

Photosynthetic response of wheat cultivar to long-term exposure to elevated temperature

P. PUSHPALATHA, P. SHARMA-NATU, and M.C. GHILDIYAL*

Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India

Abstract

Wheat (*Triticum aestivum* L. cv. HD 2285) was grown in control (C) and heated (H) open top chambers (OTCs) for entire period of growth and development till maturity. The mean maximum temperature of the entire period was 3 °C higher in H- compared to C-OTCs. Net photosynthetic rate (P_N) measured at different temperature (20–40 °C) of C- and H-grown plants showed greater sensitivity to high temperature in H-plants. P_N measured at respective growth temperature was lower in H- compared to C-plants. The CO_2 and irradiance response curves of photosynthesis also showed lesser response in H- compared to C-plants. The initial slope of P_N versus internal CO_2 concentration (P_N/C_i) curve was lower in H- than C-plants indicating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) limitation. In irradiance response curve, the plateau was lower in H- compared to C-plants which is interpreted as RuBPCO limitation. RuBPCO content in the leaves of C- and H-plants, however, was not significantly different. Ribulose-1,5-bisphosphate carboxylase (RuBPC) initial activity was lower in H-plants, whereas activity of fully activated enzyme was not affected, indicating a decrease in activation state of the enzyme. This was further substantiated by the observed decrease in RuBPCO activase activity in H- compared to C-plants. RuBPCO activase was thus sensitive even to moderate heat stress. The decrease in P_N under moderate heat stress was mainly due to a decrease in activation state of RuBPCO catalysed by RuBPCO activase.

Additional key words: CO_2 and irradiance response curves; internal CO_2 concentration; ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) content and activation state; RuBPCO activase.

Introduction

Inhibition of photosynthesis by heat stress is one of the important factors that adversely affect wheat productivity (Al-Khatib and Paulsen 1990, 1999). This has become all the more relevant in the light of rising CO_2 and other greenhouse gases in the atmosphere, the concentrations of which are expected to increase the global temperature (Bowes 1993, Ghildiyal and Sharma-Natu 2000, Ravi *et al.* 2001, Long *et al.* 2004). Under moderate heat stress, inhibition of photosynthesis is reversible, whereas under severe heat stress, damage to photosynthetic apparatus is permanent (Berry and Björkman 1980, Quinn and Williams 1985). Since moderate heat stress occurs more frequently and the effects are not permanent, attempts have been made to elucidate the component of photosynthesis, which is most sensitive to high temperature. Photosystem 2 (PS2) should be especially sensitive to heat stress (Havaux 1993, Enami *et al.* 1994, Havaux and Tardy 1996). However, it has now been shown that damage to PS2 only occurs at high temperature often above 45 °C (Čajánek *et al.* 1998, Yamane *et al.* 1998,

Sharkey 2005). The decrease in photosynthesis under moderate heat stress could, therefore, be through a decrease in CO_2 assimilation.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) is the key regulatory and rate limiting enzyme of CO_2 assimilation (Ogren 1984). Inhibition of CO_2 assimilation by high temperature is generally explained by greater rate of photorespiration at high temperature, which results from changes related with different solubility of CO_2 and O_2 and kinetic properties of RuBPCO (Ogren 1984, Long *et al.* 2004). However, the inhibition of CO_2 assimilation by high temperature has been observed under both photorespiratory and non-photorespiratory conditions (Kobza and Edwards 1987, Crafts-Brandner and Salvucci 2000, Pushpalatha *et al.* 2007), which indicated that reduced photosynthesis at elevated leaf temperature can only partially be explained by greater rate of photorespiration. The decrease in photosynthesis under moderate heat stress could, therefore, possibly be through a decrease in amount and activation state of

Received 30 April 2008, accepted 11 August 2008.

*Corresponding author; fax 91-011-25738766, e-mail: mc_ghildiyal@rediffmail.com

Acknowledgements: Pushpalatha P. thanks Council for Scientific and Industrial Research for providing fellowship.

