

# A new viewpoint to understand the response of leaf dark respiration to elevated CO<sub>2</sub> concentration

Y.-Z. QIAO<sup>\*</sup>, Y.-B. ZHANG<sup>\*</sup>, K.-Y. WANG<sup>\*, \*\*, +</sup>, Y.-P. WANG<sup>\*\*</sup>, Y. XU<sup>\*</sup>, and Q.-C. LI<sup>\*</sup>

*Chengdu Institute of Biology, Chinese Academy of Sciences, P. O. Box 416, 610041 Chengdu, P. R. China*<sup>\*</sup>  
*Shanghai Key Laboratory of Urbanization Processes and Ecological Restoration, East China Normal University, 200062 Shanghai, P. R. China*<sup>\*\*</sup>

## Abstract

By investigating the  $R_D$ – $C_a$  (dark respiration rate–atmospheric CO<sub>2</sub> concentration) and  $P_N$  (net photosynthetic rate)– $C_a$  curves of bamboo (*Fargesia denudata*) and poplar (*Populus cathayanna*), we found that: (1) the minimal  $R_D$  was close to ambient CO<sub>2</sub> concentration, and the elevated or decreased atmospheric CO<sub>2</sub> concentration enhanced the  $R_D$  of both species; (2) the response curves of  $R_D$ – $C_a$  were simulated well by quadratic function. This phenomenon might be an inherent property of leaf  $R_D$  of *F. denudata* and *P. cathayanna*. If this was true, it implies that effect of CO<sub>2</sub> on  $R_D$  could be interpreted with the relationship of  $R_D$ – $C_a$  curves and the quadratic function.

*Additional key words:* controlled environment chambers; *Fargesia denudata*; net photosynthetic rate; *Populus cathayanna*; species differences.

## Introduction

Dark respiration rate ( $R_D$ ) is an important part of carbon sequestration for individual plants, communities, and even ecosystems. With the research progress in plant growth and photosynthesis, responses of  $R_D$  to elevated carbon dioxide concentration (EC) have been studied more often. For instance, leaf  $R_D$  increased in response to EC in some studies (Potvin and Strain 1985, Nijs *et al.* 1988, Baker *et al.* 1992, Thomas and Griffin 1994), while it decreased in other ones (Spencer and Bowes 1986, Wullschleger and Norby 1992, Baxter *et al.* 1995, Bunce and Ziska 1996). Other authors even found no effect of EC (den Hertog *et al.* 1993). Mechanisms about the effects of EC were still at a speculative stage due to the diversity of the soundings. The proposed mechanisms concerning reduced  $R_D$  were usually related to changes in intercellular CO<sub>2</sub> concentration (Raghavendra and Vani 1989, Shaish *et al.* 1989), enzymatic activity (Monning 1983, Kerbel *et al.* 1988), or dark CO<sub>2</sub> fixation rate

(Hammel *et al.* 1979, Gale 1982). Those concerning stimulated  $R_D$  are related to increase in content of non-structural saccharides (Azcón-Bieto and Osmond 1983, Farrar 1985, Norby *et al.* 1986), growth rate (Thomas and Griffin 1994), and the enhancement of other pathways of respiration under EC (Lambers 1985). Because of the existence of various effects, the impact of future EC on  $R_D$  cannot be convincingly predicted and further research is still needed (Amthor 1991).

Most experiments on CO<sub>2</sub> elevation have measured  $R_D$  at ambient CO<sub>2</sub> concentration ( $C_a$ ) and EC only. We determined the  $P_N$ – $C_a$  (net photosynthetic rate to  $C_a$ ) curves of bamboo (*F. denudata*) and poplar (*P. cathayanna*) leaves under eight CO<sub>2</sub> concentrations and photosynthetically active radiation (PAR), respectively. Then, the  $R_D$ – $C_a$  curves were fitted by a quadratic function. The aim was to provide a new viewpoint to interpret effects of EC on  $R_D$ .

Received 23 November 2006, accepted 26 March 2007.

