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Abstract

Two populations, one from lesser saline Derawar Fort (DF) and the other from highly saline Ladam Sir (LS) in the
Cholistan desert, for each of the five grass species, Aeluropus lagopoides, Cymbopogon jwarancusa, Lasiurus scindicus,
Ochthochloa compressa, and Sporobolus ioclados were examined to investigate the influence of salinity on structural
and functional characteristics of stomata. Salinity tolerance in A. lagopoides mainly depended on controlled transpiration
rate (£) and high water-use efficiency (WUE), which was found to be regulated by fewer and smaller stomata on both
leaf surfaces as well as stomatal encryption by epidermal invaginations. C. jwarancusa had sunken stomata on the
abaxial surface only, which largely reflected a reduced E, but less affected stomatal conductance (g;) or WUE.
L. scindicus had fewer but larger stomata along with hairs/trichomes which may function to avoid water loss through
transpiration, and hence, to attain a high WUE. In O. compressa stomata were found only on the abaxial surface and
these were completely encrypted by epidermal invaginations as well as a dense covering of microhairs, which was
associated with a low £ and high WUE under salinity stress. In S. ioclados, the traits of increased stomatal density and
decreased stomatal area may be critical for stomatal regulation under salt-prone environments. High stomatal regulation
depended largely on stomatal density, area, and degree of encryption under salinity, which is of great ecophysiological
significance for plants growing under osmotic stresses.
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Introduction

The Cholistan Desert of Pakistan (coordinates: 27°42’
and 29°49° N, 69°52” and 75°42 E) is a vast hot sandy
desert spreading over an area of 2.6 million ha (Akhter
and Arshad 2006). Mean annual rainfall in the desert
ranges from 100 to 250 mm (mostly during the monsoon
season from July to September). Mean temperature
ranges from 46.5°C (absolute maximum 51°C) during
June to 6.5°C during December and January (Arshad
et al. 2008). Vegetation of the area is typical of xeric type
with grasses, such as A. lagopoides, L. scindicus,
O. compressa, C. jwarancusa and S. ioclados, dominating
the interdunal saline flats between high sand dunes of
about 100 m (Hameed et al. 2002). The distribution
pattern and relative dominance of these grasses depend
on the salinity level of the habitats in the Cholistan
desert. With respect to this degree of salinity tolerance,
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the five grass species used in the present study can be
rated in the following sequence: A. lagopoides (most
important), S. ioclados, O. compressa, C. jwarancosa,
and L. scindicus (least important) (Naz et al. 2009).

The harsh and fluctuating desert environment has a
strong impact on vegetation structure and distribution
(Arshad et al. 2008). Plant interactions with their sur-
rounding environment result in diverse strategies and
mechanisms in plants for their successful survival under
stressful conditions (Soukup et al. 2004). The natural
plants are highly adapted to their native climatic and
edaphic conditions, and therefore, have some specific
structural and physiological adaptations to environmental
stresses (Hameed et al. 2009, Naz et al. 2009).

Leaf growth is more responsive to high salinities than
root growth, and reduction in photosynthetic area (leaf

Abbreviations: ANOVA — analysis of variance; DF — Derawar Fort; £ — transpiration rate; ECe — electrical conductivity of soil

saturation extract; gs —

stomatal conductance; LS — Ladam Sir; LSD — least significant difference; Py — net CO, assimilation rate;

PAR - photosynthetically active radiation; PPFD — photosynthetic proton flux density (maximum light intensity); SAR — sodium

absorption ratio; WUE — water-use efficiency.
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size) cannot support well the continued growth (Munns
and Termaat 1986). Adverse environmental conditions
like salinity and drought are known to directly affect
photosynthesis (Naumann et al. 2007), as well as
stomatal conductance (Souza et al. 2004), which
ultimately limit CO, diffusion into the leaf tissues
(Centritto et al. 2003). High flexibilities in stomatal
behaviour in response to plant water status may be
positively associated with photosynthesis and water-use
efficiency (Xu and Zhou 2008). Thus, photosynthetic
parameters have been considered as the potential targets
for selection for salinity tolerance in grasses (Lee et al.
2004).

