

Growth, biomass production, and assimilatory characters in *Cenchrus ciliaris* L. under elevated CO₂ condition

R.K. BHATT*, M.J. BAIG, and H.S. TIWARI

Indian Grassland and Fodder Research Institute, Jhansi - 284003 (U.P.), India

Abstract

The effect of elevated carbon dioxide ($600 \pm 50 \text{ cm}^3 \text{ m}^{-3}$; C₆₀₀) on growth performance, biomass production, and photosynthesis of *Cenchrus ciliaris* L. cv. 3108 was studied. This crop responded significantly by plant height, leaf length and width, and biomass production under C₆₀₀. Leaf area index increased triple fold in the crops grown in the open top chamber with C₆₀₀. The biomass production in term of fresh and dry biomass accumulation increased by 134.35 (fresh) and 193.34 (dry) % over the control (C₃₆₀) condition where the crops were grown for 120 d. The rate of photosynthesis and stomatal conductance increased by 24.51 and 46.33 %, respectively, in C₆₀₀ over C₃₆₀ plants. In comparison with C₃₆₀, the rate of transpiration decreased by 6.8 % under C₆₀₀. Long-term exposure (120 d) to C₆₀₀ enhanced photosynthetic water use efficiency by 34 %. Also the contents of chlorophylls *a* and *b* significantly increased in C₆₀₀. Thus *C. ciliaris* grown in C₆₀₀ throughout the crop season may produce more fodder in terms of green biomass.

Additional key words: area leaf mass; leaf area index; net photosynthetic rate; specific leaf area; stomatal conductance; tiller; transpiration.

Since the mid 1800's, the human activities have contributed to an increase in atmospheric CO₂ concentration from roughly 250 to present day 350 cm³ m⁻³ projecting a further doubling of the global CO₂ within the next century (Watson *et al.* 1990). Plant species are specific in physiological response to high CO₂ concentration (Zhang and Nobel 1996). The increased net photosynthetic rate (P_N) affects the growth of plants as indicated by increased growth and yield in many crop species grown under elevated CO₂ (Sasek and Strain 1991, Das *et al.* 2000). Pal *et al.* (2004) also reported the increase in plant growth and biomass production under elevated CO₂ concentration (EC).

Cenchrus ciliaris is the most important fodder grass species, grown in arid and semi-arid tropics (cf. Baig *et al.* 2005). This is perennial multi-cut, highly palatable, and nutritious grass species that can be utilized under cut and carry as well as under grazing system of production. The objective of the present study was to determine long term effect of high CO₂ concentration ($600 \pm 50 \text{ cm}^3 \text{ m}^{-3}$;

C₆₀₀) on growth, biomass production, and photosynthesis of *C. ciliaris* L. cv. 3108.

30-d-old seedlings were transplanted inside the open top chambers (OTCs) and in open field as control at 50 cm row to row and plant to plant spacing. Nitrogen and phosphorus were applied as basal at the rate of 60 kg N and 40 kg P₂O₅ per hectare before transplanting seedlings at the onset of monsoon, *i.e.* in July. The plants were maintained using recommended agronomical practices. Pure CO₂ gas was used for enrichment of CO₂ inside the OTCs. The flow of CO₂ was adjusted with the help of a flow meter to get the target concentration of CO₂ inside the OTCs. The period of enrichment was from 08:00 to 17:00 h every day from transplantation of seedlings. Irrigation was given as and when required.

The morphological characters [plant height, tiller production, leaf area, fresh (FM) and dry (DM) biomass production] were recorded at stage of 50 % flowering. Leaf area of fresh leaves was measured before weighing by using leaf area meter (LICOR-3000, USA). The fresh

Received 14 August 2006, accepted 27 November 2006.

*Fax: +91 510 2730833, e-mail: researcher_rkb@yahoo.com

Acknowledgements: The authors are thankful to the Director, IGFRI, Jhansi, India and ICAR, New Delhi, for providing financial support through A.P. Cess fund.

biomass (FM) of whole plant was taken just after harvesting. For dry matter (DM) yield, plant samples were dried in an electric oven at 80 °C for 48 h. The leaf area per unit land area (leaf area index = LAI) was calculated by dividing the leaf area per sample by the land area occupied by the sample. SLA (leaf area per leaf DM) was measured by harvesting randomly 10 fully expanded leaves from each replication. Area leaf mass (ALM) or leaf thickness was expressed as DM of leaf blade per unit leaf area.

