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Abstract 
 
Glaucium flavum is a biennial plant that bears a rosette of leaves, producing a flower stalk, bracteate monochasium, in 
its second year. The aims of this work were both to investigate the contribution of bracts to gas-exchange activities in 
this species and to compare this contribution to that of rosette leaves. In addition, we investigated the extent to which its 
responses can be explained by chloroplast ultrastructure, as well as the possible role of nutrient concentrations in the 
physiological responses of both leaf types. Gas exchange and plant characteristics regarding chlorophyll fluorescence 
were examined in a field experiment; we also determined leaf relative water content, tissue concentrations of 
photosynthetic pigments, chloroplast ultrastructure and nutrient contents. Although bracts indeed contributed to gas-
exchange activities of G. flavum, rosette leaves showed higher values of net photosynthetic rate and stomatal 
conductance to CO2 for photosynthetic photon flux density above 200 µmol m–2 s–1. The incongruities in photosynthetic 
rates between bracts and leaves may be explained by the bigger chloroplasts of rosette leaves, which results in a larger 
membrane surface area. This agrees with the higher pigment concentrations and quantum efficiency of photosystem II 
values recorded as well for rosette leaves. On the other hand, bracts showed higher sodium concentrations, which could 
be a mechanism for salt tolerance of G. flavum. 
 
Additional key words: carotenoids; chlorophyll content; chlorophyll fluorescence; photosystem II; stomatal conductance. 
 
Introduction 
 
Glaucium flavum Crantz. (Papaveraceae), known as 
yellow horned-poppy, is a biennial plant that bears a 
rosette of leaves, producing a single central flower stalk 
in its second year. Its inflorescences are a spreading 
bracteate monochasium; the bracts are semi-amplexicaul 
and auriculate, those below being more or less leaf-like in 
appearance, while those above become instead much 
smaller, wider, less divided, and less hairy (Scott 1963). 
This species is a widespread plant along the coasts of the 
Mediterranean basin and Western Europe (Peled et al. 
1988). However, it is has been cited as an endangered 
species in some locations (Bercu et al. 2006).  

Since G. flavum is useful for the restoration of coastal 

shingle (Walmsley and Davy 1997a), germination bio-
logy (Thanos et al. 1989, Walmsley and Davy 1997b, 
Davy et al. 2001) and anatomical studies (Bercu et al. 
2006) of this species have been approached. In contrast to 
this, experimental data are lacking on photosynthetic gas 
exchange. However, evidence that in other plants like 
cotton certain organs (Bondada and Oosterhuis 2000), in 
particular the bracts of the floral bud, may participate in 
gas-exchange activities, renders this aspect worthy of 
study in the case of G. flavum. Thus, the aims of the 
present study were: (1) compare the physiological 
responses of bracts and rosette leaves; (2) examine 
chloroplast ultrastructure of both leaf types. In this  
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respect, despite the fact that detailed anatomical 
characteristics of G. flavum and ultrastructure of the 
laticifers of the stem and seeds have been studied (Bercu 
et al. 2006), chloroplast ultrastructure of bracts and 
rosette leaves have not been previously documented. 
A study of this nature would therefore aid in establishing 

a functional relationship with photosynthesis in the two 
leaf types (Bondada and Oosterhuis 2003). And (3) 
examine the possible role of nutrient concentrations in 
both leaf types, which can be of help for understanding 
physiological responses. 

 
Materials and methods 
 
Plant material: The work was carried out on a nontidal 
area at Odiel Marshes (37º15´N, 6º58´W; SW Spain), 
where G. flavum grows on sandy soil, 5% fine sand and 
95% coarse sand. The climate of the area is Medi-
terranean, affected by oceanic influences. Winter is wet 
and with mild temperatures (mean temperature ca. 11ºC 
in January) and summer is long and dry (mean tempera-
ture is ca. 25ºC). Mean annual rainfall reaches 510 mm, 
with an interannual variation coefficient of 31%.  

To evaluate ecophysiological differences between 
bract and rosette leaves of G. flavum, ten adult plants of 
similar size were randomly selected in October 2006. 

 
Gas-exchange measurements were taken in randomly-
selected, fully expanded bract and rosette leaves (n = 10) 
using an infrared gas analyzer in an open system  
(LI-6400, Li-COR Inc., Lincoln, NE, USA). Net photo-
synthetic rate (PN), intercellular CO2 concentration (Ci) 
and stomatal conductance to CO2 (gs) were determined at 
an ambient CO2 concentration of 380 µmol mol–1, 
temperature of 20/24ºC, 50 ± 5% relative humidity and 
fourteen photon flux densities (between 0 and 2,500 µmol 
m–2 s–1), using a LED light source (6400-02B, LI-COR 
Biosciences Inc., Lincoln, Nebraska, USA). PN, Ci and gs 
were calculated automatically by the infrared gas 
analyzer using the standard formulae of von Caemmerer 
and Farquhar (1981). As bracts did not occupy the leaf 
chamber surface, their photosynthetic areas were 
calculated by superimposing the surface of each leaf over 
a mm-square paper. The water-use efficiency (WUE) was 
calculated as the ratio between PN and transpiration rate 
[mmol(CO2 assimilated) mol–1(H2O transpired)]. 

