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Abstract 
 
Physiological responses of two duckweed species, Lemna gibba and Lemna minor, to hexavalent chromium [Cr(VI)] 
were studied in axenic cultures using short-term (48 h) treatments by K2Cr2O7 (0–200 μM). Chlorophyll (Chl) 
fluorescence parameters and photosynthetic pigment composition of plants were screened to determine the effects of 
Cr(VI) exposures. The two duckweed species exhibited different sensitivity in the applied Cr(VI) concentration range. 
Chl fluorescence parameters of dark-adapted and light-adapted plants and electron transport inducibility were more 
sensitive to Cr(VI) in L. minor than in L. gibba. We also found fundamental differences in quantum yield of regulated, 
Y(NPQ), and nonregulated, Y(NO), non-photochemical quenching between the two species. As Cr(VI) concentration 
increased in the growth medium, L. minor responded with considerable increase of Y(NPQ) with a parallel significant 
increase of Y(NO). By contrast, in L. gibba only 200 μM Cr(VI) in the growth medium resulted in elevation of Y(NPQ) 
while Y(NO) remained more or less constant within the regarding Cr(VI) concentration range during 48 h. 
Photosynthetic pigment content did not change considerably during the short-term Cr(VI) treatment but decrease of Chl 
a/b and increase of Car/Chl ratios were observed in good accordance with the changes in Chl fluorescence parameters. 
The data suggest that various duckweed species respond with different sensitivity to the same ambient concentrations of 
Cr(VI) in the growth medium, and presumably to other environmental stresses too, which may have an influence on their 
competitive relations when heavy metal pollution occurs in aquatic ecosystem.  
 
Additional keywords: chlorophyll fluorescence; Cr(VI); duckweed; electron transport rate; Lemna gibba; Lemna minor; non-
photochemical quenching; rapid light curves.  
 
Introduction 
 
Despite of growing regulatory efforts toxic chemicals are 
released in ever-increasing amounts into natural bio-
geochemical cycles. A considerable proportion of them 
eventually enter surface waters strongly affecting their 
biota. Unpredictable industrial accidents could result in 
high loads of toxic chemicals to the environment within 

short time intervals as happened to River Tisza in 
Hungary in 2000 when heavy-metal and cyanide contami-
nation entered the river and caused ecological catastrophe 
(Lakatos et al. 2003). For such considerations it is 
essential to predict the possible effects of toxic 
substances on vital processes and species composition of  
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relative fluorescence decrease; RLC – rapid light curve (without steady-state photosynthesis); SP – saturating light pulse; Y(II) and 
ΔF/Fm’ – photochemically converted proportion of the energy absorbed by PSII, i.e. actual photochemical efficiency; Y(NO) – yield 
of nonregulated non-photochemical loss of energy absorbed by PSII; Y(NPQ) – proportion of regulated non-photochemical loss of 
energy absorbed by PSII; α – initial slope of rapid light response curve, i.e. light-limited efficiency of ETR. 
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aquatic biota. Duckweed species are extensively used test 
organisms for assessment of potential impact of environ-
mental chemicals in ecotoxicology and plant physiology 
(Environment Canada 1999). Duckweeds are free-
floating plants showing wide distribution in different 
types of aquatic ecosystems. In spite of their small size, 
they exhibit large potential for vegetative reproduction 
and thereby rapid biomass growth. Being important 
elements in primary production and food chain, 
sensitivity of such aquatic macrophytes to various toxic 
chemicals may impact the functioning of the whole 
aquatic ecosystem.  