Plant stomata play a crucial role under different
environmental conditions by acting as vital gates between
plants and the atmosphere (Nilson and Assmann 2007).
As the inhabitant species of the Cholistan desert are
exposed to multiple stresses, stomatal behaviour may
play an important role in their distribution, survival and
adaptation to such harsh climatic conditions. Many
researchers have reported the function of stomata in
resisting various environmental stresses such as heat
(Beerling and Chaloner 1993), salt (Zhao et al. 2006),
and drought (Galmés et al. 2007). Stomatal density and
distribution along with other leaf epidermal features may
significantly affect key gas-exchange parameters in
response to different environmental factors (Nilson and
Assmann 2007). Stomatal morphology, distribution, and
behaviour are important indicators of resistance to a
variety of environmental conditions (Hetherington and
Woodward 2003). Stomatal behaviour is very important
in controlling different gas-exchange parameters. For
example, opening and closing of stomata and their
orientation on leaf surfaces may prove very vital (Nejad
et al. 2006). Especially, the complete absence of stomata
from upper leaf surfaces is critical for maintaining plant

Materials and methods

Five salt-tolerant grasses [Aeluropus lagopoides (L.)
Trin. ex Thw., Cymbopogon jwarancusa (Jones) Scult.,
Lasiurus scindicus Henrard, Ochthochloa compressa
(Forssk.) Hilu, and Sporobolus ioclados (Trin.) Nees]
were collected from salt-affected habitats differing in salt
content in the Cholistan Desert, Pakistan. Derawar Fort
(DF) was the low salt-affected habitat (coordinates
29°24°31.95” N, 71°27°32.83” E; pH 8.35; electrical con-
ductivity of soil saturation extract (ECe) 15.21 dS m';
sodium adsorption ratio (SAR) 2,049.27; Na' 3,236.56
mg I''; CI' 1,493.11 mg I'"). Ladam Sir (LS) was the
highly salt-affected site (coordinates 30°53°26.47” N,
72°64°25.08” E, pH 8.38; ECe 49.18 dS m'; SAR
2,795.57; Na" 5,139.30 mg I''; CI' 2,637.73 mg I'").
Plants from the two populations were collected in
selected habitats in the Cholistan desert and established in
a netting house in the Botanic Garden, University of
Agriculture, Faisalabad for a period of one year.

water relations under water-limiting environments as has
been observed previously in Festuca novae-zealandiae
(Abernethy et al. 1998).

Sodium chloride (NaCl) salinity has a direct effect on
the photosynthetic apparatus independent of its impact on
stomates (Brugnoli and Lauteri 1992), as has also been
reported in many halophytic and nonhalophytic species
(Ball and Farquhar 1984, Seemann and Sharkey 1986).
However, stomatal closure in response to salinity has
been reported in different plant species, e.g., Aster
tripolium (Perera et al. 1995, Kerstiens et al. 2002),
Oryza sativa (Sultana et al. 1999), and Vicia faba
(Melesse and Caesar 2008), which in turn reduces the
CO, conduction. Stomatal closure is also known to
reduce internal CO, concentration and assimilation rate in
plants under salt stress (Dionisio-Sese and Tobita 2000,
Netondo et al. 2004).

Stomatal regulation in halophytes or salt-tolerant
species has received little consideration even though the
transpiration stream is thought to be an important factor
in ion regulation, especially under high salinities
(Robinson et al. 1997). In view of these reports it is
evident that gas-exchange characteristics in leaves
depend on stomatal form and structure in different plants
exposed to saline regimes. Therefore, we hypothesized
that these two attributes bear a positive relationship with
photosynthetic capacity in the five grass species diffe-
rentially adapted to salt-affected soils of the Cholistan
desert.