RuBPCO. RuBPCO must be activated to function fully in CO₂ fixation. RuBPCO activase is the enzyme specifically involved in the activation of RuBPCO at physiological concentrations of CO₂ and Mg²⁺. RuBPCO activase is, therefore, essential for activation of RuBPCO and consequently for efficient photosynthesis (Salvucci *et al.* 1985, Portis *et al.* 1986). Sharma-Natu and Ghildiyal (1993) observed that diurnal decline in P_N in wheat was associated with diurnal decline in activation state of

RuBPCO. A decrease in activation state of RuBPCO in plants grown in elevated CO₂ concentration [CO₂] was associated with down regulation of photosynthesis (Sharma-Natu *et al.* 1997, Ghildiyal *et al.* 2001). The present study attempts to elucidate the effect of moderate heat stress on wheat so as to elucidate the most sensitive component of photosynthetic carbon assimilation. Such information would provide the basis for improving sustenance of P_N under high temperature conditions.

Materials and methods

Wheat (*Triticum aestivum* L. cv. HD 2285) was grown in control (C) and heated (H) open top chambers (OTCs) for entire period of growth and development till maturity. The construction of OTC's (300×200 cm) was based on the design of Leadley and Drake (1993). In heated OTCs warm air was supplied by hot air blower, blown by an axial fan. The warm air entered the chamber through double walled plenum around the base perforated towards inside. To eliminate chamber environment effect, chambers in which only air is blown served as control. The maximum and minimum temperatures of C- and H-OTCs were recorded daily to assess the temperature difference. The H-OTCs maintained mean maximum temperature of around 3 °C higher than C-OTCs. The mean maximum temperature of entire period from sowing to maturity in C- and H-OTCs was 38.3 and 41.2 °C, respectively. Standard cultural practices were followed (Singh 1983). Date of anthesis in the main shoot (MS) was recorded on the tags placed on each plant.

Photosynthetic responses to temperature, CO₂, and irradiance were determined in the flag leaf of MS of C- and H-plants at anthesis stage using portable photosynthetic system (*CIRAS-2 PP Systems*, UK). *CIRAS-2* allows measurement of steady state photosynthesis rate at a given irradiance supplied by the LED light source at a given [CO₂] supplied by CO₂ cartridge and at a given temperature. The temperature control range is from 8 °C below ambient up to 40 °C. For temperature response curves, the sample leaf was enclosed in the assimilation chamber which received constant saturating irradiance (>1 500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ upon the leaf surface) from radiation source. The assimilation chamber temperature was programmed for different temperatures at constant [CO₂] of 360 $\text{cm}^3 \text{m}^{-3}$. For CO₂ response curves, the chamber CO₂ was programmed for different [CO₂] at constant temperature of 25 °C. The observations of P_N measured at different external CO₂ (C_a) and computed values of internal CO₂ concentration (C_i) were recorded in C- and H-plants. The P_N versus C_i curves were then constructed. For irradiance response curves, the chamber irradiance was programmed for different irradiances at constant CO₂ of 360 $\text{cm}^3 \text{m}^{-3}$ and temperature of 25 °C.

Leaf samples for determination of RuBP carboxylase (RuBPC) activity and content were taken around 11:00 h

and stored in liquid nitrogen. RuBPC was rapidly extracted following the method of Servaites *et al.* (1984). The RuBPC activities were estimated by RuBP dependent incorporation of ¹⁴CO₂ into an acid stable product. 'Initial' activities were measured at 25 °C by injecting 50 mm³ of 5 mM RuBP and 25 mm³ of soluble leaf extract into an assay mixture containing (final concentrations) 50 mM Tris-HCl (pH 8.0), 20 mM MgCl₂, 0.1 % (m/v) bovine serum albumin, and 10 mM NaH¹⁴CO₃ (74 kBq per assay) in a total volume of 0.5 cm³. The reaction was terminated after 60 s by addition of 100 mm³ of 6 M acetic acid; the material was dried at 65 °C, and the acid-stable ¹⁴C was estimated by liquid scintillation counting. 'Total' activities were determined in a similar way except that 25 mm³ of the soluble leaf extract and 425 mm³ of assay mixture were incubated together for 10 min at 25 °C before 50 mm³ of 5 mM RuBP were added. From the initial and total activities the % activation of the enzyme was calculated (Servaites *et al.* 1984). RuBPCO content was determined using SDS-PAGE (Laemmli 1970, Servaites *et al.* 1984). LSU and SSU bands of RuBPCO were quantified by using gel documentation program (*Alpha Imager, Alpha Innotech*). Soluble protein content was determined by the method of Bradford (1976).

