flowering (FM) 151.2 mg]; (B) Col under $500 \mu\text{mol m}^{-2} \text{s}^{-1}$ (17 d after germination; RD 0.65 cm; LN 8; FM 5.09 mg); (C) Col under $700 \mu\text{mol m}^{-2} \text{s}^{-1}$ (16 d after germination; RD 0.39 cm; LN 7; FM 2.5 mg); (D) *chl-1* mutant under $700 \mu\text{mol m}^{-2} \text{s}^{-1}$ (21 d after germination; RD 0.7 cm; LN 11; FM 7.36 mg); (E) *cry2-1* mutant under $1000 \mu\text{mol m}^{-2} \text{s}^{-1}$ (15 d after germination; RD 0.5 cm; LN 9; FM 4.62 mg); and (F) *gi-1* mutant under $1000 \mu\text{mol m}^{-2} \text{s}^{-1}$ (18 d after germination; RD 0.54 cm; LN 7; FM 6 mg).

flowering. Previously, we reported a negative correlation between oxidative stress and FLT in four *A. thaliana* ecotypes (Lokhande *et al.* 2003). The plants of *gi-1* and *cry2-1* survived but Col and *chl-1* died under $1000 \mu\text{mol m}^{-2} \text{s}^{-1}$, indicating that the mutants deficient in *GI* or *CRY2* are more photo-stress-tolerant than Col and Chl *b*-less mutant. In our previous study, we reported that late-flowering north ecotypes of *A. thaliana* were more photo-stress-tolerant than early-flowering south ones (Lokhande *et al.* 2003). Additionally, a late-flowering north ecotype Old-1 (original habitat: N53°, E8°; cf. early-flowering Col, N38.5°, E92.5°) survived even under $1000 \mu\text{mol m}^{-2} \text{s}^{-1}$ from the beginning of germination (FLT, 11 d; LN, 7; RD, 0.47 cm) (Moharekar *et al.*, unpublished).

The Chl *a/b* ratio increased in the plants grown under 50 to $300 \mu\text{mol m}^{-2} \text{s}^{-1}$ (Fig. 3B), indicating that light-harvesting antenna size gets smaller in response to increased *I*, a well-known process (Tanaka and Tanaka 2000). However, Chl *a/b* ratio decreased in the plants grown under higher *I* ($>500 \mu\text{mol m}^{-2} \text{s}^{-1}$). This is probably because plants were grown under extremely

high *I* from the beginning of germination and such conditions might have affected light-harvesting antenna size or it might be a kind of acclimation process to extremely high *I*.

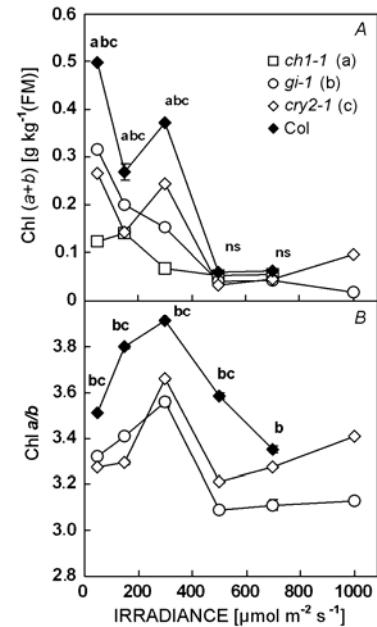


Fig. 3. Effects of irradiance (*I*) on (A) total chlorophyll (Chl) and (B) Chl *a/b* ratio at flowering. Symbols of *chl-1* and Col are missing under $1000 \mu\text{mol m}^{-2} \text{s}^{-1}$ because they died under such extremely high *I*. Means \pm SE for each mutant and ecotype ($n = 5$ in each *I*); total n for regression analysis was 30. In all figures, a, b, and c indicate significant differences between Col and each of *chl-1*, *gi-1*, and *cry2-1*, respectively, at each *I* as part of the full results of the Bonferroni multiple comparison ($p < 0.05$). ns, not significantly different.

Photosystem-dependent and GI- or CRY2-independent flower induction: a process of photo-acclimation in *A. thaliana*: The FLT in *chl-1* was delayed under low and moderate *I* ($<300 \mu\text{mol m}^{-2} \text{s}^{-1}$) and was promoted under higher *I* ($>500 \mu\text{mol m}^{-2} \text{s}^{-1}$), suggesting that *I* also affects flowering through PS. This indicates that sufficient photon energy was harvested at PS2 even in *chl-1* under higher *I* ($>500 \mu\text{mol m}^{-2} \text{s}^{-1}$), and thus the level of ROS was saturated enough to promote early flowering through modulation of the photosynthetic apparatus (Fig. 4C). We found that under low and moderate *I* flowering of *gi-1* and *cry2-1* was significantly delayed than Col but under higher *I* ($>500 \mu\text{mol m}^{-2} \text{s}^{-1}$) their flowering occurred at the same time as in early-flowering Col (Fig. 1A). This suggests that high *I* induces early flowering independently of *GI* or *CRY2* gene (Table 1). Probably, high *I* might activate *CO* or *FT* directly, not through *GI* or *CRY2*, for early flowering or it directly switches the plant for flowering, when plants are grown under such high *I* from the very beginning of germination. To our knowledge, this is the first report that shows the great promoting effect of extremely high *I*.

