PHOTOSYNTHETICA 48 (1): 110-116, 2010

Photoprotective mechanisms in cold-acclimated and nonacclimated needles
of Picea glehnii

J.-J.BAE™", Y.-S. CHOO™, K. ONO’, A. SUMIDA", and T. HARA"

Cryosphere Science Research Section, Institute of Low Temp. Science, Hokkaido Univ. Sapporo, 060-0819, Japan”
Plant Ecophysiology Lab., Department of Biology, Kyungpook National Univ., Daegu, 702-701, Korea™

Abstract

The response of Picea glehnii, a cold-tolerant species in the boreal zone, to air temperature (T) was investigated for its
cold-acclimated needles (i.e. the ones subjected to gradual decrease in T) and nonacclimated needles (i.e. the ones
subjected to a sudden decrease in T) were compared under low temperature. Cold-acclimated needles showed a greater
increase of zeaxanthin and lutein contents than nonacclimated ones, whereas the nonacclimated needles showed a
greater increase of thylakoid-bound ascorbate peroxidase (tAPX) activity than cold-acclimated ones under chilling
conditions (after cold acclimation). These results suggest that: (/) low T induces the increase of zeaxanthin and lutein
content, and tAPX activity; (2) accumulated zeaxanthin and lutein protect needles from photooxidative stress by
dissipating excess energy before the reactive oxygen species (ROS) are formed in response to a gradual decrease in T
(with cold acclimation and subsequent chilling condition), and by tAPX scavenging ROS formed in the case of a sudden

decrease in T (without cold acclimation and chilling condition).
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Introduction

Low temperatures associated to excessive light induced
photooxidative stress. Photooxidative stress is induced by
reactive oxygen species (ROS) due to the excess of
energy reacting on oxygen molecules, as a consequence
of imbalance between absorbed and utilized light energy
required for photosynthesis under stressful conditions
(Aroca et al. 2001, Mittler 2002). The first mechanism to
protect the photosynthetic apparatus from photooxidative
damage or to prevent formation of ROS under stressful
conditions is the thermal dissipation of excess energy via
xanthophyll-cycle pigments (Gilmore 1997). Another
important photoprotective mechanism is the development
of enzymes in the antioxidative mechanism (Noctor and
Foyer 1998, Asada 1999, Hansen et al. 2002).

During winter, evergreen coniferous trees are exposed
to a photooxidative risk more directly than deciduous
ones (Ottander et al. 1995). In the cold regions, cold
acclimation acts as a decisive factor for plants to survive
under severe low-temperature conditions.
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Although research related to the influence of cold
acclimation on the photoprotective mechanism in woody
plants have been made under natural or controlled
environmental conditions (Doulis et al 1993, Repo et al.
1996, Wang 1996, Li et al. 2002, 2004, Verhoeven et al.
2005, Repo et al. 2006) in Pinus sylvestris, Picea rubens,
Pinus ponderosa, and Betula pendula, no information
about the protective mechanism in sudden or gradual
temperature-decrease conditions have previously been
considered.

Picea glehnii Masters (Sakhalin spruce) is a conifer
distributed in the boreal climate zone, south of Siberia
and north of Japan (Kojima 1991). It is known as a cold-
tolerant species that can survive at extremely low
temperatures during winter. The purpose of our study was
to analyse the mechanisms for preventing photooxidative
stress induced by sudden or gradual temperature decrease
in the current-year needles of P. glehnii. Therefore, we
carried out an experiment using special growth chambers
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Abbreviations: A — antheraxanthin; APX — ascorbate peroxidase; C — control; CA — cold-acclimated; Chl — chlorophyll; DM — dry
mass; F, — fluorescence when all PSII reaction centres are closed in dark-exposed leaves; F, — fluorescence of leaves in the dark when
all PSII reaction centres are open; F, — variable fluorescence (F, = F,—F,); F,/F,, — quantum yield of PSII photochemistry; FM — fresh
mass; N — nonacclimated; PPFD — photosynthetic photon flux density; ROS — reactive oxygen species; RWC — relative water content;
sAPX — stromal APX; tAPX — thylakoid-bound APX; T — temperature; TM — turgescent mass; V — violaxanthin; Z — zeaxanthin.
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where boreal winter environments of light and tempera-
ture can be reproduced. By comparing experimentally
cold-acclimated (gradual decrease in T) and nonaccli-
mated needles (sudden decrease in T), we investigated the
relative water content (RWC), quantum yield of PSII