<sup>+</sup>Author for correspondence; fax: +86-21-62237896, e-mail: wangky@cib.ac.cn

*Abbreviations:*  $C_a$  – atmospheric (ambient) CO<sub>2</sub> concentration; CEC – controlled environment chamber; EC – elevated CO<sub>2</sub> concentration;  $P_N$  – net photosynthetic rate; PAR – photosynthetically active radiation; PPFD – photosynthetic photon flux density;  $R_D$  – dark respiration rate.

*Acknowledgements:* Financial support was provided by the Key Project of National Natural Science Foundation of China (No. 90511008 and No. 90202010), Sino-Finland International Cooperative Project (No. 30211130504), the Program of 100 Distinguished Young Scientists of Chinese Academy of Sciences (No.01200108C), and National Natural Science Foundation of China (No. 30471378).

## Materials and methods

**Experiment site and plants:** The plants were obtained from field plots of a CEC experiment that is exploring the response of sub-alpine plant community to EC at the Maoxian Ecological Station, Chinese Academy of Sciences (31°41'07"N, 103°53'58"E, 1 800 m a.s.l.). The average CO<sub>2</sub> concentration over one growth season was around 360 μmol mol<sup>-1</sup> and the long-term means of annual precipitation and air temperature were 800 mm and 12 °C. The CEC experiment system consisted of eight independent, self-controlled, and enclosed-top chambers. The system enables assessing the medium to long-term effects and adaptations of global climate change (for example, EC, elevated temperature, and their interaction) on plant processes at the community level. In 2006, the CO<sub>2</sub> concentration in the EC-chambers was within 700–800 μmol mol<sup>-1</sup> for 91.3 % of the whole exposure time. The CEC system provides a wide variety of climatic conditions that are similar to natural regimes under high-frigid conditions in south-western China. Natural plant communities (40×40×40 cm) were selected, dug out, filled into woody boxes, and transferred into growth chambers on 20 November, 2005. These communities were exposed to C<sub>a</sub> and EC for 24 h every day from March 1<sup>st</sup>, 2006. We chose poplar (*Populus cathayanna*) and bamboo (*Fargesia denudata*) in the communities for measuring leaf P<sub>N</sub> and R<sub>D</sub>.

**Field measurements:** Four leaves, the third or the fourth one to the apex of the main stem of bamboos or poplars exposed to C<sub>a</sub>, were chosen and the P<sub>N</sub> and R<sub>D</sub> were

## Results and discussion

Bamboo and poplar showed different responses to series of CO<sub>2</sub> concentrations (Fig. 1A) although their climax both appeared at C<sub>a</sub> = 400 μmol mol<sup>-1</sup>. R<sub>D</sub> of bamboo dropped from 4.41±0.66 to 0.55±0.50 μmol(CO<sub>2</sub>) m<sup>-2</sup> s<sup>-1</sup> with the increase of C<sub>a</sub> from 0 to 400 μmol mol<sup>-1</sup>, and then promptly increased to 7.2±1.5 μmol(CO<sub>2</sub>) m<sup>-2</sup> s<sup>-1</sup> with C<sub>a</sub> elevated to 1 500 μmol mol<sup>-1</sup>. However, R<sub>D</sub> of poplar dropped from 1.68±0.10 to 0.74±0.55 μmol(CO<sub>2</sub>) m<sup>-2</sup> s<sup>-1</sup>, and after the minimum it rose to 5.21±0.39 μmol(CO<sub>2</sub>) m<sup>-2</sup> s<sup>-1</sup>, following the corresponding C<sub>a</sub> with bamboo. The two R<sub>D</sub>–C<sub>a</sub> curves were not the same, but their horizontal coordinate at the apex point were both at 400 μmol(CO<sub>2</sub>) mol<sup>-1</sup>. However, with the help of quadratic function (Table 1), the lowest R<sub>D</sub> of bamboo and