Amongst heavy metals, the effects of chromium (Cr) 
on living organisms has received highlighted attention 
due to its strong toxicity and relatively less known mode 
of action. In aquatic ecosystems affected by anthropo-
genic activities the concentration of chromium could even 
reach mmol per liter order of magnitude (Perreault et al. 
2009). Its oxidation form varies between 0 and +6 readily 
changing depending on redox circumstances of the 
environment. Under normal conditions only trivalent 

Cr(III) and hexavalent Cr(VI) forms are stable. 
Hexavalent chromium - the most toxic Cr form - usually 
exists as chromate (CrO4

2–) or dichromate (Cr2O7
2–) ion 

(Hörcsik et al. 2007).  
Plants are able to uptake Cr(VI) in higher concen-

tration than Cr(III) with consequently greater transloca-
tion to shoots (Paiva et al. 2009). Following the uptake of 
chromate ion, which is similar to that of other chemically 
homologous anions, the destroying effects in cells take 
place as triggering oxidative burst. Due to potential 
destructive capability of heavy metals on biological mem-
branes, photosynthetic pigments and proteins at cellular 
level (Cervantes et al. 2001, Panda and Choudhury 2005, 
Kučera et al. 2008), effects of Cr(VI) could be assessed 
by means of Chl fluorescence indirectly characterizing 
alterations in functioning of PSII (Schreiber et al. 1994, 
Ali et al. 2006, Hörcsik et al. 2007, Perreault et al. 2009). 

In this study we investigated the effects of short,term 
Cr(VI) treatments on photosynthesis of two worldwide 
spread and frequently co-existing duckweed species, 
L. gibba L. and L. minor L. 

 
Materials and methods 
 
Axenic stock cultures of L. gibba L. and L. minor L. were 
maintained in 0.5 strength Hutner’s medium (pH 6.3) 
(Lakatos et al. 1993) under controlled conditions  
(PFD = 50 ± 5 μmol m–2 s–1 continuous white illumina-
tion, 22 ± 2°C). 

Short-term chromate exposures were performed for 
48 h. 3–5 healthy colonies of stock cultures consisting of 
three or four fronds (as a total of 10–15 fronds, approx. 
2 mg fresh mass of L. minor, 5 mg fresh mass of 
L. gibba) were transferred into 100 cm3 Erlenmeyer 
flasks containing 50 cm3 of growth medium. Cr(VI) was 
applied at the start of 48 h tests in final concentrations of 
0, 50, 100, and 200 μM using K2Cr2O7 stock solution. 
Treatments with every Cr(VI) concentration were per-
formed in four replications under static conditions. Other 
culturing conditions corresponded to the maintenance of 
stock cultures. The experiments were repeated three times 
and the results of one representative experiment are 
shown in this paper. 

Chl fluorescence parameters were measured with 
PAM 2000 Chl fluorometer (WALZ GmbH, Effeltrich, 
Germany) in intact plants placed on surface of 1.65 cm3 
pure 0.5 strength Hutner’s medium in 2 cm3 Eppendorf 
tubes. The surface of growth medium was covered by 
plants as properly as it was possible (number of fronds 
was 7–10 and 5–7 for L. minor and L. gibba, respectively. 
Plants were kept in these measuring tubes during dark 
adaptation and continuous light-acclimation periods. The 
2010-F fiberoptics of PAM 2000 fluorometer was 
positioned in right angle above the surface of plant 
samples at a distance resulting in 0.2–0.4 mV Fo signal of 
dark-adapted control plants. 

The measurement routine of Chl fluorescence 

parameters are presented in Fig.1. Minimal fluorescence 
(Fo) was measured after 20 min of dark adaptation using 
red modulated measuring light (ML). Then a saturating 
light pulse (SP: PFD = 6,000 μmol m–2 s–1, white, 0.8 s) 
was applied to measure the maximal fluorescence (Fm)  
of plant samples. The difference between Fm and Fo was 
used for calculation of variable fluorescence (Fv).  