The present study was conducted with a principal
objective to appraise the relationships of gas-exchange
characteristics (function) with stomatal modifications
(form) in the plants growing under saline regimes of the
Cholistan desert. In fact, the fundamental problem of
form and function in leaves is quite an active area of
research in these days.

Ramets of equal size (with two mature tillers) were
detached and grown in aerated hydroponics in half-
strength Hoagland’s nutrient solution (Hoagland and
Arnon 1950) for eight weeks during February-April in the
netting house under ambient climatic conditions [photo-
period 11 to 12 h, light (average PAR 1,258 + 32 pmol
m? s '), day and night temperatures were 38 + 4°C and
26 + 3°C, relative humidity 44.6 to 59.4%]. Air pumps
were used for aeration of hydroponic culture system for
about 12 h daily. Ten plants were grown on a thermopore
(mineral fibre) sheets.

The experiment was arranged in a completely
randomized design with ten replications and three main
factors, e.g., grasses, populations, and salinity levels. The
salt levels used in the experiment were 0 and 300 mM
NaCl in half-strength Hoagland’s nutrient solution. The
data were subjected to statistical analysis using Microsoft
Excel software and Minitab statistical software for
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analysis of variance (ANOVA) and LSD for comparison
of mean values.

Net CO, assimilation rate (Py), transpiration rate (£)
and stomatal conductance (g;) were measured on one
fully expanded youngest leaf from each plant using an
open system LCA-4 ADC portable infrared gas analyzer
(Analytical ~ Development ~ Company,  Hoddesdon,
England). The data were recorded on May 15, 2009 from
9.00 to 11.00 h with molar flow of air per unit leaf area
403.3 mmol m *s', atmospheric pressure 99.9 kPa, maxi-
mum light intensity (PPFD) at leaf surface 1,711 pmol
m~ s, leaf temperature ranging from 28.4 to 32.4°C,
ambient temperature from 22.4 to 27.9°C, and ambient

Results

Photosynthetic parameters: The populations of all five
grasses from both lesser saline DF and highly saline
habitat LS showed very little differences in Py under the
control treatment, i.e., 0 mM NaCl (Fig. 1). In general,
S. ioclados showed higher Py than the other grasses
studied, but 4. lagopoides was the solitary case in which
the LS population showed an increase in net CO,
assimilation rate under high salinity.

Transpiration rate was severely affected in all grasses
due to salt stress (Fig. 1). C. jwarancusa had significantly
lower E at 0 mM NacCl than that in the other grasses and
this characteristic was markedly less affected in this
species by high salinity level than that recorded in the
other grasses.

gs decreased significantly under high salinity level in
all five grasses, but the populations of all five grasses
from DF were relatively more affected than those from
the highly saline LS (Fig. 1). The populations of
C. jwarancusa and L. scindicus, in general, showed much
reduced g; at both salt regimes, i.e., 0 and 300 mM NaCl,
as compared to the populations of other selected grasses.

Substomatal CO, concentration was significantly
affected due to high salinity in all the grass populations
(Fig. 1). However, the LS populations of all grasses
showed significantly higher substomatal CO, concen-
tration at 300 mM NaCl than that recorded in the
populations from DF.

WUE (calculated as Py/E) was significantly higher in
all populations of five grasses under high-salinity stress
(Fig. 1). Both populations of each of the three grasses,
S. ioclados, A. lagopoides and C. jwarancusa, showed
greatly increased water-use efficiency under 300 mM
NaCl.

Stomatal density and size: The DF populations of all
grasses showed a significant decrease in adaxial stomatal
density under high salinity (300 mM NaCl) of the
external medium (Fig. 2). The LS populations of
S. ioclados had increased stomatal density at high salinity
level. Both populations of C. jwarancusa and the LS
population of O. compressa had no stomata on adaxial
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CO, concentration of 352 umol mol ™.

