

Relationship between net photosynthesis and leaf respiration in Mediterranean evergreen species

L. GRATANI*, L. VARONE, and R. CATONI

Department of Plant Biology, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy

Abstract

The relationship between net photosynthetic (P_N) and leaf respiration (R) rates of *Quercus ilex*, *Phillyrea latifolia*, *Myrtus communis*, *Arbutus unedo*, and *Cistus incanus* was monitored in the period February 2006 to February 2007. The species investigated had low R and P_N during winter, increasing from March to May, when mean air temperature reached 19.2 °C. During the favourable period, *C. incanus* and *A. unedo* had a higher mean P_N ($16.4 \pm 2.4 \mu\text{mol m}^{-2} \text{s}^{-1}$) than *P. latifolia*, *Q. ilex*, and *M. communis* ($10.0 \pm 1.3 \mu\text{mol m}^{-2} \text{s}^{-1}$). The highest R ($1.89 \pm 0.30 \mu\text{mol m}^{-2} \text{s}^{-1}$, mean of the species), associated to a significant P_N decrease (62 % of the maximum, mean value of the species), was measured in July (mean R/P_N ratio 0.447 ± 0.091). Q_{10} , indicating the respiration sensitivity to short-term temperature increase, was in the range 1.49 to 2.21. Global change might modify R/P_N determining differences in dry matter accumulation among the species, and *Q. ilex* and *P. latifolia* might be the most favoured species by their ability to maintain sufficiently higher P_N and lower R during stress periods.

Additional key words: *Arbutus*; *Cistus*; *Myrtus*; *Phillyrea*; *Q₁₀*; *Quercus*; seasonal course; temperature.

Introduction

Respiration is a quantitatively significant component of plant carbon balance, the whole plant respiration rate being positively and strongly related to the whole plant photosynthesis (Amthor 1994, Ryan *et al.* 1997, Cannell and Thornley 2000). Photosynthesis provides the substrate for respiration (Cannell and Thornley 2000), which significantly contributes to plant production, occurring continuously in each organ (Galmés *et al.* 2007). Up to 35 % of the total carbon assimilated may be lost as CO₂ by respiration (Atkin and Lambers 1998). Plant respiration varies between species (Reich *et al.* 1992, 1998, Wright *et al.* 2001, Turnbull *et al.* 2003), and leaf respiration accounts for approximately half of the whole plant respiration (Poorter *et al.* 1990). Environmental stress can influence respiration independently of the effects either on growth or photosynthesis by causing damage or metabolic imbalance that require respiratory metabolism (Amthor 1994).

In Mediterranean ecosystems, drought, high irradiance, and high air temperature influence gas exchange for short or long periods during the year (Filella *et al.* 1998). Drought increases leaf respiration rate (R) and decreases

net photosynthetic rate (P_N), and both are responsible for the negative carbon balance over the drought period (Reichstein *et al.* 2002). Mediterranean evergreen species are characterised by lower P_N and R per unit of dry mass than the deciduous ones (Reich *et al.* 1992, Gratani *et al.* 2007). The temperature sensitivity of P_N differs from that of R (Gifford 2003). Temperature is the major determinant of the respiratory activity, and its change in the short-term results in immediate R variations (Armstrong *et al.* 2006). Understanding the effect of environmental changes, in particular of air temperature increase, on plant R is therefore a prerequisite for predicting the impact of global changes on plant functioning and atmospheric CO₂ concentration (Ryan 1991, Larigauderie and Körner 1995, Atkin and Tjoelker 2003, Zaragoza-Castells *et al.* 2007).

The main objective of this paper was to analyse the relationship between P_N and R of Mediterranean evergreen species. We hypothesised that the best drought adapted species could maintain lower R allowing sufficient P_N during stress periods. Moreover, we determined R sensitivity to temperature.

Received 30 April 2008, accepted 18 July 2008.

*Corresponding author; fax: +39 06 49912358, e-mail: loretta.gratani@uniroma1.it

Abbreviations: P_N – net photosynthetic rate; PAR – photosynthetically active radiation; R – leaf respiration rate; T_l – leaf temperature; T_m – mean air temperature.