P_N , transpiration rate (E), stomatal conductance (g_s), and intercellular CO₂ concentration (C_i) were recorded in the second fully expanded leaf from the top of the plant by using the portable photosynthesis system (LI-6200, LICOR, USA). The micro-environmental parameters [air temperature, photosynthetically active radiation (PAR), relative humidity (RH), and leaf temperature (LT)] were also recorded by the attached sensors of the photosynthesis system. All the measurements were made between 11:00 and 12:00 h on a clear sky day. The ratios P_N/E (photosynthetic water use efficiency, WUE) and P_N/C_i (carboxylation efficiency) were also calculated. Canopy photosynthesis was calculated by multiplying P_N with LAI. Chlorophyll (Chl) *a* and *b* contents were determined by using a non-maceration technique of Hiscox and Israelstam (1979) in which 25 mg leaf slices were kept overnight in 5 cm³ dimethyl sulphoxide, the absorbances were recorded at 645 and 663 nm, and the Chl content was calculated using the equations of Arnon (1949).

Long term exposure to C₆₀₀ in open top chambers increased the growth of *C. ciliaris*: plant height increased by 43.72 %, also the tiller production per square meter increased significantly and LAI increased 3.34-fold. The ALM decreased under C₆₀₀ whereas SLA increased. The increase in SLA at C₆₀₀ indicated greater expansion of the leaf area per unit of DM accumulation. *C. ciliaris* also showed significant increase in biomass production in terms of both FM and DM (Table 1). The FM increased by 134.35 % in the crop grown under C₆₀₀ over C₃₆₀. Similarly, the DM accumulation was three fold in the C₆₀₀ crop over the C₃₆₀ one. Booker *et al.* (2004) reported that biomass, leaf area, WUE, and yield were increased significantly by EC.

The leaf temperature increased by 0.96 °C in the C₆₀₀ leaves over the C₃₆₀ ones. P_N of the C₆₀₀ plants was higher by 24.80 % over that of the C₃₆₀ ones. The canopy photosynthesis which is calculated by multiplying P_N with LAI increased significantly under C₆₀₀. Also C_i was significantly higher under C₆₀₀ than under C₃₆₀. The g_s increased at C₆₀₀ which is in contrast to the data of Rogers *et al.* (2004) who reported decreased g_s at EC in soybean. In our experiment E was decreased slightly at C₆₀₀. The P_N/C_i ratio which indicates the carboxylation efficiency (Farquhar and Sharkey 1982) also decreased at

C₆₀₀ which may be due to higher C_i . The P_N/E ratio which indicates the photosynthetic WUE increased by 33.93 % at C₆₀₀ over C₃₆₀ indicating an improvement in WUE under EC. Similar to our findings, Baker and Allen (2005) indicated that EC significantly increased canopy P_N and WUE while reducing evapo-transpiration. The accumulation of Chl *a* and *b* was also increased by 168.25 and 100.00 %, respectively, in the crops grown at C₆₀₀ over C₃₆₀. In agreement with this, the Chl *a/b* ratio also significantly increased. Moreover, Wang *et al.* (2004) reported that EC increased chloroplast number per unit cell area.

Table 1. Effect of elevated CO₂ (C₆₀₀) and ambient CO₂ (C₃₆₀) on growth, leaf area index (LAI), area leaf mass (ALM), specific leaf area (SLA), biomass production (FM – fresh mass, DM – dry mass), net photosynthetic rate (P_N), intercellular CO₂ concentration (C_i), stomatal conductance (g_s), transpiration rate (E), and chlorophyll (Chl) accumulation of *C. ciliaris*.

Parameter	C ₃₆₀	C ₆₀₀	CD at 5 %
Plant height [cm]	107.50	154.50	18.65
Tiller per m ²	116.25	154.50	9.35
Leaf length [cm]	36.47	44.78	6.29
Leaf width [cm]	0.63	0.95	0.12
LAI	2.115	7.054	0.828
ALM [g m ⁻²]	53.0	40.2	NS
SLA [m ² kg ⁻¹]	1907.9	2586.2	218.9
FM [g m ⁻²]	1754.70	4112.20	219.02
DM [g m ⁻²]	223.90	656.80	53.53
P_N [μmol m ⁻² s ⁻¹]	34.02	42.46	3.07
C_i [cm ³ m ⁻³]	250.26	457.06	7.66
g_s [cm s ⁻¹]	1.226	1.794	0.214
E [mmol m ⁻² s ⁻¹]	10.214	9.519	NS
$P_N \times$ LAI	71.95	299.51	13.47
P_N/C_i	0.136	0.093	0.026
P_N/E	3.33	4.46	0.25
Chl (a+b)	0.77	1.97	0.11
Chl <i>a/b</i>	4.50	6.03	NS