 
Chlorophyll fluorescence was measured in randomly-
selected, fully expanded bract and rosette leaves (n = 10) 
using a portable modulated fluorimeter (FMS-2, 
Hansatech Instrument Ltd., King´s Lynn, UK). Light- 
and dark-adapted fluorescence parameters were measured 
at dawn (stable 50 µmol m–2 s–1 ambient light) and  
at midday (1600 µmol m–2 s–1, Redondo-Gómez et al. 
2008). 

Plants were dark-adapted for 30 min, using leaf–clips 
designed for this purpose. The minimal fluorescence level 
in the dark-adapted state (F0) was measured using a 
modulated pulse (<0.05 µmol m–2 s–1 for 1.8 µs) too small 
to induce significant physiological changes in the plant. 
The data stored were an average taken over a 1.6-second 
period. Maximal fluorescence in this state (Fm) was 

measured after applying a saturating actinic light pulse of 
15,000 µmol m–2 s–1 for 0.7 s. Values of the variable 
fluorescence (Fv = Fm – F0) and maximum quantum 
efficiency of PSII photochemistry (Fv/Fm) were calculated 
from F0 and Fm. This ratio correlates with the number of 
functional PSII reaction centres (Maxwell and Johnson 
2000). 

The same leaf section of each plant was used to 
measure light-adapted parameters, always making sure 
that the leaf section was fully sunlit. Steady-state fluo-
rescence yield (Fs) was recorded after adapting plants to 
ambient light conditions for 30 min. A saturating actinic 
light pulse of 15,000 µmol m–2 s–1 for 0.7 s was then used 
to produce the maximum fluorescence yield (Fm') by 
temporarily saturating PSII photochemistry.  

Using fluorescence parameters determined in both 
light- and dark-adapted states, the following were calcu-
lated: quantum efficiency of PSII [ΦPSII = (Fm' – Fs)/Fm'], 
photochemical quenching [qP = (Fm' – Fs)/(Fm' – F0'), 
where F0', which was measured, corresponds with open 
reaction center traps in the light-acclimated state], and 
non-photochemical quenching [NPQ = (Fm – Fm')/Fm'; 
Redondo-Gómez et al. 2006]. 

 
Leaf relative water content (RWC): Ten bract and 
rosette leaves were collected at Odiel Marshes (n = 10) to 
determine RWC, which was calculated as: 

RWC = (FM – DM)/(TM – DM) × 100                   (1) 

where FM is the fresh mass of the leaf, TM is the turgid 
mass after rehydrating the leaf in distilled water for 24 h, 
and DM is the dry mass after oven-drying at 80ºC for 48 h. 

 
Photosynthetic pigments in ten randomly-selected, fully 
expanded bract and rosette leaves were extracted using 
0.05 g of fresh material in 10 ml of 80% aqueous acetone. 
After filtering, 1 ml of the suspension was diluted with a 
further 2 ml of 80% aqueous acetone and chlorophyll a 
(Chl a), chlorophyll b (Chl b) and carotenoid (Cx+c) 
contents were determined with a Hitachi U-2001 spectro-
photometer (Hitachi Ltd., Japan), using three wavelengths 
(663.2, 646.8, and 470.0 nm). Concentrations of pigments 
were obtained by calculation, using the method of 
Lichtenthaler (1987). 

 
Analysis of chloroplasts: Small fragments of rosette 
leaves and bracts were fixed in 4% (v/v) glutaraldehyde 
prepared in 0.1 M cacodylate buffer, pH 7.2, for 3 h at 
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Table 3. Total carbon, total nitrogen, total sodium and total calcium concentrations for bract and rosette leaves of Glaucium flavum. 
Values represent mean ± standard error, n = 5; t-test compared concentrations in bract versus rosette leaves. *p<0.05, ** p<0.01, 
***p<0.001, ****p<0.0001. 
 

Leaf type C [%] N [%] C/N ratio Na [mg kg–1] Ca [g kg–1] 

Bracts 36.5 ± 0.27   4.2 ± 0.12   8.7 ± 0.32 411 ± 16 50.1 ± 2.4 
Rosette leaves 39.5 ± 0.28   5.0 ± 0.15   7.9 ± 0.21 304 ± 35 31.5 ± 3.34 
t-test –7.69**** –3.96*** –2.34*     2.45*   4.46** 

 
RWC was similar for bract (97 ± 1.2%) and rosette 
leaves (96 ± 2.1%; p>0.05). 