For stomatal studies, 1-cm piece from the leaf used
for gas-exchange measurements was taken and fixed in
FAA (formalin 5%, acetic acid 10%, ethanol 50%, and
water 35%) solution for 48 h. The material was then
transferred to acetic-alcohol (v/v, acetic acid 25%, and
ethanol 75%) solution for long-term storage. Stomatal
density, area, and orientation were studied by scratching
the leaf surface. The basal portion of the leaf (1 cm long)
was selected for stomatal studies. Measurements and
photographs were taken with the help of a camera-
equipped light microscope (Nikon 104, Japan).

leaf surface. Stomatal density on abaxial leaf surface, in
contrast, showed quite variable response to high salt
level. It decreased significantly under high salinity in
both populations of L. scindicus. The LS populations of
C. jwarancusa, O. compressa, and S. ioclados showed
increased density at high salinity.

Stomatal area on adaxial leaf surface generally
decreased under high salt level. The population of
A. lagopoides from LS generally had a very much
reduced stomatal area as compared to all other grasses as
well as its counterpart from DF (Fig. 2). Stomatal area on
abaxial leaf surface was significantly reduced due to salt
stress in the LS populations of all grasses. The LS
population of C. jwarancusa was the worst affected as a
decrease of more than half was recorded in its stomatal
area. The DF populations were generally less affected due
to salinity stress as compared to LS populations, where
this parameter was increased in O. compressa and
S. ioclados at high salinity level.

Shape and orientation of epidermal cells and stomata
on abaxial leaf surface: 4. lagopoides population from
DF had relatively large elliptic stomata. At higher salt
level, stomatal size was greatly reduced and the stomata
were more or less round in shape and relatively closer to
one another (Fig. 3). In the LS population (Fig. 3), the
abaxial leaf surface was densely hairy by the presence of
both trichomes and vesicular hairs (micro-hairs) at 0 mM
NaCl. At 300 mM NacCl, the margins of epidermal cells
were very wavy and they covered most of the stomatal
aperture.

In C. jwarancusa, the population from DF was little
affected by salinity with respect to the size and shape of
stomata, but at high-salinity level, the stomata were much
more apart from one another than that recorded at 0 mM
level. The stomatal shape in the populations from LS was
more or less round, but under 300-mM salt level, the size
of epidermal cells was greatly reduced and stomata were
relatively close one to another.

Stomatal size in both populations of L. scindicus was
little affected by the addition of salt to the growth
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Fig. 1. Gas-exchange characteristics in five grass species from the Cholistan desert under two salt regimes in hydroponics (means =+
SE; n = 10; DF — Derawar Fort; LS — Ladam Sir). Py — net CO, assimilation rate; E — transpiration rate; g; — stomatal conductance;

WUE — water-use efficiency.

medium. The LS population showed wavy margins at the
epidermal cells at 0 and 300 mM NaCl. However, the
waviness of epidermal cells was more prominent at high
salt level.

In O. compressa, both populations showed increased
waviness in their epidermal cells under salt stress.
However, this waviness in the LS population was very
much distinct and the epidermal margins appeared to
have covered the stomata partially (Figs. 4, 5). In
addition, stomatal size was greatly reduced by salt stress
and the shape of stomata was more or less round.

Stomatal orientation was minimally affected by salt
stress in both populations of S. ioclados. The LS popu-

lation showed greatly increased waviness in epidermal
cells under 300 mM NaCl of the growth medium.
However, the stomatal shape in the populations from both
DF and LS were round in shape under salt stress than that
recorded at 0 mM NaCl.

Correlation between stomatal (form) and gas-
exchange (function) characteristics: Salinity-induced
changes in transpiration relate to stomatal characteristics.
However, different types of grasses showed different
associations of the two attributes (Fig. 6). Under normal
environmental conditions (nonsaline) both stomatal
density and stomatal area positively and significantly
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Fig. 2. Stomatal density and area in five grass species from the Cholistan desert under two salt regimes in hydroponics (means + SE;

n =10; DF — Derawar Fort; LS — Ladam Sir).

correlated with Py (Table 1). However, the density and
area on abaxial leaf surface was not correlated with any
of the gas-exchange characteristics. E, on the other hand,
negatively and significantly correlated to WUE. Under
saline conditions, stomatal density on adaxial leaf surface
correlated significantly and positively with Py, but
stomatal density on the abaxial leaf surface showed a
strong negative correlation with substomatal CO,.