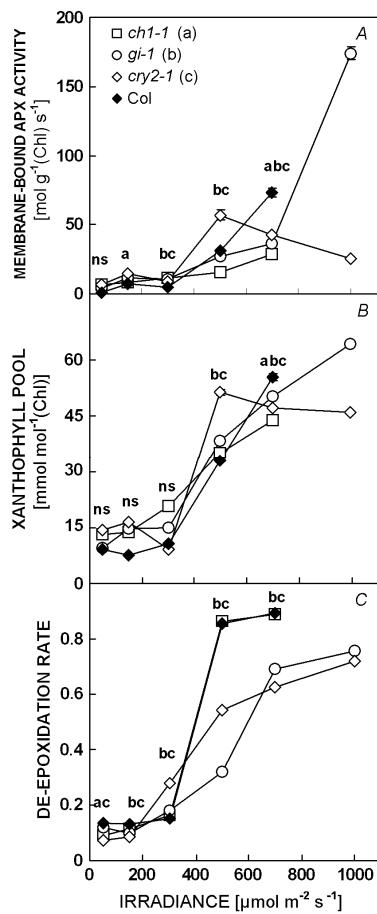


Fig. 4. Effects of irradiance (I) on (A) membrane-bound APX (tAPX) activity, (B) xanthophyll cycle pool (VAZ), and (C) de-epoxidation rate (AZ/VAZ) at flowering. Symbols of *ch1-1* and Col are missing under $1000 \mu\text{mol m}^{-2} \text{s}^{-1}$ because they died under such extremely high I . Means \pm SE for each mutant and ecotype ($n = 5$ in each I); total n for regression analysis was 30. In all figures, a, b, and c indicate significant differences between Col and each of *ch1-1*, *gi-1*, and *cry2-1*, respectively, at each I as part of the full results of the Bonferroni multiple comparison ($p < 0.05$). ns, not significantly different.

($\sim 1000 \mu\text{mol m}^{-2} \text{s}^{-1}$) from the beginning of germination on plant development and early flowering at an extremely small size and age in *ch1-1*, *gi-1*, *cry2-1*, and Col in long-days. This process is independent of the functions of *GI* or *CRY2* gene but involves modulation of the photosynthetic apparatus. This can be regarded as photo-acclimation of *A. thaliana* for survival and reproduction under high I . The detailed mechanism, however, remains to be elucidated.

References

Amako, K., Chen, G.-X., Asada, K.: Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. – *Plant Cell Physiol.* **35**: 497-504, 1994.

Bailey, S., Walters, R.G., Jansson, S., Horton, P.: Acclimation of *Arabidopsis thaliana* to the light environment: the existence of separate low light and high light responses. – *Planta* **213**: 794-801, 2001.

Blázquez, M., Ahn, J.H., Weigel, D.: A thermosensory pathway controlling flowering time in *Arabidopsis thaliana*. – *Nature Genet.* **33**: 168-171, 2003.

Bowman, J.: Flowers. – In: Bowman, J. (ed.): *Arabidopsis, an Atlas of Morphology and Development*. Pp. 133-156. Springer-Verlag, Berlin 1993.

Demmig-Adams, B., Adams, W.W., III, Logan, B.A., Verhoeven, A.S.: Xanthophyll cycle-dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress. – *Aust. J. Plant Physiol.* **22**: 249-260, 1995.

Elstner, E.F., Osswald, W.: Mechanisms of oxygen activation during plant stress. – *Proc. roy. Soc. Edinburgh* **102B**: 131-154, 1994.

Gandul-Rojas, B., Roca, M., Mínguez-Mosquera, M.I.: Chlorophyll and carotenoid degradation mediated by thylakoid associated peroxidative activity in olives (*Olea europaea*) cv. Hojiblanca. – *J. Plant Physiol.* **161**: 499-507, 2004.

Gilmore, A.M., Yamamoto, H.Y.: Resolutions of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C₁₈ high-performance liquid chromatographic column. – *J. Chromatogr.* **543**: 137-145, 1991.