Material and methods

Plants and growing conditions: Several 4-year-old
P. glehnii saplings with uniform size (shoot height
30~35cm) from a commercial nursery (Oji Ryokka
Forestry and Landscaping Co., Ltd., Sapporo, Japan)
were selected. The saplings (75 plants) were grown for
two months (23 May to 20 July 2005) at 25°C/20°C
(day/night), relative humidity of 60%/80% (day/night)
under light supplemented with artificial light (100 pmol
m 2 s! PPFD, fluorescent tubes, FHF32EX-N-H) and a
photoperiod of 12 h in the growth chambers (Sapporo,
Japan). Nutrient solution Hyponex (N:P:K = 6:10:5)
diluted 1,000 times with distilled water (300 cm®) was
regularly supplied to each sapling once a week.

Experimental design: After two months, the saplings
were separated into two groups (Fig. 1). Saplings of the
first group were grown in a growth chamber at 25°C/20°C
as control (C, 25 plants) and nonacclimated group (N,
25 plants). Saplings (25 plants) of the second group
(cold-acclimated group, CA) were kept at 15°C/10°C for
10 days and then at 5°C/0°C for 10 days to cold
acclimation. The N and CA saplings were placed for two
weeks at a low T 0°C/0°C (Fig. 1) for chilling treatment.
Saplings of the control group were grown at 25°C/20°C
during the entire experimental period. Current-year need-
les were collected during the morning (9.00-11.00 h),
and were immediately frozen in liquid nitrogen and
stored at —84°C until assay.

RWOC of current-year needles (n = 25) of P. glehnii was
calculated according to the following equation: RWC (%)
= (FM-DM)/(TM-DM) x 100, where FM = fresh mass,
DM = dry mass, and TM = turgescent mass. The dry
mass of the needles was measured after 3 days dried in an
oven at 80°C, and a turgescent mass of needles was
measured after holding the samples for 12 h in distilled
water at 4°C (Cameron ef al. 1999).

Analysis of pigments: Total Chl and carotenoid content
in the current-year needles of P. glehnii were extracted
and quantified. Needles (about 50 mg in DM) were
homogenized with liquid nitrogen. Pigments were
extracted with 100% (v/v) acetone and centrifuged for
3 min at 14,000 x g. Chl a and b content, zeaxanthin (Z),
violaxanthin (V), antheraxanthin (A), lutein, and
B-carotene were immediately analyzed with a liquid
chromatography (HPLC; LC-Vp series, Shimadzu, Kyoto,

photochemistry, chlorophyll (Chl) fluorescence, plant
pigments, and activities of ROS-scavenging enzymes in
the current-year needles of P. glehnii during cold
acclimation and subsequent low temperature.

Japan) on a Shim-pack CLC-ODS column (150 mm long,
6 mm in diameter; Shimadzu, Kyoto, Japan) with the
solvent A [acetonitrile:methanol, 85:15 (v:v)] and solvent
B [acetonitrile:ethylacetate, 68:32 (v:v)]. Peak identity
was determined by comparison of pure standards (DHI
Water and Environment, Horsholm, Denmark).

Chl fluorescence parameters of the current-year needles
were determined with a pulse amplitude-modulated
fluorometer (PAM-2000, Heinz Walz, Effeltrich, Ger-
many). The initial fluorescence (F,) at a 0.1 pmol m > s™'
PPFD and maximal fluorescence (F,,) at saturating 2,400
pumol m? s ' PPFD were measured for needles dark-
adapted for 15 min at 22°C. Variable fluorescence (F,)
was calculated by subtracting F, from F,..