measured with the *LI-6400* Portable Photosynthesis System (*LI-COR*, Lincoln, NE, USA). PAR was supplied by the *LI-6400* photosynthetic system with a red-blue, cold light resource and was set at 1 500, 1 200, 800, 300, 100, 50, 20, and 0 μmol m<sup>-2</sup> s<sup>-1</sup>, respectively. At each PAR, the measurements of P<sub>N</sub> and R<sub>D</sub> started at 400 μmol mol<sup>-1</sup> of CO<sub>2</sub>. Once the steady state was reached, the CO<sub>2</sub> concentration was gradually lowered in the sequence of 400, 200, 100, 50, 0, and then increased stepwise to 400, 800, 1 200, and 1 500 μmol mol<sup>-1</sup>. Leaves were kept in leaf chamber for at least 30 min to acclimate to each pair of PAR and CO<sub>2</sub> concentration. CO<sub>2</sub> was injected into the open circulating gas-stream of the photosynthesis system using an auto-controlled CO<sub>2</sub> injector. Data from these sequential measurements of P<sub>N</sub> and R<sub>D</sub> were taken for each P<sub>N</sub>–C<sub>a</sub> or R<sub>D</sub>–C<sub>a</sub> curve. Leaf temperature and relative air humidity were kept at 25 °C and 60–65 %, respectively. All measurements were made from 10:00 to 15:00, on 3 to 30 August 2006. Long-term effect of EC on the leaf R<sub>D</sub> of *F. denudata* and *P. cathayanna*, which were exposed to EC for 5 months, was also investigated.

**Data analysis:** Relations between R<sub>D</sub> and C<sub>a</sub> were fitted by a quadratic function that was used to predict the R<sub>D</sub> values at usually adopted CO<sub>2</sub> concentrations (350, 500, 700, and 1 000 μmol mol<sup>-1</sup>) in the research field of EC. T-test was applied to check whether long-term effects of EC on R<sub>D</sub> of poplar and bamboo leaves were statistically significant.

poplar was 0.010 μmol(CO<sub>2</sub>) m<sup>-2</sup> s<sup>-1</sup> at 631 μmol(CO<sub>2</sub>) mol<sup>-1</sup> and 1.046 μmol(CO<sub>2</sub>) m<sup>-2</sup> s<sup>-1</sup> at 413 μmol(CO<sub>2</sub>) mol<sup>-1</sup>, respectively. We would take the predicted R<sub>D</sub> for further discussion in this paper because the two functions conformed well to observed data (Table 1) and enabled calculate R<sub>D</sub> (Fig. 2) at various CO<sub>2</sub> concentrations. During the past several decades, CO<sub>2</sub> concentrations were usually set at ambient (approx. 350 μmol mol<sup>-1</sup>) to double ambient (approx. 700 μmol mol<sup>-1</sup>) level (Raghavendra and Vani 1989, Shaish *et al.* 1989), or 500–1 000 μmol mol<sup>-1</sup> in relevant studies (Nijs *et al.* 1988, Bunce and Ziska 1996). Thus we will mainly discuss the predicted R<sub>D</sub> at corresponding C<sub>a</sub> that was usually adopted by the mentioned scientists (Fig. 1B).

Table 1. Simulated R<sub>D</sub>–C<sub>a</sub> curves by quadratic function and its parameters and ANOVA analysis. \*dfs are 2 and 5 for regression and residuals, respectively; each value applied to estimate function parameters is the mean of 4 replications.

| Plant  | Quadratic function                                                                                | r <sup>2</sup> | F      | sig.    |
|--------|---------------------------------------------------------------------------------------------------|----------------|--------|---------|
| bamboo | R <sub>D</sub> = 8.716×10 <sup>-6</sup> C <sub>a</sub> <sup>2</sup> – 0.011C <sub>a</sub> + 3.481 | 0.9563         | 54.73  | 0.0004  |
| poplar | R <sub>D</sub> = 3.632×10 <sup>-6</sup> C <sub>a</sub> <sup>2</sup> – 0.003C <sub>a</sub> + 1.665 | 0.9914         | 288.17 | <0.0001 |

The quadratic function predicted that  $R_D$  (Fig. 1B) values of bamboo were  $0.879 \pm 0.725$ ,  $0.417 \pm 0.213$ ,  $0.412 \pm 0.358$ , and  $1.712 \pm 0.745 \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$  at concentrations 350, 500, 700, and  $1000 \mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$ , respectively. Those of poplar at corresponding  $\text{CO}_2$  concentrations were  $1.048 \pm 0.460$ ,  $0.417 \pm 0.213$ ,  $1.322 \pm 0.500$ , and  $1.712 \pm 0.745 \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ , respectively. This indicated that  $R_D$  of bamboo was reduced when  $\text{CO}_2$

concentration increased from ambient to double ambient while that of poplar was stimulated by EC.  $R_D$  of both bamboo and poplar were stimulated by EC from  $500 \mu\text{mol mol}^{-1}$  to  $1000 \mu\text{mol mol}^{-1}$ . These different responses of different species to EC might explain various effects of EC reported in other studies. At least, this could be employed for understanding short-term (direct) effects of EC on leaf  $R_D$ .