Acknowledgements: This paper was supported by the grants from Sapienza University of Rome for the year 2005.

Materials and methods

Study site and plants: Experiments were carried out in the period February 2006 to February 2007 on *Quercus ilex* L., *Phillyrea latifolia* L., *Myrtus communis* L., *Arbutus unedo* L., and *Cistus incanus* L. growing in open air at the Botanical Garden of Rome (41°53'53"N, 12°28'46"E; 53 m a.s.l.). During the study period the selected shrubs were not watered and they received only natural rain.

The study area climate was of Mediterranean type, and most of the total annual rainfall (653 mm) occurred in autumn and winter. The minimum mean air temperature (T_m) of the coldest month (January) was 5.2 °C, the maximum T_m of the hottest month (July) 30.9 °C, and the yearly T_m was 16.9 °C. Dry period (May to August) was characterized by 79.7 mm of the total rainfall (data from the Collegio Romano Meteorological Station, for 1995–2006). During the study period the minimum T_m of the coldest month (January 2007) was 3.2 °C, the maximum T_m of the hottest month (July 2006) 32.6 °C, and the total rainfall 600 mm (data from the Collegio Romano Meteorological Station, for February 2006–February 2007).

CO₂ exchange was measured using an infrared gas analyser (ADC LCA4, UK) equipped with a leaf chamber (PLC, Parkinson Leaf Chamber). For each species we considered four shrubs. Measurements were made on fully expanded sun leaves (three leaves per shrubs per each sampling day), according to Whitehead *et al.* (2004). P_N , photosynthetically active radiation (PAR), leaf temperature (T_l), and R were monitored in four comparable days, each month in the period February 2006 to

February 2007. Measurements were carried out in the morning, from 08:00 to 12:00 (one measure each hour) to ensure that maximum daily rates were measured (Gratani *et al.* 2000, Varone and Gratani 2007). Only the maximum P_N and R values were used. Measurements were carried out under natural conditions, on cloud-free days (saturating PAR $\geq 800 \mu\text{mol m}^{-2} \text{s}^{-1}$) (Reich *et al.* 1995).

On each sampling day, R was measured after P_N (on the same leaves) as CO₂ efflux, darkening leaf chamber by a black paper, according to Cai *et al.* (2005) for 30 min prior to each measurement, to avoid transient post-irradiation bursts of CO₂ release (Atkin *et al.* 1998a,b). R and P_N represented the means of the maximum values of the four days' measurements per month.

Q_{10} , a coefficient proportional to respiration increasing for each 10 °C rise (Atkin *et al.* 2000), was calculated according to Carla *et al.* (2000) and Armstrong *et al.* (2006) as $Q_{10} = 10^{(10 \times \text{slope of regression line})}$. The slope in this equation was extracted from the regression line between \log_{10} of R and air T_m . T_m averaged for 2 d (measurement day and the day preceding it) was used to calculate Q_{10} according to Atkin *et al.* (2000).

Statistical analysis was carried out by one-way ANOVA ($p=0.05$) to test significant differences in P_N , R , and Q_{10} during the study period; mean values were compared by Tukey's test HSD. In order to meet the requirement of normality and homogeneity of variances, data were \log_{10} transformed when necessary. Moreover, regression analysis was carried out to examine the correlations between P_N and R , P_N and T_l , and between R and T_l .

Results

P_N peaked in May (T_m 19.2 °C). *C. incanus* and *A. unedo* had the highest P_N ($16.4 \pm 2.4 \mu\text{mol m}^{-2} \text{s}^{-1}$, mean value), followed by *Q. ilex* and *P. latifolia* ($11.2 \pm 1.1 \mu\text{mol m}^{-2} \text{s}^{-1}$, mean value), and *M. communis* ($7.7 \pm 0.20 \mu\text{mol m}^{-2} \text{s}^{-1}$) (Fig. 1). The species had a significant ($p < 0.05$) P_N decrease in July (T_{\max} 32.6 °C; total rainfall of the month 7.8 mm), *P. latifolia* having the lowest decrease (44 %) and *C. incanus* the highest one (76 %). All the species recovered (P_N was 62 % of the maximum, mean value) after the first rainfall at the middle of September (163.8 mm total rainfall from September 11th to 30th; T_m 21.1 °C). Low P_N was monitored in February 2006 (T_m 8.8 °C), ranging from $2.5 \pm 0.2 \mu\text{mol m}^{-2} \text{s}^{-1}$ in *M. communis* to $6.0 \pm 0.4 \mu\text{mol m}^{-2} \text{s}^{-1}$ in *Q. ilex*.