ROS-scavenging enzymes (sAPX, tAPX): For the sAPX
(soluble ascorbate peroxidase), needle material was
ground with liquid nitrogen and homogenized with
500 mm® of potassium phosphate buffer (50 mM pH 7.8)
containing 5 mm® of 10% triton X-100 and 0.01 g myo-
inositol and polyvinyl pyrrolidone (PVP), 40 mm’ of
0.1 mM ascorbate and 20 mm’ of 0.ImM 2Na-EDTA
(ethylenediamine tetraacetic acid) (pH 8.0). The extracts
were centrifuged at 15,000 x g for 10 min at 4°C and the
supernatant was used as an extract for the SAPX. For the
tAPX (membrane-bound ascorbate peroxidase), 40 mm’
of 0. mM ascorbate, 500 mm’ of 50 mM potassium
phosphate buffer (50 mM pH 7.8), and 5 mm’ of 10%
triton X-100 were added into the remaining sediment
within the tube after extraction of sAPX, centrifuged
under the same conditions. For the activity of SAPX and
tAPX, the following components of the reaction mixture
were added to the supernatant: 5 mm® of 0.1 mM
ascorbate, 979 mm’ of 50 mM potassium phosphate
buffer (pH 7.0), 6 mm® of 0.1 mM H,0, and 10 mm® of
plant extracts (supernatant) which was obtained after
centrifugation of the homogenate. All extractions were
prepared at 4°C, and enzyme assays were determined at
25°C. The optical density in a 1 cm cuvette was recorded
at 290 nm, using a spectrophotometer (DU 7400,
Beckman coulter, CA, USA). A decrease in the optical
density for 5 min of reaction was taken as a measure of
the enzyme activity, which was expressed in mM min '
mg(protein) ' (for SAPX) or mM min' mg(Chl)" (for
tAPX) using the molar extinction coefficients & =
2.8mM 'em™.
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Fig. 1. Experimental design with Picea glehnii saplings. Each group (C, N, CA) is composed of 25 saplings.

Statistics: The results in Figs. 2—8 are shown as the mean
+ SE of three (all figures except Figs. 3,5) or six (Figs.
3,5) independent replicates. Statistical analysis of control
(C) data, cold-acclimated (CA) and nonacclimated (N)
current-year needles were analyzed using ANOVA. The
normality and homogeneity of variances for variables

Results

RWC: During cold acclimation, RWC did not decrease
more than the control group. Under the subsequent low
T condition (chilling), N needles had a significantly
decreased RWC (P<0.05) than the control group but the
CA did not show a decrease in RWC (Fig. 2).

Quantum yield of PSII photochemistry (F,/Fy,): F./F,
of CA decreased significantly from 0.73 to 0.32 when
exposed to low T for cold acclimation (Fig. 3). Under the
subsequent low T conditions (chilling), NA needles
showed a significant decrease in F,/F;, comparison to the
C group, whereas there was no significant difference in
F,/F, between CA and the C needles (Fig. 3). Therefore,
low T decreases quantum yield of PSII photochemistry
but the CA needles undergo less photo-oxidation at low T
than N ones.

Chl content, Chl a/b ratio and fluorescence: The
Chl a/b ratio of CA needles was significantly decreased
(P<0.005) more than the N ones by low T treatment
(Fig. 4). F, (Fig. 5) and total Chl content [Chl (a+b)]
remained constant during the cold acclimation and
subsequent low T. F, and F,;, decreased when the needles
were exposed to low T during cold acclimation and under
the subsequent low T conditions (Fig. 5). Under the low
T conditions, N needles showed a significant decrease
(P<0.005) in F, and F, than CA needles.
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were checked and transformations of the variables such
as arcsine-root were made when necessary. A Tukey (T)
test was carried out to determine if significant differences
(P<0.05) were found among the C, CA and N groups
during the entire experimental period (using SPSS 12.0
for Windows, SPSS, Chicago, IL, USA).

Xanthophyll cycle pigments: The zeaxanthin content (Z)
and the xanthophyll pool size (V+A+Z) increased in both
CA and N needles by low T treatment (during cold accli-
mation and subsequent chilling condition) (Fig. 6). Under
the subsequent low T conditions (chilling condition), CA
showed significantly greater increase (P<0.005) in
zeaxanthin than N needles.
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Fig. 2. Relative water content (RWC) in current-year needles of
P. glehnii. C - control; CA - cold-acclimated; N —
nonacclimated. The different letters denote significant
differences by Tukey (T) multiple pairwise comparison
(P<0.05), and the levels of significance are denoted as ~
(P<0.05), ™ (P<0.005) (n=3).
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Fig. 3. Quantum yield of PSII photochemistry (F,/F) in
current-year needles of P. glehnii. C — control; CA — cold-
acclimated; N — nonacclimated. The different letters denote
significant differences by Tukey (T) multiple pairwise
comparison (P<0.05), and the levels of significance are denoted
as " (P<0.05), and " (P<0.005) (n=6).
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Fig. 4. Chlorophyll content [Chl (a+b)] and Chl a/b ratio in
current-year needles of P. glehnii. C — control; CA — cold-
acclimated; N — nonacclimated. The different letters denote
significant differences by Tukey (T) multiple pairwise
comparison (P<0.05), and the levels of significance are denoted
as * (P<0.05),and "~ (P<0.005) (n = 3).