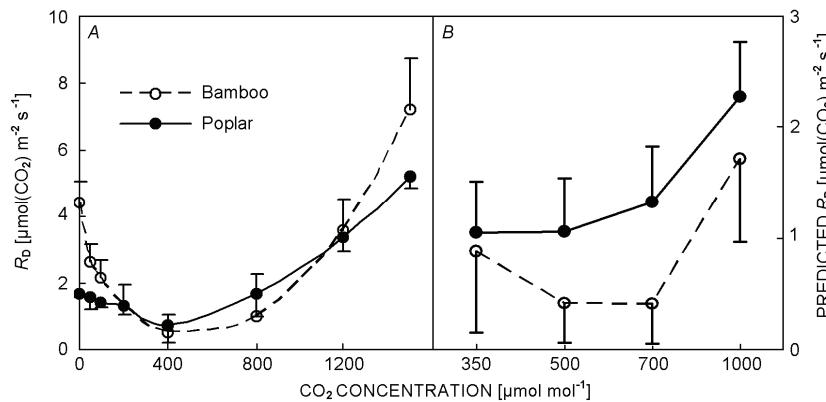



Fig. 1. Dark respiration rate ( $R_D$ )–atmospheric  $\text{CO}_2$  concentration ( $C_a$ ) curves (A) and predicted  $R_D$  (B) by quadratic function at usually applied  $\text{CO}_2$  concentration. In A, each point is the mean of four replicates and the horizontal bar shows S.E. Bamboo and poplar showed their minimum  $R_D$  between  $350$ – $700 \mu\text{mol mol}^{-1}$  of  $\text{CO}_2$ . Either the increase or the decrease of  $\text{CO}_2$  concentration will enhance  $R_D$  of leaves. The shape of the two lines and their trough points may determine whether  $R_D$  will be enhanced by elevated  $\text{CO}_2$ . In B,  $R_D$  is reduced when bamboo leaves are exposed to  $500$  and  $700 \mu\text{mol mol}^{-1}$   $\text{CO}_2$ .  $R_D$  of poplar leaves is not affected significantly by the elevation of  $\text{CO}_2$  from  $350$  to  $500$  and  $700 \mu\text{mol mol}^{-1}$   $\text{CO}_2$ .  $R_D$  of both the species was significantly stimulated by  $1000 \mu\text{mol mol}^{-1}$   $\text{CO}_2$  comparing to  $350 \mu\text{mol mol}^{-1}$   $\text{CO}_2$ .