Leaf R was high in May; *C. incanus* and *A. unedo* had the highest R (2.57 ± 0.01 and $1.56 \pm 0.03 \mu\text{mol m}^{-2} \text{s}^{-1}$,

respectively), followed by *Q. ilex* and *P. latifolia* ($1.52 \pm 0.01 \mu\text{mol m}^{-2} \text{s}^{-1}$, mean value), and *M. communis* ($1.47 \pm 0.04 \mu\text{mol m}^{-2} \text{s}^{-1}$) (Fig. 1). The species showed the highest R in July, ranging from $1.55 \pm 0.05 \mu\text{mol m}^{-2} \text{s}^{-1}$ in *P. latifolia* to $3.09 \pm 0.02 \mu\text{mol m}^{-2} \text{s}^{-1}$ in *C. incanus*, and decreased by 34 % (mean value) in September. The lowest R (77 % decrease from the maximum) was found in winter, *C. incanus* having the highest value ($0.84 \pm 0.05 \mu\text{mol m}^{-2} \text{s}^{-1}$) and *P. latifolia* the lowest one ($0.14 \pm 0.06 \mu\text{mol m}^{-2} \text{s}^{-1}$).

The R/P_N peaked during drought (0.447 ± 0.091 , mean value), and the lowest values were monitored in winter (0.113 ± 0.011 , mean value). The mean R/P_N value of the study period was the highest in *M. communis*, *C. incanus*, and *A. unedo* (0.216 ± 0.080 , mean value) and the lowest one in *P. latifolia* (0.123 ± 0.020) (Fig. 2).

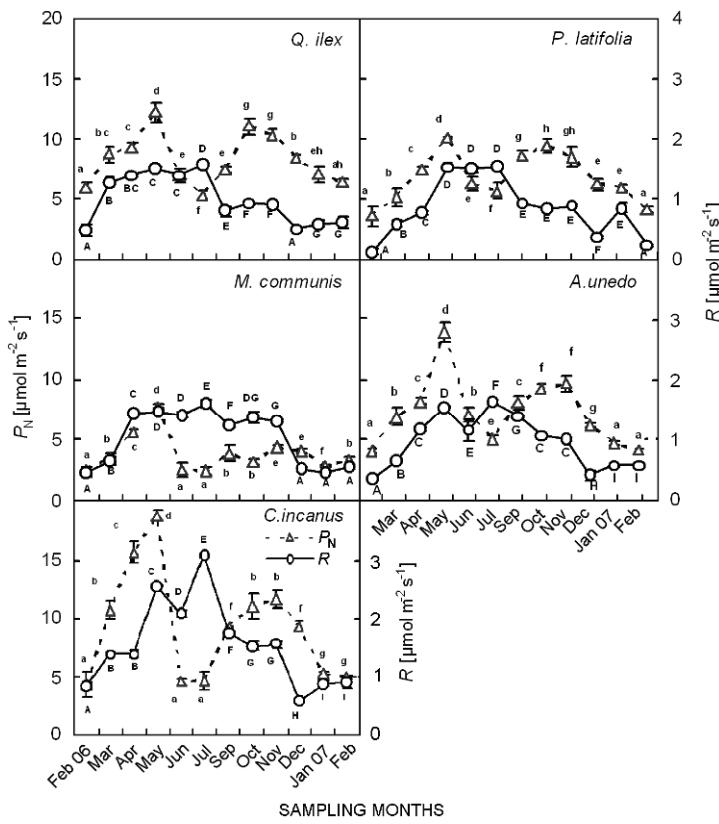


Fig. 1. Trends of net photosynthetic (P_N) and leaf respiration (R) rates during the study period. Means \pm S.E. of four sampling days in each month ($n = 48$). For each measured variable monthly mean value with the same letters is not significantly different (ANOVA, $p>0.05$).