Discussion

Naturally adapted salt-tolerant plants can be used
effectively for investigating adaptative mechanisms to
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Stomatal density on abaxial leaf surface correlated
significantly and negatively with E, but significantly and
positively with WUE. Stomatal area on both leaf surfaces
correlated negatively and significantly with substomatal
CO,. However, most of the gas-exchange parameters had
significant and positive correlations among themselves
under saline environments, except for £, which was
negatively correlated with WUE.

counteract high levels of salts. Since genetically based
variation in natural populations of plants has not been
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Fig. 3. Leaf transverse section and stomatal orientation in
Aeluropus lagopoides from the Cholistan desert under two salt
regimes in hydroponics.
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Fig. 4. Leaf transverse section and stomatal orientation in A:
Cymbopogon jwarencusa (hairiness considerably increased and
stomata in distinct grooves protected by trichomes) and B:
Ochthochloa compressa from the Cholistan desert under two
salt regimes in hydroponics (distinct grooves on adaxial surface
covered with dense layer of microhairs).

Fig. 5. Leaf transverse section and stomatal orientation in
Ochthochloa compressa from the Cholistan desert under two
salt regimes in hydroponics. 4: Stomata partially covered by
epidermal invaginations. B: Stomata in distinct grooves,
covered with dense layer of microhairs.

much investigated, it was considered valuable to examine
the anatomical adaptations in the five grass species in
relation to stomatal functioning because of the potential
value of such genetic resources (Munns et al. 2002,
Ashraf 2004, Flowers and Colmer 2008, in improving the
salinity tolerance of crop plants (Munns and Tester 2008).

Photosynthesis and transpiration are two important
processes controlled by stomata. Plant leaves have the
ability to adjust the density and patterning of stomata in
response to changing environment (Zarinkamar 2006).
Under water-limiting conditions, stomatal size may be
more useful to improve WUE than the stomatal density
(Yang et al. 2004). Reduced g, and E help plants to
counteract high salinities (Flanagan and Jefferies 1989).
Any sort of disturbances in stomatal functioning may
prove to be vital for the survival of plants under stressful
environments (Robinson ef al. 1998).

The survival of 4. lagopoides from lesser saline DF
under adverse conditions mainly relied on high stomatal
density and markedly reduced stomatal area, which is
typical of the xeric plant adaptation (Martinez et al.
2007). The major strategy used by this population seems
to be the avoidance of transpirational water loss through
stomata under adverse climatic conditions. Such a
decrease in stomatal area may contribute to regulation of
stomatal conductance and transpirational rate, as found in
Populus tremula (Aasamaa et al. 2001) and Olea
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NaCl/SA 300 mM NaCl)]} of five grass species from
different habitats in the Cholistan desert (Ael —
Aeluropus lagopoides; Cjw — Cymbopogon jwarancusa;
Lsc — Lasiurus scindicus, Oco — Ochthochloa compressa;
Sio — Sporobolus ioclados; DF — Derawar Fort; LS —

europaea (Bosabalidis and Kofidis 2002). In contrast,
stomatal behaviour, i.e. density, structure and orientation
in high saline LS population of 4. lagopoides was not
much affected due to salinity, which indicates that the
successful adaptation of this population may be related to
the adjustment of photosynthetic parameters and may be
due to the effectiveness of stomatal closure rather than
the stomatal density and area. However, stomatal
orientation might play an important role, as the stomata
were found to be covered partially by epidermal
invaginations, which may prevent excessive water loss.
Large stomata in this population can facilitate CO,
diffusion into leaves (Parkhurst 1994), and this is mainly
dependent on the radius of stomatal pore, which leads to
an increased stomatal conductance (Maherali ef al. 2002).