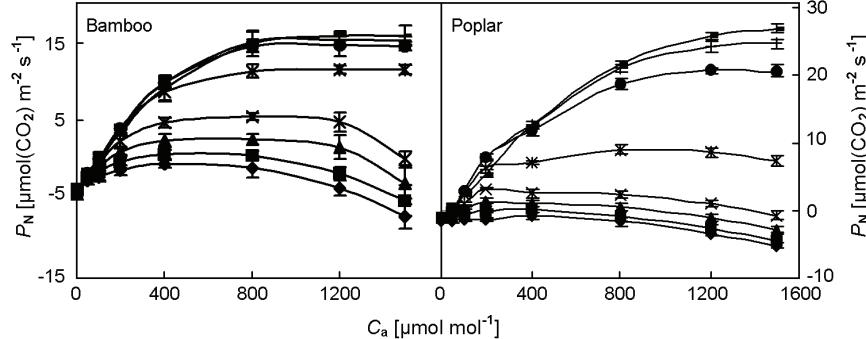



Fig. 2. Responses of net photosynthetic rate ( $P_N$ ) of bamboo and poplar leaves to  $\text{CO}_2$  at eight levels of photosynthetically active radiation (PAR) [ $\mu\text{mol m}^{-2} \text{ s}^{-1}$ ]:  $-1500$ ,  $+1200$ ,  $\bullet 800$ ,  $* 300$ ,  $\times 100$ ,  $\blacktriangle 50$ ,  $\blacksquare 20$ ,  $\blacklozenge 0$ .  $P_N$  drops to below zero with the elevation of  $\text{CO}_2$  concentration under low PAR ( $\leq 100$ ). The increase of leaf  $R_D$  can account for the decrease of  $P_N$ . Different from the  $P_N$ – $C_a$  curves measured under PAR of less than  $100 \mu\text{mol m}^{-2} \text{ s}^{-1}$ ,  $P_N$  does not drop with the elevation of  $\text{CO}_2$  concentration when PAR is higher than  $100 \mu\text{mol m}^{-2} \text{ s}^{-1}$ .

Table 2. Summary of  $t$ -test of long-term effect of elevated  $\text{CO}_2$  concentration on leaf dark respiration rate ( $R_D$ ). Means  $\pm$  S.E.

| Species | $\text{CO}_2$ concentration | $R_D$             | $t$ -test |       |       |
|---------|-----------------------------|-------------------|-----------|-------|-------|
|         |                             |                   | $t$       | $df$  | $p$   |
| bamboo  | 350                         | $1.066 \pm 0.141$ | 4.298     | 6.000 | 0.005 |
|         | 700                         | $0.432 \pm 0.043$ |           |       |       |
| poplar  | 350                         | $1.449 \pm 0.241$ | -0.646    | 6.000 | 0.542 |
|         | 700                         | $1.817 \pm 0.516$ |           |       |       |

Effects of EC on leaf  $R_D$  had been sorted into long-term (indirect) and short-term (direct) effects (Amthor 1991, Jach and Ceulemans 2000). To compare them, we investigated the  $R_D$  of controlled treatments exposed to corresponding CO<sub>2</sub> concentration for 5 months (Table 2) as well as for a short-term as above.  $R_D$  of bamboo leaves was significantly reduced by the long-term effect, whereas that of poplar was slightly stimulated. These effects were in accordance with the short-term effects analyzed in the first paragraph.

Stimulation effects of much higher CO<sub>2</sub> concentrations ( $>400 \mu\text{mol mol}^{-1}$ ) on  $R_D$  are seen from the measurements of  $P_N$ -PAR curves where PAR was less than  $400 \mu\text{mol m}^{-2} \text{s}^{-1}$  (Fig. 2). The  $P_N$ -PAR curves of both species fitted a quadratic shape when PAR was 0, 20, 50, and  $100 \mu\text{mol m}^{-2} \text{s}^{-1}$  because there was a sharp drop with EC.  $P_N$  of bamboo and poplar leaves did not drop with CO<sub>2</sub> concentration when PAR was higher than  $300 \mu\text{mol mol}^{-1}$  (Fig. 2). Kitaya *et al.* (2003) found similar results on *Ceratophyllum demersum* at PAR of  $1000 \mu\text{mol m}^{-2} \text{s}^{-1}$ . The declining trend of  $P_N$  which was detected when CO<sub>2</sub> concentration was  $300 \mu\text{mol mol}^{-1}$  under  $400 \mu\text{mol m}^{-2} \text{s}^{-1}$  of PAR could also be found in an earlier paper of Caemmerer and Farquhar (1981). The above facts indicated that PAR (or PPF) is an important factor affecting the response of gas exchange to CO<sub>2</sub>. The decrease of  $P_N$  might be caused by stimulation of  $R_D$  affected by EC, but whether  $P_N$  would drop or not might depend on the PAR intercepted by leaves, plant species, or their ecological and physiological types.