Izawa, T., Takahashi, Y., Yano, M.: Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and *Arabidopsis*. – *Curr. Opin. Plant Biol.* **6**: 113-120, 2003.

Jeong, S., Clark, S.E.: Photoperiod regulates flower meristem development in *Arabidopsis thaliana*. – *Gene* **169**: 907-915, 2005.

Jung, S., Kim, J.S., Cho, K.Y., Tae, G.S., Kang, B.G.: Antioxidant responses of cucumber (*Cucumis sativus*) to photoinhibition and oxidative stress induced by norflurazon under high and low PPFDs. – *Plant Sci.* **153**: 145-154, 2000.

Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K., Wada, M.: *Arabidopsis* NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. – *Science* **291**: 2138-2141, 2001.

Karpinski, S., Escobar, C., Karpinska, B., Creissen, G., Mullineaux, P.M.: Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in *Arabidopsis* during excess light stress. – *Plant Cell* **9**: 627-640, 1997.

Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G.,

Creissen, G., Mullineaux, P.M.: Systematic signaling and acclimation in response to excess excitation energy in *Arabidopsis*. – *Science* **284**: 654-657, 1999.

Koornneef, M., Alonso-Blanco, C., Peeters, A.J.M., Soppe, W.: Genetic control of flowering time in *Arabidopsis*. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **49**: 345-370, 1998.

Lacey, E.P.: Latitudinal variations in reproductive timing of a short lived monocarpic species, *Daucus carota*. – *J. Ecol.* **74**: 73-86, 1986.

Lokhande, S.D., Ogawa, K., Tanaka, A., Hara, T.: Effect of temperature on ascorbate peroxidase activity and flowering of *Arabidopsis thaliana* ecotypes under different light conditions. – *J. Plant Physiol.* **160**: 57-64, 2003.

Long, S.P., Humphries, S., Falkowski, P.G.: Photoinhibition of photosynthesis in nature. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **45**: 633-662, 1994.

Ma, H.: Flowering time: from photoperiodism to florigen. – *Curr. Biol.* **8**: 690-692, 1998.

Matsuki, S., Ogawa, K., Tanaka, A., Hara, T.: Morphological and photosynthetic responses of *Quercus crispula* seedlings to high-light conditions. – *Tree Physiol.* **23**: 769-775, 2003.

Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., Mouradov, A., Fowler, S., Kamada, H., Putterill, J., Coupland, G.: Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in *Arabidopsis*. – *Plant Cell* **17**: 2255-2270, 2005.

Moharekar, S.T., Lokhande (Moharekar), S.D., Hara, T., Tanaka, R., Tanaka, A., Chavan, P.D.: Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. – *Photosynthetica* **41**: 315-317, 2003.

Nakano, Y., Asada, K.: Spinach chloroplast scavenges hydrogen peroxide on illumination. – *Plant Cell Physiol.* **21**: 1295-1307, 1987.

Niyogi, K.K.: Photoprotection revisited: Genetic and molecular approaches. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **50**: 333-359, 1999.

Ogawa, K., Hatano-Iwasaki, A., Yanagida, M., Iwabuchi, M.: Level of glutathione is regulated by ATP-dependent ligation of glutamate cysteine through photosynthesis in *Arabidopsis thaliana*: mechanism of strong interaction of light intensity and flowering. – *Plant Cell Physiol.* **45**: 1-8, 2004.

Ogawa, K., Iwabuchi, M.: A mechanism for promoting the germination of *Zinnia elegans* seeds by hydrogen peroxide. – *Plant Cell Physiol.* **42**: 286-291, 2001.

Reeves, P.H., Coupland, G.: Response of plant development to environment: control of flowering by day length and temperature. – *Curr. Opin. Plant Biol.* **3**: 37-42, 2000.

Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarzgenet Sommer, Z.: Distinct roles of CONSTANS target genes in reproductive development of *Arabidopsis*. – *Science* **288**: 1613-1616, 2000.

Searle, I., Coupland, G.: Induction of flowering by seasonal changes in photoperiod. – *EMBO J.* **23**: 1217-1222, 2004.

Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F.: CONSTANS mediates between the circadian clock and the control of flowering in *Arabidopsis*. – *Nature* **410**: 1116-1120, 2001.

Tanaka, R., Tanaka, A.: Chlorophyll *b* is not just an accessory pigment but a regulator of the photosynthetic antenna. – *Porphyrins* **9**: 240-245, 2000.

Thomas, B., Vince-Prue, D.: *Photoperiodism in Plants*. – Academic Press, New York 1997.

Yanovsky, M.J., Kay, S.A.: Molecular basis of seasonal time measurement in *Arabidopsis*. – *Nature* **419**: 308-312, 2002.