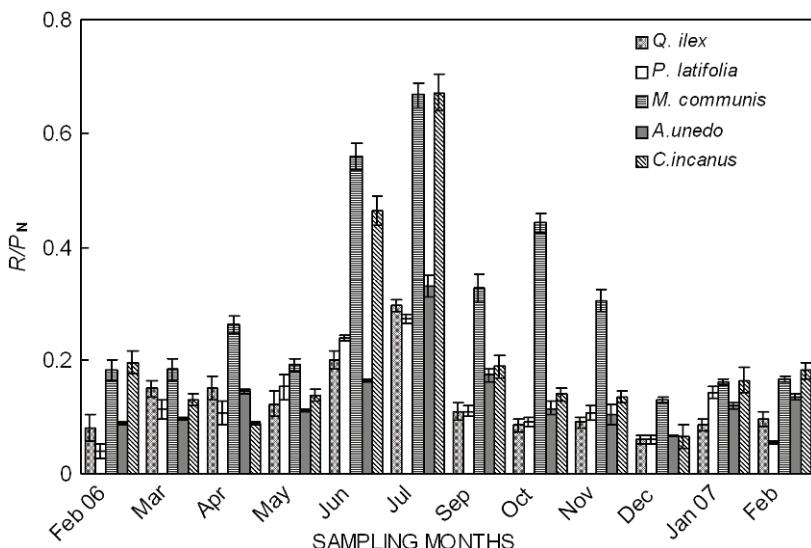


Fig. 2. Ratio between leaf respiration and net photosynthesis (R/P_N) rates during the study period. Means \pm S.E. of four sampling days in each month ($n = 48$).

Table 1. Q_{10} values. Means \pm S.E. with the same letters are not significantly different (ANOVA, $p>0.05$).

Species	Q_{10}
<i>Q. ilex</i>	1.49 ± 0.10 a
<i>P. latifolia</i>	2.21 ± 0.20 b
<i>M. communis</i>	1.85 ± 0.11 c
<i>A. unedo</i>	1.88 ± 0.10 c
<i>C. incanus</i>	1.82 ± 0.10 c

Table 2. Regression analysis between monthly mean net photosynthetic (P_N) and leaf respiration (R) rates during the study period ($n = 12$). * $p\leq0.05$; ** $p\leq0.001$.

Species	Regression equation	r
<i>Q. ilex</i>	$P_N = -9.2 R^2 + 20.0 R - 1.1$	0.52*
<i>P. latifolia</i>	$P_N = -4.6 R^2 + 10.6 R + 2.1$	0.73**
<i>M. communis</i>	$P_N = -2.4 R^2 + 5.8 R + 0.8$	0.50*
<i>A. unedo</i>	$P_N = -4.8 R^2 + 13.1 R - 0.0$	0.64*
<i>C. incanus</i>	$P_N = -3.3 R^2 + 13.1 R - 1.6$	0.51*