Photosynthetic parameters were relatively less affec-
ted in both populations of C. jwarancusa as compared to
those in the other grasses, but WUE increased consider-
ably in these two populations. Improved photosynthetic
capacity has been considered as an adaptive component
of salinity tolerance in plants (Locy et al. 1996).
However, the LS population performed slightly better as
compared to its counterpart from DF. Stomata were
completely absent on the adaxial surface in both
populations, and this may be the strong reason of
decreased transpiration rate in C. jwarancusa as
compared to that in the other grasses. The LS population
showed increased stomatal density, but decreased
stomatal area, and this might reflect stomatal regulation
through more efficient closing and opening of stomata at
relatively less change in turgor. Small guard cells may
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Ladam Sir; E — transpiration rate; SD — stomatal density;
SA — stomatal area).

cause stomata to remain open under water-limiting
conditions, which develop a balance in photosynthesis
and transpirational water loss. This is an important
adaptive response of plant species to dry conditions
(Spence et al. 1986). Stomatal density was found to be
closely linked to carbon fixation and water status in C;
plants (Van de Water er al. 1994) and, therefore, the
balance in stomatal density and area may determine the
direct effect on various gas-exchange attributes and
WUE, and hence is of great ecophysiological significance
(Xu and Zhou 2008). Increased stomatal densitiecs may
trigger a regulatory mechanism to counteract several
concurrently occurring stresses including drought and
salinity (Zhang et al. 2004). In addition, stomata in the
high-saline LS population were in distinct grooves, i.e.,
sunken, and this may provide complementary support by
protecting stomata from exposing directly to the external
harsh environments. Sunken (or covered and encrypted)
stomata is a characteristic feature under arid environ-
ments and responsible for reduced transpiration rate
(Jordan et al. 2008).

In the high-saline LS population of L. scindicus,
stomatal density decreased significantly, but area was not
affected by salinity treatment at both leaf surfaces. A
greater stomatal size under stress conditions can also aid
CO, diffusion into the leaf (Parkhurst 1994) and this may
promote an increase in leaf stomatal conductance
(Maherali et al. 2002). Moreover, the presence of
trichomes and sclerification above the vascular tissues
may play a vital role in controlling water loss through
transpiration (Abernethy et al. 1998, Hameed et al.
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2009), and hence, more efficient water use. Presence of
trichomes may enhance leaf surface roughness and
ultimately the hydrophobic nature of surfaces (Brewer
and Nufiez 2007). As a nonsalt secreting species, it
depended mainly on transpirational control, ie. by
decreasing density or size of stomata (Shi and Cai 2008).

Stomata on the adaxial surface of the high-saline LS
population of O. compressa were completely absent,
which is an important xeric adaptation (Abernethy et al.
1998) and might be a major factor reducing the tran-
spiration rate. However, on abaxial surface the stomata
were intensively covered by micro-hairs (basically salt
secretary in function) particularly at 300 mM NaCl. This
might be the strong reason for its low transpiration rate
under adverse water-limiting environments. Stomata are a
sensory system to control the amount of salt delivered to
the leaf by the transpirational stream (Sibole et al. 2003)
and this may define the complete mechanism of salt
tolerance in combination of stomatal regulation and
transpirational control with the help of micro-hairs in
excretory grasses such as O. compressa.

In the high-saline LS population of S. ioclados,
stomatal density seems to be not involved in controlling
the transpirational water loss from leaf surface, but high
stomatal density under salt stress may be responsible for
the improved photosynthetic activity accompanied with
efficient distribution of CO, (Degl’Innocenti et al. 2009).
Furthermore, greatly increased sclerification and/or thick
cuticle deposition all over the leaf surface may have been
the major factor in controlling transpiration in the LS
population. This might be a crucial phenomenon for
controlling g, for gas-exchange and other related para-
meters in addition to stomatal size and cuticle deposition
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