Plants had been categorized into C<sub>3</sub>, C<sub>4</sub>, and CAM plants on the basis of their carboxylation pathways or into sun and shade plants according to their photon requirement. Each one of C<sub>3</sub>, C<sub>4</sub>, or CAM plants is distinct from the other two types by CO<sub>2</sub> compensation and saturation concentrations, carboxylation efficiency, compensation and saturation irradiance, quantum yield, *etc.* Sun and shade plants can be discriminated by their photon requirement. They are also different in response to irradiance and CO<sub>2</sub> concentration. Leaf characteristics in gas exchange might be determined by plant species, ecological and physiological types, and their  $P_N$  and  $R_D$  would respond dissimilarly to CO<sub>2</sub> concentration.

That  $R_D$ -C<sub>a</sub> curve conformed well to quadratic function might be an inherent property of leaf  $R_D$ . Leaves

or plants had shown their great adaptation to environment in many aspects during the long evolution history. For instance, by comparing leaves collected around 1987 from central England to those specimens collected over the past two centuries before 1987, Woodward (1987) reported that the number of stomata per area of leaf has declined steadily by about 40 % during the past two centuries. The decrease is attributed to the  $60 \mu\text{mol mol}^{-1}$  increase of atmospheric CO<sub>2</sub> during the period. Thus plants react to the changing atmospheric CO<sub>2</sub> concentration around them by changing their photosynthetic and respiration characters. Hence CO<sub>2</sub> concentration is an important environmental factor that affects leaf  $R_D$ . In order to keep their  $P_N$  at the highest level, leaves might adjust their  $R_D$  to the minimum when leaves are exposed to a certain CO<sub>2</sub> concentration for a long time. Thus, any variation of CO<sub>2</sub> concentration would cause the  $R_D$  to rise. If so, the various effects caused by EC could be interpreted as the appearance of the minimum  $R_D$  of different plants at different CO<sub>2</sub> concentration. That is to say, since the reported minimum  $R_D$  of experiment species has appeared at CO<sub>2</sub> concentrations ranging from 350 to 700, positive, negative, or no effect could be certainly found within that range. And if the inherent property was true, when the CO<sub>2</sub> concentration continued to rise, especially where CO<sub>2</sub> concentration is much higher than doubled,  $R_D$  must be promptly enhanced with the enrichment of CO<sub>2</sub>. It was true at least when the CO<sub>2</sub> concentration was less than  $1500 \mu\text{mol mol}^{-1}$  in our experiment.

Along with the progress of studies on  $R_D$  response to EC, scientists are being more aware of the mechanism of leaf  $R_D$  and its change when exposed to EC. Although various effects of EC have been detected,  $R_D$ -C<sub>a</sub> curve offers an important way to explain these effects, at least for short-term effects. Perhaps, before we know why leaf responded to EC differently, we should know first how it responded to a series of CO<sub>2</sub> concentration. We hope our results can shed light on the understanding of the leaf  $R_D$  response to EC using  $R_D$ -C<sub>a</sub> curves; this has been ignored by scientists for decades. To understand the various effects of EC on  $R_D$ , further study can check the differences between plant species, the surroundings they live in, and the evolution of leaf dark respiration with the increasing CO<sub>2</sub> concentration over the geologic time.

## References

Amthor, J.S.: Respiration in a future, higher-CO<sub>2</sub> world. – *Plant Cell Environ.* **14**: 13-20, 1991.

Azcón-Bieto, J., Osmond, C.B.: Relationship between photosynthesis and respiration: The effect of carbohydrate status on the rate of CO<sub>2</sub> production by respiration in darkened and illuminated wheat leaves. – *Plant Physiol.* **71**: 574-581, 1983.

Baker, J.T., Laugel, F., Boote, K.J., Allen, L.H., Jr.: Effects of daytime carbon dioxide concentration on dark respiration in rice. – *Plant Cell Environ.* **15**: 231-239, 1992.

Baxter, B., Bell, S.A., Sparks, T.H., Ashenden, T.W., Farrar, J.F.: Effects of elevated CO<sub>2</sub> concentrations on three montane grass species. III. Source leaf metabolism and whole plant carbon partitioning. – *J. exp. Bot.* **46**: 917-929, 1995.

Bunce, J.A., Ziska, L.H.: Responses of respiration to increases in carbon dioxide concentration and temperature in three soybean cultivars. – *Ann. Bot.* **77**: 507-514, 1996.