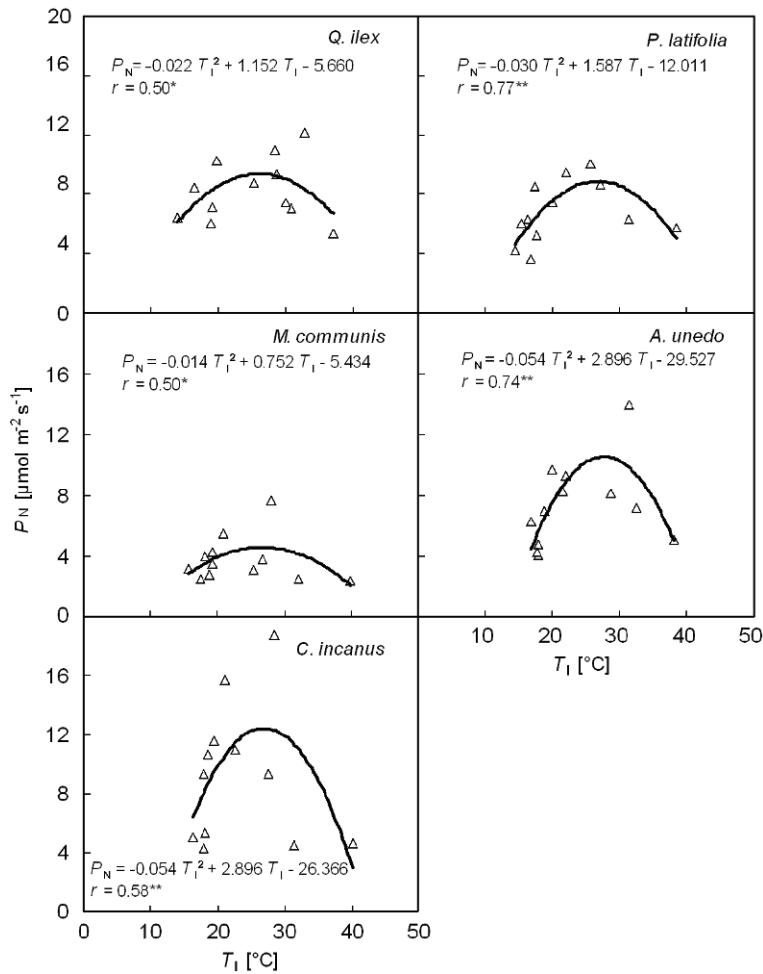


Fig. 3. Regression analysis between net photosynthetic rate (P_N) and leaf temperature (T_l) during the study period. Regression equations and correlation coefficients (r) are shown. Monthly mean values ($n = 12$). $^*p \leq 0.05$; $^{**}p \leq 0.001$.

Q_{10} values indicated that the respiration sensitivity to short-term air temperature increase was in the range 1.49 to 2.21, *P. latifolia* having the highest one (Table 1). The regression analysis showed that, on an average, 58 % of P_N variation depended on R in the species (Table 2).

Discussion

Drought is one of the most important limiting factors of Mediterranean carbon gain, as it induces stomata closure lowering gas diffusion between the mesophyll and the surrounding atmosphere (García-Plazaola and Becerril 2000), particularly when water stress is associated to higher air temperatures and irradiance (Peñuelas *et al.* 1998, Gratani and Bombelli 2000, Pesoli *et al.* 2003).

Amthor (1989, 2000) supports a positive relationship between photosynthesis and saccharide contents in leaves; a higher content of saccharides leads to an increased amount of energy available for respiration. Nevertheless, the mechanism is not entirely dependent on the substrate supply, and it may also be driven by the demand for respiratory products. Environmental stresses limit photosynthesis and saccharide production; low saccharide contents reduce respiratory capability and

repress growth as a result of an inhibition of photosynthesis and subsequent down-regulation of metabolism in response to saccharide depletion (Amthor 1994).

The analysis of the data sets underlines the significant correlations between R and P_N , and between the two leaf variables and T_l . In particular, the relationship between R and P_N underlines the economic carbon budget optimisation at the plant's level, according to Rouhi *et al.* (2007). Relatively high R ($1.72 \pm 0.21 \mu\text{mol m}^{-2} \text{s}^{-1}$, mean value of the species) associated to the highest P_N ($12.6 \pm 1.9 \mu\text{mol m}^{-2} \text{s}^{-1}$, mean value) underline the high metabolic activity under favourable conditions (T_m 19.2°C), associated to a high water availability allowing biomass accumulation (Gratani *et al.* 2000). Under favourable conditions leaves take up roughly three to five times as much CO_2 as they lose by dissimilatory process

