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A new viewpoint to understand
the response of leaf dark respiration to elevated CO, concentration
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Abstract

By investigating the Rp—C, (dark respiration rate—atmospheric CO, concentration) and Py (net photosynthetic rate)-C,
curves of bamboo (Fargesia denudata) and poplar (Populus cathayanna), we found that: (/) the minimal Rp was close
to ambient CO, concentration, and the elevated or decreased atmospheric CO, concentration enhanced the Rp of both
species; (2) the response curves of Rp—C, were simulated well by quadratic function. This phenomenon might be an
inherent property of leaf Ry, of F. denudata and P. cathayanna. If this was true, it implies that effect of CO, on Rp could
be interpreted with the relationship of Rp—C, curves and the quadratic function.
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Introduction

Dark respiration rate (Rp) is an important part of carbon
sequestration for individual plants, communities, and
even ecosystems. With the research progress in plant
growth and photosynthesis, responses of Rp to elevated
carbon dioxide concentration (EC) have been studied
more often. For instance, leaf Ry increased in response to
EC in some studies (Potvin and Strain 1985, Nijs et al.
1988, Baker ef al. 1992, Thomas and Griffin 1994), while
it decreased in other ones (Spencer and Bowes 1986,
Waullschleger and Norby 1992, Baxter ef al. 1995, Bunce
and Ziska 1996). Other authors even found no effect of
EC (den Hertog et al. 1993). Mechanisms about the
effects of EC were still at a speculative stage due to the
diversity of the soundings. The proposed mechanisms
concerning reduced Rp were usually related to changes in
intercellular CO, concentration (Raghavendra and Vani
1989, Shaish et al. 1989), enzymatic activity (Monning
1983, Kerbel et al. 1988), or dark CO, fixation rate
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(Hammel et al. 1979, Gale 1982). Those concerning
stimulated Rp are related to increase in content of non-
structural saccharides (Azcon-Bieto and Osmond 1983,
Farrar 1985, Norby et al. 1986), growth rate (Thomas and
Griffin 1994), and the enhancement of other pathways of
respiration under EC (Lambers 1985). Because of the
existence of various effects, the impact of future EC on
Rp cannot be convincingly predicted and further research
is still needed (Amthor 1991).

Most experiments on CO, elevation have measured
Rp at ambient CO, concentration (C,) and EC only. We
determined the Py—C, (net photosynthetic rate to C,)
curves of bamboo (F. denudata) and poplar
(P. cathayanna) leaves under eight CO, concentrations
and photosynthetically active radiation (PAR), respec-
tively. Then, the Rp—C, curves were fitted by a quadratic
function. The aim was to provide a new viewpoint to
interpret effects of EC on Rp.
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Materials and methods

Experiment site and plants: The plants were obtained
from field plots of a CEC experiment that is exploring the
response of sub-alpine plant community to EC at the
Maoxian Ecological Station, Chinese Academy of
Sciences (31°41'07"N, 103°53'58"E, 1 800 m a.s.l.). The
average CO, concentration over one growth season was
around 360 pmol mol”' and the long-term means of
annual precipitation and air temperature were 800 mm
and 12 °C. The CEC experiment system consisted of
eight independent, self-controlled, and enclosed-top
chambers. The system enables assessing the medium to
long-term effects and adaptations of global climate
change (for example, EC, elevated temperature, and their
interaction) on plant processes at the community level. In
2006, the CO, concentration in the EC-chambers was
within 700-800 pmol mol' for 91.3 % of the whole
exposure time. The CEC system provides a wide variety
of climatic conditions that are similar to natural regimes
under high-frigid conditions in south-western China.
Natural plant communities (40x40x40 cm) were selected,
dug out, filled into woody boxes, and transferred into
growth chambers on 20 November, 2005. These
communities were exposed to C, and EC for 24 h every
day from March 1%, 2006. We chose poplar (Populus
cathayanna) and bamboo (Fargesia denudata) in the
communities for measuring leaf Py and Rp,.