Long term exposure of *C. ciliaris* crop to C₆₀₀ in open top chambers resulted in a significant enhancement in the growth and biomass production. This increase in growth was due to the production of more photosynthates and their partitioning to different plant parts which ultimately increased the total biomass production. Sharma and Sengupta (1990) also observed that the extra carbon fixed by the plants due to CO₂ enrichment was translocated to the growing axis. Increased fodder production of white clover and increased yield in rice grown under EC has been reported by Saebo and Mortensen (1995) and Upadhyay *et al.* (2002), respectively. The increase in P_N and LAI under EC might have resulted in greater accumulation of assimilates which resulted in the production of more biomass.

References

Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta vulgaris*. – *Plant Physiol.* **24**: 1-15, 1949.

Baig, M.J., Anand, A., Mandal, P.K., Bhatt, R.K.: Irradiance influences contents of photosynthetic pigments and proteins in tropical grasses and legumes. – *Photosynthetica* **43**: 47-53, 2005.

Baker, J.T., Allen, L.H., Jr.: Rice growth, yield and photosynthesis responses to elevated CO₂ and drought. – *J. Crop Improvement* **13**: 7-30, 2005.

Booker, F.L., Ficus, E.L., Miller, J.E.: Combined effects of elevated CO₂ and O₃ on soybean plants. – *Environ. Manage.* **33**: 355-362, 2004.

Das, M., Pal, M., Zaidi, P.H., Raj, A., Sengupta, U.K.: Growth response of mung bean to elevated CO₂. – *Indian J. Plant Physiol.* **5**: 137-140, 2000.

Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. – *Annu. Rev. Plant Physiol.* **33**: 317-345, 1982.

Hiscox, J.D., Israelstam, G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration. – *Can. J. Bot.* **57**: 1332-1334, 1979.

Pal, Madan, Karthikeyapandian, V., Jain, Vinita, Srivastava, A.C., Anupam Raj, Sengupta, U.K.: Biomass production and nutritional levels of berseem (*Trifolium alexandrium*) grown under elevated CO₂. – *Agr. Ecosyst. Environ.* **101**: 31-38, 2004.

Rogers, A., Allen, D.J., Davey, P.A., Morgan, P.B., Ainsworth, E.A., Bernacchi, C.J., Cornic, G., Dermody, O., Dohleman, F.G., Heaton, E.A., Mahoney, J., Zhu, X.-G., Delucia, E.H., Ort, D.R., Long, S.P.: Leaf photosynthesis and carbohydrate dynamics of soybean grown throughout their life cycle under Free Air Carbon Dioxide Enrichment. – *Plant Cell Environ.* **27**: 449-458, 2004.

Saebo, A., Mortensen, L.M.: Growth and regrowth of *Phleum pratense*, *Lolium perenne*, *Trifolium repens* and *Trifolium pratense* at normal and elevated CO₂ concentration. – *Agr. Ecosyst. Environ.* **55**: 29-35, 1995.

Sasek, T.W., Strain, B.R.: Effect of CO₂ enrichment on the growth and morphology of a native and introduced honey suckle vine. – *Amer. J. Bot.* **78**: 69-75, 1991.

Sharma, A., Sengupta, U.K.: Carbon dioxide enrichment effect on photosynthesis and related enzymes in *Vigna radiata* Wilczek. – *Indian J. Plant Physiol.* **33**: 340-346, 1990.

Upadhyay, D.C., Dwivedi, N., Jain, V., Mohan, R.: Effect of elevated carbon dioxide concentration on the stomatal parameters of rice cultivars. – *Photosynthetica* **40**: 315-319, 2002.

Wang, X., Anderson, R., Kelvin, O., Griffin, L.: Chloroplast numbers, mitochondrion number and carbon assimilation physiology of *Nicotiana sylvestris* as affected by CO₂ concentration. – *Environ. exp. Bot.* **51**: 21-31, 2004.

Watson, R.T., Rodhe, H., Oeschger, H., Siegenthaler, U.: Green house gases and aerosol. – In: Houghton, J.T., Jenkins, G.D., Ephraums, J.J. (ed.): *Climate Change: The IPCC Scientific Assessment*. Pp. 1-40. Cambridge University Press, Cambridge 1990.

Zhang, H.H., Nobel, P.S.: Photosynthesis and carbohydrate partitioning for the C₃ desert shrub *Encelia farinosa* under current and doubled CO₂ concentrations. – *Plant Physiol.* **110**: 1361-1366, 1996.