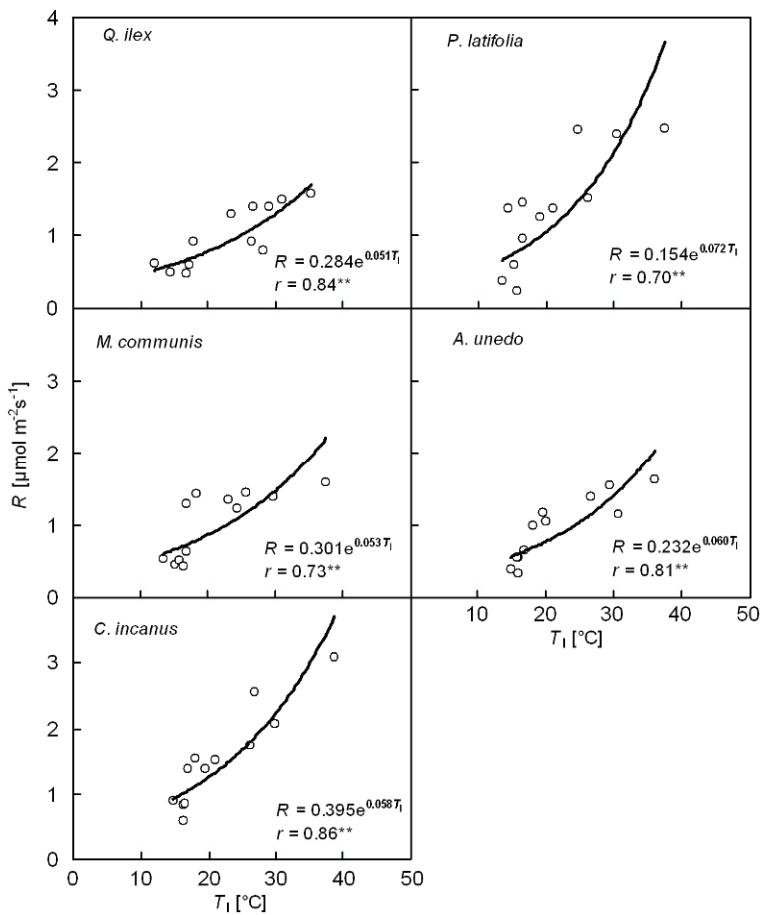


Fig. 4. Regression analysis between leaf respiration rate (R) and leaf temperature (T_l), during the study period. Regression equations and correlation coefficients (r) are shown. Monthly means ($n = 12$).
** $p \leq 0.001$.

during the same period of time (Larcher 2003). Nevertheless, the higher R of *C. incanus* and *A. unedo* than in the other species during the favourable period may be justified by the loss of most of their leaves—up to 90 % of the total plant leaves (Gratani and Bombelli 2001), thus demanding for more respiratory products which are necessary to produce new leaves before the beginning of the drought period. The sclerophyllous species, on the contrary, lose only a part of their older leaves (up to 40 %) in spring (Gratani and Crescente 1997) and require lower R .

The highest R associated to a significant P_N decrease (62 % of the maximum, mean of the species) was measured during drought (R/P_N ratio 0.447 ± 0.091 , mean value), when biomass allocation was not favoured (Gratani *et al.* 2000, Gratani and Varone 2004), and the stored material was mobilized in response to the plant's requirements for maintenance, according to Butler and Landsberg (1981); thus, P_N decrease in drought was not paralleled by R decrease. The whole plant maintenance respiration decline during drought is the result of an overall slowing of the metabolic activity (McCree 1986, Amthor 1994).

Global change may modify the ratio R/P_N determining

differences in the total-season dry matter accumulation, and favouring the typical sclerophyllous species than the semi-deciduous ones, which are able to maintain sufficiently higher P_N and lower R during the stress period. Q_{10} of the species was 1.49–2.21, and among them *P. latifolia* showed the highest respiration sensitivity to air temperature (Q_{10} 2.21), suggesting that it will be able to adjust the stored material immobilization according to air temperature increase. On the contrary, the cumulative carbon assimilation available for *C. incanus* and *A. unedo* growth may be drastically reduced at increased drought, attested also by the highest R/P_N during the year. *M. communis* might be considered in an intermediate position between the sclerophyllous and semi-deciduous species.

Temperature-mediated changes in P_N and R are now accepted as important components of the biosphere's response to global change (Schimel 1995); thus, quantification of dry matter accumulation capability of Mediterranean evergreen species in response to T_m is important as they cover large areas in the world, and in particular in the Mediterranean Basin, with a potential effect on global carbon budget.

References

Amthor, J.S.: Respiration and Crop Productivity. – Springer-Verlag, New York 1989.

Amthor, J.S.: Plant respiration responses to the environment and their effects on the carbon balance. – In: Wilkinson, R.E. (ed.): Plant-Environment Interactions. Pp. 501-554. Marcel Dekker, New York – Basel – Hong Kong 1994.