RuBPCO activase activity was determined following Holbrook *et al.* (1991). Extraction buffer contained 50 mM Hepes KOH (pH 7.0), 5 mM MgCl₂, 1 mM EDTA, 1 mM ATP, 5 mM dithiothreitol (DTT), 50 mM 2-mercaptoethanol, 20 mM ascorbate, 2 % (m/v) polyvinyl-polypyrrrolidone, 10 % (v/v) glycerol, 1 mM PMSF, and 10 μM leupeptin. A coupled assay measuring the ATPase activity of activase was then performed at 25 °C by adding the reaction mixture to a spectrophotometer cuvette containing a final volume of 1.0 cm³ of solution comprising 100 mM Tricine (pH 8.0), 5 mM MgCl₂, 20 mM KCl, 0.2 mM NADH, 4.6 mM DTT, 1 mM ATP, 2 mM phosphoenolpyruvate, 12 units of pyruvate kinase, and 12 units of lactic dehydrogenase. Oxidation of NADH was measured by the decrease in A₃₄₀.

There were three replications for each observation. Data were computed statistically by analysis of variance (ANOVA).

Results

The temperature response curves of P_N in C- and H-plants showed a decrease beyond 30 °C. In C-plants, P_N remained maximum between 20–30 °C, whereas in H-plants optimum P_N was observed only between 25–30 °C. P_N of C- and H-plants was more or less similar around optimum temperature. However, towards lower and higher temperatures, P_N was lower in H-plants.

H-plants, therefore, showed a greater sensitivity to temperature (Fig. 1A). The CO_2 and irradiance curves of photosynthesis showed lesser response in H- compared to C-plants. The initial slope of P_N/C_i curve was lower in H- than in C-plants (Fig. 1B). In irradiance response curve, the plateau was lower in H- compared to C-plants (Fig. 1C).

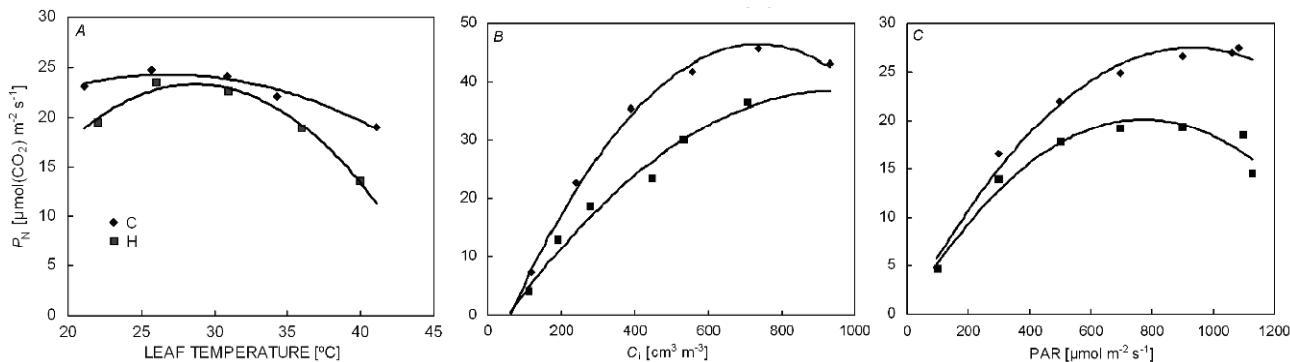


Fig. 1. (A) Net photosynthetic rate (P_N) versus leaf temperature; (B) P_N versus internal CO_2 concentration (C_i), (C) P_N versus photosynthetically active radiation (PAR) in the flag leaf of wheat cv. HD 2285 grown in control (C) and heated (H) open top chambers.