Field measurements: Four leaves, the third or the fourth
one to the apex of the main stem of bamboos or poplars
exposed to C,, were chosen and the Py and Rp were

Results and discussion

Bamboo and poplar showed different responses to series
of CO, concentrations (Fig. 14) although their climax
both appeared at C, = 400 pmol mol'. R, of bamboo
dropped from 4.41£0.66 to 0.55+0.50 pmol(CO,) m* s~
with the increase of C, from 0 to 400 pmol mol ™!, and
then promptly increased to 7.2+1.5 umol(CO,) m~> s
with C, elevated to 1500 umol mol™'. However, Ry, of
poplar dropped from 1.68+0.10 to 0.74+0.55 pmol(CO,)
m~ s, and after the minimum it rose to 5.21+0.39
umol(CO,) m? s, following the corresponding C, with
bamboo. The two Rp—C, curves were not the same, but
their horizontal coordinate at the apex point were both at
400 pmol(CO,) mol™'. However, with the help of quadra-

tic function (Table 1), the lowest Rp of bamboo and

measured with the LI-6400 Portable Photosynthesis
System (LI-COR, Lincoln, NE, USA). PAR was supplied
by the LI-6400 photosynthetic system with a red-blue,
cold light resource and was set at 1 500, 1 200, 800, 300,
100, 50, 20, and 0 pmol m?s respectively. At each
PAR, the measurements of Py and Rp, started at 400 pmol
mol™! of CO,. Once the steady state was reached, the CO,
concentration was gradually lowered in the sequence of
400, 200, 100, 50, 0, and then increased stepwise to 400,
800, 1200, and 1 500 umol mol . Leaves were kept in
leaf chamber for at least 30 min to acclimate to each pair
of PAR and CO, concentration. CO, was injected into the
open circulating gas-stream of the photosynthesis system
using an auto-controlled CO, injector. Data from these
sequential measurements of Py and Rp were taken for
each Py—C, or Rp—C, curve. Leaf temperature and
relative air humidity were kept at 25 °C and 60-65 %,
respectively. All measurements were made from 10:00 to
15:00, on 3 to 30 August 2006. Long-term effect of EC
on the leaf Rp of F. denudata and P. cathayanna, which
were exposed to EC for 5 months, was also investigated.

Data analysis: Relations between Rp and C, were fitted
by a quadratic function that was used to predict the Rp
values at usually adopted CO, concentrations (350, 500,
700, and 1 000 pmol mol™) in the research field of EC.
T-test was applied to check whether long-term effects of
EC on Rp of poplar and bamboo leaves were statistically
significant.

poplar was 0.010 pmol(CO,) m* s at 631 umol(CO,)
mol™ and 1.046 pumol(CO,) m? s at 413 pmol(CO,)
mol ™', respectively. We would take the predicted Ry for
further discussion in this paper because the two functions
conformed well to observed data (Table 1) and enabled
calculate Rp (Fig. 2) at various CO, concentrations.
During the past several decades, CO, concentrations were
usually set at ambient (approx. 350 umol mol ') to double
ambient (approx. 700 pmol mol™) level (Raghavendra
and Vani 1989, Shaish et al. 1989), or 500—1 000 pmol
mol ™' in relevant studies (Nijs er al. 1988, Bunce and
Ziska 1996). Thus we will mainly discuss the predicted
Rp at corresponding C, that was usually adopted by the
mentioned scientists (Fig. 1B).

Table 1. Simulated R,—C, curves by quadratic function and its parameters and ANOVA analysis. “dfs are 2 and 5 for regression and
residuals, respectively; each value applied to estimate function parameters is the mean of 4 replications.

Plant Quadratic function s F sig.
bamboo Rp=28.716x10°C,2—0.011C, +3.481  0.9563 54.73 0.0004
poplar Rp=3.632x10°C,2— 0.003C, + 1.665  0.9914 288.17 <0.0001
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The quadratic function predicted that Ry (Fig. 1B)
values of bamboo were 0.879+0.725, 0.417+0.213,
0.412+0.358, and 1.712+0.745 pmol(CO,) m * s at con-
centrations 350, 500, 700, and 1 000 pmol(CO,) mol !,
respectively. Those of poplar at corresponding CO, con-
centrations were 1.048+0.460, 0.417+0.213, 1.322+0.500,
and 1.712+0.745 pmol(CO,) m* s, respectively. This
indicated that Rp of bamboo was reduced when CO,