Amthor, J.S.: The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. – Ann. Bot. **86**: 1-20, 2000.

Armstrong, A.F., Logan, D.C., Atkin, O.K.: On the developmental dependence of leaf respiration: responses to short- and long-term changes in growth temperature. – Amer. J. Bot. **93**: 1633-1639, 2006.

Atkin, O.K., Evans, J.R., Ball, M.C., Siebke, K.: Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. – Aust. J. Plant Physiol. **25**: 437-443, 1998a.

Atkin, O.K., Evans, J.R., Ball, M.C., Siebke, K., Pons, T.L., Lambers, H.: Light inhibition of leaf respiration: the role of irradiance and temperature. – In: Moller, I.M., Gardestrom, P., Gliminius, K., Glaser, E. (ed.): Plant Mitochondria: from Gene to Function. Pp. 567-574. Backhuys Publishers, Leiden 1998b.

Atkin, O.K., Holly, C., Ball, M.C.: Acclimation of snow gum (*Eucalyptus pauciflora*) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in the capacity and temperature sensitivity of respiration. – Plant Cell Environ. **23**: 15-26, 2000.

Atkin, O.K., Lambers, H.: Slow-growing alpine and fast-growing lowland species: a case study of factors associated with variation in growth rate among herbaceous higher plants under natural and controlled conditions. – In: Lambers, H., Poorter, H., Van Vuuren, M.M.I. (ed.): Inherent Variation in Plant Growth: Physiological Mechanism and Ecological Consequences. Pp. 259-288. Backhuys Publishers, Leiden 1998.

Atkin, O.K., Tjoelker, M.G.: Thermal acclimation and the dynamic response of plant respiration to temperature. – Trends Plant Sci. **8**: 343-351, 2003.

Butler, D.R., Landsberg, J.J.: Respiration rates of apple trees, estimated by CO₂-efflux measurements. – Plant Cell Environ. **4**: 153-159, 1981.

Cai, Z.-Q., Slot, M., Fan, Z.-X.: Leaf development and photosynthetic properties of three tropical tree species with delayed greening. – Photosynthetica **43**: 91-98, 2005.

Cannell, M.G.R., Thornley, J.H.M.: Modelling the components of plant respiration: Some guiding principles. – Ann. Bot. **85**: 45-54, 2000.

Carla, A., Gunderson, R.J.N., Wullschleger, S.D.: Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of *Acer saccharum*: laboratory and field evidence. – Tree Physiol. **20**: 87-96, 2000.

Filella, I., Llusia, J., Piñol, J., Peñuelas, J.: Leaf gas exchange and fluorescence of *Phillyrea latifolia* and *Quercus ilex* samplings in severe drought and high temperature conditions. – Environ. exp. Bot. **39**: 213-220, 1998.

Galmés, J., Ribas-Carbó, M., Medrano, H., Flexas, J.: Response of leaf respiration to water stress in Mediterranean species with different growth forms. – J. Arid Environ. **68**: 206-222, 2007.

García-Plazaola, J.I., Becerril, J.M.: Effects of drought on photoprotective mechanisms in European beech (*Fagus sylvatica* L.) seedlings from different provenances. – Trees **14**: 485-490, 2000.

Gifford, R.M.: Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. – Funct. Plant Biol. **30**: 171-186, 2003.

Gratani, L., Bombelli, A.: Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: *Quercus ilex*, *Phillyrea latifolia* and *Cistus incanus*. – Environ. exp. Bot. **43**: 141-153, 2000.

Gratani, L., Bombelli, A.: Differences in leaf traits among Mediterranean broad-leaves evergreen shrubs. – Ann. bot. fenn. **38**: 15-24, 2001.

Gratani, L., Crescente, M.F.: Phenology and leaf adaptive strategies of Mediterranean maquis plants. – Ecol. Medit. **23**: 11-19, 1997.

Gratani, L., Pesoli, P., Crescente, M.F., Aichner, K., Larcher, W.: Photosynthesis as a temperature indicator in *Quercus ilex* L. – Global Planet. Change **24**: 153-163, 2000.