Table 1. Net photosynthetic rate [$\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$], initial and total RuBPC activity [$\text{mmol}(\text{CO}_2) \text{ kg}^{-1}(\text{protein}) \text{ s}^{-1}$], its activation state [%], and content [$\text{g kg}^{-1}(\text{f.m.})$], and RuBPCO activase activity [$\text{mmol}(\text{ADP}) \text{ kg}^{-1}(\text{protein}) \text{ s}^{-1}$] in the flag leaf of wheat cultivars grown in control (C) and heated (H) open top chambers. NS = not significant.

Measurements	C	H	H/C
Net photosynthetic rate	24.50	17.00	0.69
RuBPC			
initial activity	10.83	8.33	0.77
total activity	15.17	14.33	0.94 NS
activation state	71.42	58.13	0.81
content	7.85	7.54	0.96 NS
RuBPCO activase			
activity	5.67	5.00	0.88

The P_N of C-plants measured at C and P_N of H-plants at H showed significantly lower P_N in H- compared to C-plants (Table 1). RuBPC initial activity was lower in H-plants, whereas activity of fully activated enzyme was not significantly affected. The activation state of RuBPC

was lower in H-plants. This was further substantiated by the observed decrease in RuBPCO activase activity in H- compared to C-plants. RuBPC content in the leaves of C- and H-plants, however, was not significantly different (Table 1).

Discussion

Optimum temperature of P_N in C-grown wheat was 20–35 °C and in H-grown plants it was between 25–30 °C. Beyond 30 °C P_N decreased in both C- and H-plants, the decrease, however, was greater in H-plants. Since growth temperature of H-plants during the day at anthesis stage was greater than 30 °C, a decrease in P_N in H- compared to C-plants measured at respective growth temperatures was expected. Kobza and Edwards (1987) also reported optimum temperature of 20–30 °C for P_N in wheat. Temperature response curve of P_N in oak leaves showed a decrease beyond 25 °C (Haldimann and

Feller 2004). The slope of temperature response curves differed in C- and H-plants. If the slope of curve remained the same in C- and H-plants, then the photosynthetic characteristics of leaves were not changed. In our study, slope of curves showed that P_N of H-plants was more sensitive to temperature. This greater temperature sensitivity of P_N of H-plants could be due to photosynthetic acclimation to elevated temperature. Lesser CO_2 and irradiance responses of P_N in H- compared to C-plants provided further evidence of a decrease in photosynthetic capacity of the leaves in H-plants.

A comparison of P_N of C- and H-plants at the same C_i eliminates stomatal effects. Therefore, a lower P_N in H-grown wheat reflects metabolic limitation. Other studies have also reported that inhibition of P_N by heat stress does not arise because of stomatal limitation (Paulsen 1994, Jiao and Grodzinski 1996, Law and Crafts-Brandner 1999, Crafts-Brandner and Law 2000). In our study, the initial slope of P_N/C_i curve was lower in H- than C-plants, thus indicating RuBPCO limitation (Woodrow and Berry 1988, Stitt 1991, Pandurangam *et al.* 2006). In irradiance response curves, the initial slope is interpreted as RuBP-regeneration limited (the low irradiance means the supply of ATP and NADPH is inadequate) and the plateau was interpreted as RuBPCO limitation (Stitt 1991, Pandurangam *et al.* 2006). The irradiance response curves in our study showed that the plateau was lower in H- compared to C-plants which is interpreted as RuBPCO limitation. The above observations are in line with the reports that CO_2 assimilation rather than electron transport is the primary functional limitation of P_N at moderate heat stress normally encountered by plants (Haldimann and Feller 2005, Sharkey 2005).