After quenching of maximal Chl fluorescence in dark, 
plants were illuminated by continuous red actinic light 
(AL: PFD = 200 μmol m–2 s–1) for 5 min. Fluorescence 
quenching during illumination was analysed by saturation 
pulse method. Saturating pulses (PFD = 6,000 μmol  
m–2 s–1, white light, 0.8 s) were applied with 20-s 
intervals to determine the changes in maximal fluores-
cence (Fm’) which were followed by far-red (FR) pulses 
to determine the values of Fo’. 5-min irradiation by 
actinic light proved to be long enough for both control 
and heavy-metal-treated plants of the species to reach 
nearly steady-state value of fluorescence (Fs’). Less than 
5% variation was observed in values of Chl fluorescence 
parameters measured at the 4th and 5th min of continuous 
actinic illumination. Chl fluorescence parameters ob-
tained after the last saturating pulse at the 5th min of 
illumination (Fig.1 A) were used for evaluation of 
responses of species to chromate treatments. 

Use of this measurement routine with the PAM 2000 
fluorometer (Fig.1 A) allowed to estimate different Chl 
fluorescence parameters:  

potential photochemical efficiency: Fv/Fm (Rosenqvist 
and van Kooten 2003), 

estimation of the PSII photosynthetic capacity: Fv/Fo 
(Lichtenthaler et al. 2005), 

photochemical quenching of variable fluorescence as  
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Table 4. Concentration of chlorophylls (Chl) and carotenoids (Car), Chl a/Chl b and Car/Chl ratios in L. gibba and L. minor after 48-h 
exposure to Cr(VI) (0–200 μM). Values are means of 4 replicates, standard deviations (SD) are in parenthesis. Letters denote 
significant differences compared to control at levels: a p<0,05 b, p<0,01, and c p<0,001. 
 

μM Cr(VI) Chl a+b [mg g–1(FM)] Chl a/b [g g–1] Car [mg g–1(FM)] Car/Chl [g g–1] 

L. gibba     
0 1.31 (0.04) 3.18 (0.04) 0.291 (0.012) 0.223 (0.006) 
50 1.19 (0.03)b 3.08 (0.03)a 0.270 (0.006)a 0.226 (0.002) 
100 1.08 (0.11) 3.02 (0.06)a 0.254 (0.028) 0.234 (0.003)a 
200 1.05 (0.07)b 2.88 (0.02)c 0.243 (0.013)b 0.232 (0.003)a 
L. minor     
0 1.124 (0.075) 3.44 (0.03) 0.255 (0.016) 0.227 (0.001) 
50 0.950 (0.052)a 3.24 (0.07)a 0.228 (0.015) 0.240 (0.005)a 
100 0.929 (0.036)b 3.16 (0.07)b 0.226 (0.006)a 0.243 (0.005)b 
200 0.894 (0.050)b 3.21 (0.05)b 0.215 (0.002)a 0.241 (0.012) 

 
Analyses of rapid light responses indicated chromate-

induced alteration at electron transport level. Significant 
changes of α value were observed at 100 and 200 μM 
Cr(VI) in L. minor (46 and 74% decreases, respectively) 
and at 200 μM Cr(VI) in L. gibba (28%) as compared to 
control plants (Table 3). rETRmax responded more 
sensitively in both species after 48 h exposure to 200 μM 
Cr(VI), showing 62 and 90% decrease in L. gibba and 
L. minor, respectively. Lower concentrations of Cr(VI) 
also induced significant decreases in rETRmax, 50 and 
100 μM Cr(VI) resulted in much smaller decreases of 
rETRmax value (21 and 23%, respectively) in L. gibba 
than in L. minor (52% at 50 μM and 74% at 100 μM). 
Cr(VI) treatments also declined the onset of light 
saturation (Ek) strongly (Table 3). At 200 μM Cr(VI) Ek 
decreased by 48% in L. gibba and by 60% in L. minor 
compared to control plants. At lower chromate concen-
trations less drastic inhibition of Ek was observed (in 
L. gibba 23% at 50 μM and 24% at 100 μM Cr(VI), in 
L. minor 41% at 50 μM and 52% at 100 μM Cr(VI).  