Caemmerer, S. von, Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. – *Planta* **153**: 376-387, 1981.

den Hertog, J., Stulen, I., Lambers, H.: Assimilation, respiration

and allocation of carbon in *Plantago major* as affected by atmospheric CO<sub>2</sub> levels. A case study. – *Vegetatio* **104**: 369-378, 1993.

Farrar, J.F.: The respiratory source of CO<sub>2</sub>. – *Plant Cell Environ.* **8**: 427-438, 1985.

Gale, J.: Evidence for essential maintenance respiration of leaves of *Xanthium strumarium* at high temperature. – *J. exp. Bot.* **33**: 471-476, 1982.

Hammel, K.E., Cornwell, K.L., Bassham, J.A.: Stimulation of dark CO<sub>2</sub> fixation by ammonia in isolated mesophyll cells of *Papaver somniferum* L. – *Plant Cell Physiol.* **20**: 1523-1529, 1979.

Jach, M.E., Ceulemans, R.: Short- *versus* long-term effects of elevated CO<sub>2</sub> on night-time respiration of needles of Scots pine (*Pinus sylvestris* L.). – *Photosynthetica* **38**: 57-67, 2000.

Kerbel, E.L., Kader, A.A., Romani, R.J.: Effects of elevated CO<sub>2</sub> concentration on glycolysis in intact 'Bartlett' pear fruit. – *Plant Physiol.* **86**: 1205-1209, 1988.

Kitaya, Y., Okayama, T., Murakami, K., Takeuchi, T.: Effects of CO<sub>2</sub> concentration and light intensity on photosynthesis of a rootless submerged plant, *Ceratophyllum demersum* L., used for aquatic food production in bioregenerative life support systems. – *Adv. Space Res.* **31**: 1743-1749, 2003.

Lambers, H.: Respiration in intact plants and tissues: its regulation and dependence on environmental factors, metabolism and invaded organisms. – In: Douce, R., Day, D.A. (ed.): *Higher Plant Cell Respiration*. Pp. 418-473. Springer-Verlag, Berlin – Heidelberg – New York – Tokyo 1985.

Monning, A.: Studies on the reaction of Krebs cycle enzymes from apple tissue (c.v. Cox orange) to increased levels of CO<sub>2</sub>. – *Acta Horticult.* **138**: 113-119, 1983.

Nijs, I., Impens, I., Behaeghe, T.: Effects of elevated atmospheric carbon dioxide on gas exchange and growth of white clover. – *Photosynth. Res.* **15**: 163-175, 1988.

Norby, R.J., O'Neill, E.G., Luxmoore, R.J.: Effects of atmospheric CO<sub>2</sub> enrichment on the growth and mineral nutrition of *Quercus alba* seedlings in nutrient-poor soil. – *Plant Physiol.* **82**: 83-89, 1986.

Potvin, C., Strain, B.R.: Photosynthetic response to growth temperature and CO<sub>2</sub> enrichment in two species of C<sub>4</sub> grasses. – *Can. J. Bot.* **63**: 483-487, 1985.

Raghavendra, A.S., Vani, T.: Respiration in guard cells: pattern and possible role in stomatal function. – *J. Plant Physiol.* **135**: 3-8, 1989.

Shaish, A., Roth-Bejerano, N., Itai, C.: The response of stomata to CO<sub>2</sub> relates to its effect on respiration and ATP level. – *Physiol. Plant.* **76**: 107-111, 1989.

Spencer, W., Bowes, G.: Photosynthesis and growth of water hyacinth under CO<sub>2</sub> enrichment. – *Plant Physiol.* **82**: 528-533, 1986.

Thomas, R.B., Griffin, K.L.: Direct and indirect effects of atmospheric carbon dioxide environment on leaf respiration of *Glycine max* (L.) Merr. – *Plant Physiol.* **104**: 355-361, 1994.

Woodward, F.I.: Stomatal numbers are sensitive to increases in CO<sub>2</sub> from pre-industrial levels. – *Nature* **327**: 617-618, 1987.

Wullschleger, S.D., Norby, R.J.: Respiratory cost of leaf growth and maintenance in white oak saplings exposed to atmospheric CO<sub>2</sub> enrichment. – *Can. J. Forest Res.* **22**: 1717-1721, 1992.