In our study, H-plants showed no significant decrease

in the amount of RuBPCO compared to C-plants indicating that RuBPCO limitation in H-plants is not due to amount of the enzyme. The activity of rapidly extracted RuBPC was determined without further activation (initial activity) and after activation with CO_2 and Mg^{2+} (total activity). The initial activity thus determined represents the activity of enzyme *in vivo* (Portis 1992). RuBPC initial activity was lower in H-grown plants, whereas activity of fully activated enzyme was not affected, indicating a decrease in activation state of enzyme. This was further substantiated by the observed decrease in RuBPCO activase activity in H- compared to C-plants. Thus thermal denaturation of activase may play a role in the reduction of RuBPCO activation at high temperature. High temperature induces the formation of high-molecular-mass aggregates of activase (Rokka *et al.* 2001). The decrease in P_N under elevated temperature thus appears to be due to a decrease in activation state of RuBPCO catalysed by RuBPCO activase. This is in agreement with results obtained for different species (Feller *et al.* 1998, Law and Crafts-Brandner 1999, Crafts-Brandner and Law 2000). Identification and incorporation of a thermostable RuBPCO activase would therefore be required to improve thermotolerance of photosynthesis.

References

Al-Khatib, K., Paulsen, G.M.: Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. – *Crop Sci.* **30**: 1127-1132, 1990.

Al-Khatib, K., Paulsen, G.M.: High-temperature effects on photosynthetic processes in temperate and tropical cereals. – *Crop Sci.* **39**: 119-125, 1999.

Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **31**: 491-543, 1980.

Bowes, G.: Facing the inevitable – plants and increasing atmospheric CO_2 . – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **44**: 309-332, 1993.

Bradford, M.M.: Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. – *Anal. Biochem.* **72**: 248-254, 1976.

Čajánek, M., Stroch, M., Lachetová, K., Kalina, J., Špunda, V.: Characterization of the photosystem II inactivation of heat stressed barley leaves as monitored by the various parameters of chlorophyll *a* fluorescence and delayed fluorescence. – *J. Photochem. Photobiol.* **47**: 39-45, 1998.

Crafts-Brandner, S.J., Law, R.D.: Effect of heat stress on inhibition and recovery of ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. – *Planta* **212**: 67-74, 2000.

Crafts-Brandner, S.J., Salvucci, M.E.: Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO_2 . – *Proc. nat. Acad. Sci. USA* **97**: 13430-13435, 2000.

Enami, I., Kitamura, M., Tomo, T., Isokawa, Y., Ohta, H., Kato, S.: Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? – *Biochim. biophys. Acta* **1186**: 52-58, 1994.

Feller, U.F., Crafts-Brandner, S., Salvucci, M.E.: Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase mediated activation of Rubisco. – *Plant Physiol.* **116**: 539-546, 1998.

Ghildiyal, M.C., Rafique, S., Sharma-Natu, P.: Photosynthetic acclimation to elevated CO_2 in relation to leaf saccharide constituents in wheat and sunflower. – *Photosynthetica* **39**: 447-452, 2001.

Ghildiyal, M.C., Sharma-Natu, P.: Photosynthetic acclimation to rising atmospheric carbon dioxide concentration. – *Indian J. exp. Biol.* **38**: 961-966, 2000.

Haldimann, P., Feller, U.: Inhibition of photosynthesis by high temperature in oak (*Quercus pubescens* L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. – *Plant Cell Environ.* **27**: 1169-1183, 2004.

Havaux, M.: Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. – *Plant Sci.* **94**: 19-33, 1993.

Havaux, M., Tardy, F.: Temperature-dependent adjustment of the thermal stability of photosystem II *in vivo*: Possible involvement of xanthophyll-cycle pigments. – *Planta* **198**: 324-333, 1996.

Holbrook, G.P., Galasinski, S.C., Salvucci, M.E.: Regulation of 2-carboxyarabinitol 1-phosphatase. – *Plant Physiol.* **97**: 894-899, 1991.

Jiao, J., Grodzinski, B.: The effect of leaf temperature and photorespiratory conditions on export of sugars during steady state photosynthesis in *Salvia splendens*. – *Plant Physiol.* **111**: 169-178, 1996.

Kobza, J., Edwards, G.E.: Influences of leaf temperature on photosynthetic carbon metabolism in wheat. – *Plant Physiol.*

83: 69-74, 1987.

Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. – *Nature* **227**: 680-685, 1970.

Law, R.D., Crafts-Brandner, S.J.: Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. – *Plant Physiol.* **120**: 173-181, 1999.

Leadley, P.W., Drake, B.G.: Open top chambers for exposing plant canopies to elevated CO₂ concentration and for measuring net gas exchange. – *Vegetatio* **104/105**: 3-15, 1993.

Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R.: Rising atmospheric carbon dioxide: Plants face the future. – *Annu. Rev. Plant Biol.* **55**: 591-628, 2004.

Ogren, W.L.: Photorespiration pathways, regulation, and modification. – *Annu. Rev. Plant Physiol.* **35**: 415-442, 1984.

Pandurangam, V., Sharma-Natu, P., Sreekanth, B., Ghildiyal, M.C.: Photosynthetic response of wheat and sunflower cultivars to long-term exposure of elevated carbon dioxide concentration. – *Photosynthetica* **49**: 586-590, 2006.

Paulsen, G.M.: High temperature responses of crop plants. – In: Boote, K.J., Bennet, J.M., Sinclair, T.R., Paulsen, G.M. (ed.): *Physiology and Determination of Crop Yield*. Pp. 365-389. American Society of Agronomy, Madison 1994.

Portis, A.R., Jr.: Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **43**: 415-437, 1992.

Portis, A.R., Jr., Salvucci, M.E., Ogren, W.L.: Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO₂ and ribulosebisphosphate concentrations by rubisco activase. – *Plant Physiol.* **82**: 967-971, 1986.

Pushpalatha, P., Sharma-Natu, P., Ghildiyal, M.C.: Potential targets for improving Rubisco efficiency under different environment. – *Physiol. mol. Biol. Plants* **13**: 169-175, 2007.

Quinn, P.J., Williams, W.P.: Environmentally induced changes in chloroplast membranes and their effects on photosynthesis. – In: Barber, J., Baker, N.R. (ed.): *Photosynthetic Mechanisms and the Environment*. Pp. 1-47. Elsevier, Amsterdam – New York – Oxford 1985.

Ravi, I., Khan, F.A., Sharma-Natu, P., Ghildiyal, M.C.: Yield response of durum (*Triticum durum*) and bread wheat (*T. aestivum*) varieties to carbon dioxide enrichment. – *Indian J. agr. Sci.* **71**: 444-449, 2001.

Rokka, A., Zhang, L., Aro, E.M.: Rubisco activase: An enzyme with a temperature dependent dual function? – *Plant J.* **25**: 463-471, 2001.

Salvucci, M.E., Portis, A.R., Jr., Ogren, W.L.: A soluble chloroplast protein catalyzes ribulosebisphosphate carboxylase/oxygenase activation *in vivo*. – *Photosynth. Res.* **7**: 193-201, 1985.

Servaites, J.C., Torisky, R.S., Chao, S.F.: Diurnal changes in ribulose 1,5-bisphosphate carboxylase activity and activation state in leaves of field-grown soybean. – *Plant Sci. Lett.* **35**: 115-121, 1984.

Sharkey, T.D.: Effect of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species and thermotolerance provided by isoprene. – *Plant Cell Environ.* **28**: 269-277, 2005.

Sharma-Natu, P., Ghildiyal, M.C.: Diurnal changes in photosynthesis in relation to ribulose-1,5-bisphosphate carboxylase activity and saccharides content in wheat leaves. – *Photosynthetica* **29**: 551-556, 1993.

Sharma-Natu, P., Khan, F.A., Ghildiyal, M.C.: Photosynthetic acclimation to elevated CO₂ in wheat cultivars. – *Photosynthetica* **34**: 537-543, 1997.

Singh, C.: *Modern Techniques in Raising Field Crops*. – Oxford & IBH Publishers, New Delhi – Calcutta 1983.

Stitt, M.: Rising CO₂ levels and their potential significance for carbon flow in photosynthetic cells. – *Plant Cell Environ.* **14**: 741-762, 1991.

Woodrow, I.E., Berry, J.A.: Enzymatic regulation of photosynthetic CO₂ fixation in C₃ plants. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **39**: 533-594, 1988.

Yamane, Y., Kashino, Y., Koike, H., Satoh, K.: Effects of high temperatures on the photosynthetic systems in spinach: Oxygen-evolving activities, fluorescence characteristics and the denaturation process. – *Photosynth. Res.* **57**: 51-59, 1998.