Gratani, L., Varone, L.: Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. – Photosynthetica **42**: 551-558, 2004.

Gratani, L., Varone, L., Bonito, A.: Environmental induced variations in leaf dark respiration and net photosynthesis of *Quercus ilex* L. – Photosynthetica **45**: 633-636, 2007.

Larcher, W.: Physiological Plant Ecology. – Springer-Verlag, Berlin – Heidelberg 2003.

Larigauderie, A., Körner, C.: Acclimation of leaf dark respiration to temperature in alpine and lowland plant-species. – Ann. Bot. **76**: 245-252, 1995.

McCree, K.J.: Whole-plant carbon balance during osmotic adjustment to drought and salinity stress. – Aust. J. Plant Physiol. **13**: 33-43, 1986.

Peñuelas, J., Filella, I., Llusia, J., Siscart, D., Piñol, J.: Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees *Quercus ilex* and *Phillyrea latifolia*. – J. exp. Bot. **49**: 229-238, 1998.

Pesoli, P., Gratani, L., Larcher, W.: Responses of *Quercus ilex* from different provenances to experimentally imposed water stress. – Biol. Plant. **46**: 577-581, 2003.

Poorter, H., Remkes, C., Lambers, H.: Carbon and nitrogen economy of 24 wild species differing in relative growth rate. – Plant Physiol. **94**: 621-627, 1990.

Reich, P.B., Kloeppe, B.D., Ellsworth, D.S.: Leaf lifespan in relation to leaf, plant and stand characteristic among diverse ecosystems. – Ecol. Monogr. **62**: 365-392, 1992.

Reich, P.B., Kloeppe, B.D., Ellsworth, D.S., Walters, M.B.: Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. – Oecologia **104**: 24-30, 1995.

Reich, P.B., Walters, M.B., Ellsworth, D.S., Vose, J.M., Vulin, J.C., Gresham, C., Bowman, W.D.: Relationship of leaf dark respiration to leaf nitrogen, specific leaf area and leaf lifespan – a test across biomes and functional groups. – Oecologia **114**: 471-482, 1998.

Reichstein, M., Tenhunen, J.D., Roupsard, O., Ourcival, J.M., Rambal, S., Dore, S., Valentini, R.: Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. – Funct. Ecol. **16**: 27-39, 2002.

Rouhi, V., Samson, R., Lemeur, R., Van Damme, P.: Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. – *Environ. exp. Bot.* **59**: 117-129, 2007.

Ryan, M.G.: Effects of climate change on plant respiration. – *Ecol. appl.* **1**: 157-167, 1991.

Ryan, M.G., Lavigne, M.B., Gower, S.T.: Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. – *J. geophys. Res.* **102**: 28 871-28 883, 1997.

Schimel, D.S.: Terrestrial ecosystems and carbon cycle. – *Global Change Biol.* **1**: 77-91, 1995.

Turnbull, M.H., Whitehead, D., Tissue, D.T., Schuster, W.S.F., Brown, K.J., Griffin, K.L.: Scaling foliar respiration in two contrasting forest canopies. – *Funct. Ecol.* **17**: 101-114, 2003.

Varone, L., Gratani, L.: Physiological response of eight Mediterranean maquis species to low air temperatures during winter. – *Photosynthetica* **45**: 385-391, 2007.

Whitehead, D., Griffin, K.L., Turnbull, M.H., Tissue, D.T., Engel, V.C., Brown, K.J., Schuster, W.S.F., Walcroft, A.S.: Response of total night-time respiration to differences in total daily photosynthesis for leaves in a *Quercus rubra* L. canopy: implications for modelling canopy CO₂ exchange. – *Global Change Biol.* **10**: 925-938, 2004.

Wright, I.J., Reich, P.B., Westoby, M.: Strategy-shift in leaf physiology, structure and nutrient content between species of high and low rainfall and high and low nutrient habitats. – *Funct. Ecol.* **15**: 423-434, 2001.

Zaragoza-Castells, J., Sánchez-Gómez, D., Valladares, F., Hurry, V., Atkin, O.K.: Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insight from a Mediterranean tree with long-lived leaves. – *Plant Cell Environ.* **30**: 820-833, 2007.