10

concentration increased from ambient to double ambient
while that of poplar was stimulated by EC. Rp of both
bamboo and poplar were stimulated by EC from
500 umol mol™ to 1000 pmol mol . These different
responses of different species to EC might explain
various effects of EC reported in other studies. At least,
this could be employed for understanding short-term
(direct) effects of EC on leaf Rp,.
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Fig. 1. Dark respiration rate (Rp)—atmospheric CO, concentration (C,) curves (4) and predicted Rp (B) by quadratic function at
usually applied CO, concentration. In 4, each point is the mean of four replicates and the horizontal bar shows S.E. Bamboo and
poplar showed their minimum Rp between 350-700 pmol mol ™" of CO,. Either the increase or the decrease of CO, concentration will
enhance Rp of leaves. The shape of the two lines and their trough points may determine whether Rp will be enhanced by elevated
CO,. In B, Ry, is reduced when bamboo leaves are exposed to 500 and 700 pmol mol™ CO,. Rp of poplar leaves is not affected
significantly by the elevation of CO, from 350 to 500 and 700 pmol mol™ CO,. Rp, of both the species was significantly stimulated by

1 000 pmol mol™" CO, comparing to 350 pmol mol™ CO,.
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Fig. 2. Responses of net photosynthetic rate (Py) of bamboo and poplar leaves to CO, at eight levels of photosynthetically active
radiation (PAR) [umol m?2s']: = 1500, | 1200, e 800, * 300, x 100, a 50, m 20, ¢ 0. Py drops to below zero with the elevation of
CO, concentration under low PAR (<100). The increase of leaf Ry can account for the decrease of Py. Different from the Py—C,

curves measured under PAR of less than 100 pmol m 2 s~

higher than 100 ymol m™=s™".

, Py does not drop with the elevation of CO, concentration when PAR is

Table 2. Summary of ¢-test of long-term effect of elevated CO, concentration on leaf dark respiration rate (Rp). Means = S.E.

Species CO, Rp t-test
concentration t df p

bamboo 350 1.066+0.141 4.298 6.000 0.005
700 0.432+0.043

poplar 350 1.449+0.241 —0.646 6.000 0.542
700 1.817+0.516
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Effects of EC on leaf Rp had been sorted into long-
term (indirect) and short-term (direct) effects (Amthor
1991, Jach and Ceulemans 2000). To compare them, we
investigated the Rp of controlled treatments exposed to
corresponding CO, concentration for 5 months (Table 2)
as well as for a short-term as above. Rp of bamboo leaves
was significantly reduced by the long-term effect, where-
as that of poplar was slightly stimulated. These effects
were in accordance with the short-term effects analyzed
in the first paragraph.

Stimulation effects of much higher CO, concen-
trations (>400 wumol mol™") on Rp are seen from the
measurements of Py—PAR curves where PAR was less
than 400 pmol m* s (Fig. 2). The P\—PAR curves of
both species fitted a quadratic shape when PAR was
0, 20, 50, and 100 umol m 2 s! because there was a sharp
drop with EC. Py of bamboo and poplar leaves did not
drop with CO, concentration when PAR was higher than
300 pumol mol™ (Fig. 2). Kitaya et al. (2003) found
similar results on Ceratophyllum demersum at PAR of
1 000 umol m * s'. The declining trend of Py which was
detected when CO, concentration was 300 pmol mol™
under 400 pmol m ™~ s~ of PAR could also be found in an
earlier paper of Caemmerer and Farquhar (1981). The
above facts indicated that PAR (or PPFD) is an important
factor affecting the response of gas exchange to CO,. The
decrease of Py might be caused by stimulation of Rp
affected by EC, but whether Py would drop or not might
depend on the PAR intercepted by leaves, plant species,
or their ecological and physiological types.

Plants had been categorized into C;, C;, and CAM
plants on the basis of their carboxylation pathways or into
sun and shade plants according to their photon require-
ment. Each one of C;, C4, or CAM plants is distinct from
the other two types by CO, compensation and saturation
concentrations, carboxylation efficiency, compensation
and saturation irradiance, quantum yield, efc. Sun and
shade plants can be discriminated by their photon re-
quirement. They are also different in response to irra-
diance and CO, concentration. Leaf characteristics in gas
exchange might be determined by plant species, ecolo-
gical and physiological types, and their Py and Rp would
respond dissimilarly to CO, concentration.

That Rp—C, curve conformed well to quadratic
function might be an inherent property of leaf Rp. Leaves
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