Lutein and p-carotene contents: Lutein contents did not
increase during cold acclimation in CA, but it increased
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Fig. 5. Chlorophyll fluorescence (F, — initial, F,, — maximal,
F, — variable) in current-year needles of P. glehnii. C — control;
CA - cold-acclimated; N — nonacclimated. The different letters
denote significant differences by Tukey (T) multiple pairwise
comparison (P<0.05), and the levels of significance are denoted
as " (P<0.05), and ™" (P<0.005) (1 = 6).

under the subsequent low T conditions (chilling condi-
tion). However, there was no difference in B-carotene
contents by low T treatment among groups (Fig. 6).

ROS-scavenging enzymes (sAPX, tAPX): The activity
of the sAPX was constant in the C, CA, and N needles
during cold acclimation and subsequent low T conditions.
Under chilling conditions, CA needles showed the same
tAPX activity as the C, whereas the N ones showed a
significantly greater increase in the tAPX activity than
the C and the CA ones (Fig. 7).
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Fig. 6. The contents of zeaxanthin, xanthophyll pool size (V+A+Z), lutein and B-carotene in current-year needles of P. glehnii.
C — control; CA — cold-acclimated; N — nonacclimated. The different letters denote significant differences by Tukey (T) multiple
pairwise comparison (P<0.05), and the levels of significance are denoted as ~ (P<0.05), and *" (P<0.005)_ (n = 3).

Discussion

RWC: During low temperature, dehydration occurs
because of imbalance between water uptake and
transpiration (Bohnert et al. 1995). Cold-induced water
deficit affects cold-sensitive plants. The results underline
that chilling treatment decreases RWC in the nonaccli-
mated current-year needles of P. glehnii, while the cold-
acclimated needles maintained a greater RWC even under
the subsequent low-temperature conditions.

F,/F,,, Chl, and fluorescence: Plants have the ability to
adjust light-harvesting antenna size in response to
environmental light conditions (Murchie and Horton
1997, Tanaka and Tanaka 2000). If the light-harvesting
antenna complex responds to low-temperature-induced
photooxidative stress, it is expected that Chl a/b increases
(i.e. smaller antenna size) as temperature decreases. In
our results (Fig. 4), however, the light-harvesting antenna
complex did not respond to low temperature-induced
photooxidative stress because Chl content (main antenna
pigments) was almost constant and Chl a/b decreased
(i.e. larger antenna size) with the decrease of T. The de-
creases of quantum yield of PSII photochemistry (Fig. 3),
F, and F,, (Fig. 5), the constant Chl content (Fig. 4), and
F, (Fig. 5) were revealed during cold acclimation and
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under the subsequent chilling conditions. These results
indicate that the reaction center of the photosynthetic
apparatus in current-year needles of P. glehnii suffered
more damage than the antenna complex by low-tempera-
ture-induced photooxidative stress. In our results, cold-
acclimated needles showed less damage to the photo-
synthetic apparatus than nonacclimated ones, under the
subsequent chilling conditions. It is therefore suggested
that cold acclimation improves tolerance in the reaction
center of photosynthetic apparatus to low-temperature-
induced photooxidative stress. However, more data
including analyses of core proteins of the photosystem
such as DI, D2, and CP43 are needed to verify these
processes (Sundby et al. 1993, Rintamiki et al. 1996,
Anderson et al. 1997, Baena-Gonzalez et al. 1999).

Pigments: Our results showed increases in both zea-
xanthin and lutein contents, and in xanthophyll pool size
of cold-acclimated P. glehnii needles under low
temperature (Fig. 6). These are the general characteristics
of many cold-acclimated plants under low temperature,
herbaceous plants (such as spinach, winter wheat, winter
rye, maize) (Somersalo and Krause 1990, Hurry and
Hiiner 1992, Leipner et al. 1997, Streb et al. 1999), and
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Fig. 7. The activities of sAPX and tAPX in current-year needles
of P. glehnii. C — control; CA — cold-acclimated; N — nonaccli-
mated. The different letters denote significant differences by
Tukey (T) multiple pairwise comparison (P<0.05), and the
levels of significance are denoted as * (P<0.05), and
(P<0.005). (n=13).

evergreen trees (Ottander ef al. 1995, Gilmore and Ball
2000). They suggest that thermal dissipation of excess
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