 
Photosynthetic pigment concentration: Concentrations 
of Chl a, Chl b and Cx+c were higher for rosette leaves 
(t-test, p<0.05). There were no significant differences for 
Chl a/b ratio between bract and rosette leaves, this ratio 
being only slightly higher for rosette leaves (Table 2). 

 
Analysis of chloroplasts: Notwithstanding the fact that, 
morphologically and structurally, bract chloroplasts were 
analogous to leaf chloroplasts, the chloroplasts of rosette 

leaves had higher area in section (4.51 ± 0.18 µm2) than 
those of bracts (3.78 ± 0.15 µm2; t-test, p<0.01; Fig. 2). 

 
Nutrient content: Tissue carbon and nitrogen concen-
trations were greater in rosette leaves than in bracts. In 
contrast, leaf tissue sodium and calcium concentrations 
and C/N ratio were higher in bracts (Table 3). There were 
no significant differences for Al, As, Co, Cr, Cu, Fe, K, 
Mg, Mn, Ni, P, S, Si, and Zn concentrations between 
bract and rosette leaves (t-test, p>0.05; data not 
presented). 

  
Discussion 
 
Bracts proved to be important organs contributing to gas 
exchange activities of G. flavum (bracts make up 30–35% 
of the photosynthetic area of the plant), although rosette 
leaves were more physiologically active, with greater 
values of PN and gs for PPFD above 200 µmol m–2 s–1. 
Wullschleger and Oosterhuis (1991) also found that 
leaves of cotton showed greater values for PN and gs than 
the bracts of the floral bud. In our study, the lower gs 
values of bracts were not accompanied either by a loss of 
leaf water content or by a decrease in WUE, and therefore 
they are most likely to be the result of a chemical 
signalling rather than of a general loss of turgor. The 
differences in gs, which did not entail differences in Ci, 
may be related to differences in the K/Ca ratio in the 
guard cells and/or to differences in the abscisic acid 
concentration, which controls the stomatal movement 
(Marschner 1999). Consequently, we recorded a higher 
Ca content in bracts.  

Bracts also showed higher sodium concentrations, 
which could be a mechanism for salt tolerance. Leaves of 
G. flavum accumulate organic solutes as glaucine for 
osmotic adjustment under salt stress (Peled et al. 1988). 
Likewise, compartmentation in bracts may contribute to 
minimize the concentration of salt in rosette leaves, and 
so prevent it from building up in the cytoplasm or cell 
wall (Munns 2002). 

In addition to the higher gs values, the greater PN of 
rosette leaves could be explained by a higher content of 
ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubis-
co). This enzyme can contain up to 75% of leaf N, and 
this contribution underlies the well-known association 
between photosynthetic capacity and biomass N content 

(Vrede et al. 2004). Therefore, our results showed lower 
values of foliar C/N ratio for rosette leaves.  

On the other hand, Bondada and Oosterhuis (2003) 
stated that the incongruities in photosynthetic rates 
between bracts and leaves of cotton could be elucidated 
by probing the ultrastructure of their chloroplasts. In this 
way, we found that chloroplasts of rosette leaves were 
bigger than those of bracts, and had the greatest grana 
number, which perhaps conferred them with the largest 
membrane surface area. This is in accordance  with the 
higher Chl a/b ratio recorded for rosette leaves. 
According to Bondada and Oosterhuis (2003), a decline 
in grana abundance could contribute to a lower 
accumulation of photosynthetic pigments in the bracts. 
This explains the low pigment concentrations of the 
bracts compared with the rosette leaves.  

Photosystem II (PSII) is localized to the membrane 
system of grana; hence, the larger the surface area, the 
greater the capture of light energy (Anderson and Melis 
1983). This agrees with ΦPSII data recorded for G. flavum, 
which was higher for rosette leaves at both dawn and 
midday. Furthermore, ΦPSII of both leaf types did show a 
significant reduction at midday compared to dawn values. 
At midday, ΦPSII decreased as a consequence of the 
decrease in qP and the increase in NPQ, which indicates 
that the plants dissipated excess energy in the antenna, 
thereby protecting the leaf from light-induced damage 
(Maxwell and Johnson 2000). Also Fv/Fm demonstrated 
the difference between sampling times. At midday, the 
reduction in Fv/Fm values indicated that G. flavum 
experienced slight reduction in PSII activity at the higher 
light flux. This reduction might have been caused by a 
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lower proportion of open reaction centers (lower values 
of Fm) resulting from a saturation of photosynthesis  
by light (Redondo-Gómez et al. 2009). However, bracts  

and rosette leaves showed optimal values for unstressed 
plants at dawn and midday (Björkman and Demmig 
1987). 
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