48-h exposures to Cr(VI) did not affect photosynthetic 
pigments as strongly as Chl fluorescence parameters 
(Table 4). Concentrations of Chls and carotenoids 
decreased in the presence of Cr(VI) but differences in 
effects of various Cr(VI) concentrations could not be 
confirmed statistically or showed weak significance in 
both species (Table 4). In general, among chlorophylls 
Chl a was the more sensitive compound to Cr(VI) 
treatments in both species. It was reflected in decreasing 
Chl a/b ratios (max. 10%) as compared to control plants 
but no statistical differences were observed among the 
Cr(VI) concentrations. Compared to chlorophylls, carote-
noids exhibited higher stability to Cr(VI) treatments 
which reflected a growing need for defence processes 
under stress. Cr(VI) resulted in slightly elevated (1–5%) 
Car/Chl ratios without statistical significance or with  
a weak significance in both species (Table 4). Regarding 
photosynthetic pigments, the two duckweed species 
responded very similarly to Cr(VI) treatments. 

 
Discussion 
 
Being highly toxic oxidizing agent, Cr(VI) has potential 
impact on photosynthetic processes of plants which may 
appear within shorter time interval than the effect on 
biomass growth of plants. In this study, by using Chl 
fluorescence parameters and rapid light curves, we found 
that Cr(VI) altered significantly photosynthesis of two 
duckweed species within 48 h.  

Comparing inhibitions of Fv/Fm and Fv/Fo by Cr(VI), 
the latter fluorescence parameter proved to be more 
sensitive to Cr(VI) stress suggesting that Fm and Fo have 
not the same sensitivity to Cr(VI) (Vernay et al. 2007, 
Paiva et al. 2009). Separate analyses of changes in Fm and 
Fo showed that decrease in variable fluorescence under 
Cr(VI) treatment mainly resulted from the reduced 
maximal fluorescence in both species. However, in 
L. minor increase of Fo was also significant contributor to 

the decrease of Fv. This indicated damages of PSII 
reaction centres (Ali et al. 2006) and ultrastructure of 
thylakoid membrane affecting electron transport, too 
(Paiva et al. 2009). These results are in good accordance 
with the reduction in total Chl content and Chl a/b ratios 
observed in our study. Decrease of photosynthetic 
pigments due to chromate stress may appear as the 
consequence of both direct oxidative destruction of 
photosynthetic pigments and inhibition of their de novo 
synthesis (Panda and Choudhury 2005, Shanker et al. 
2005). Our results suggest that in short term (1–2 days) 
the effects of Cr(VI) on the functioning of photosynthetic 
apparatus involve rather the oxidative damages to 
photosynthetic pigments than the inhibition of synthesis, 
although these changes are small and do not show 
statistically confirmed differences among Cr(VI) 
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concentrations. Chromate-induced change in Chl a/b ratio 
was also described as a result of damages in peripheral 
antennae complexes of photosystem (Panda and 
Choudhury 2005, Shanker et al. 2005, Vernay et al. 2007, 
Paiva et al. 2009). In the presence of Cr(VI) L. minor 
showed increases of Fo in concentration-dependent 
manner which reflects higher sensitivity of this species to 
Cr(VI). As the applied treatment period was short, Cr(VI) 
presumably could not fundamentally interfere with the 
Chl synthesis so the measured rise in Fo values might 
evolve from inhibited energy transfer from antenna to 
reaction centre. On the other hand, due to the Cr(VI)-
induced damages of reaction centres the average antenna 
size per functioning reaction centre, however, increase 
overloading the electron transport capacity in chloroplasts 
(Perreault et al. 2009). Such an overcharge could result in 
growing demand for alternative energy conversion (Ali  
et al. 2006) explaining the measured strong elevation in 
regulated non-photochemical quenching in both species 
which took place with a simultaneous increase of 
nonregulated non-photochemical quenching in L. minor. 
Slightly elevated Car/Chl ratios in both duckweed species 
indicated higher stability of carotenoids under short-term 
Cr(VI)-stress. Enhanced production of carotenoids in 
plants exposed to chromate treatments has also been 
reported (Panda and Choudhury 2005, Perreault et al. 
2009) which may contribute to the effective defence 
against over-excitation and oxidative degradation in PSII 
when Cr(VI) is present in the growth medium in longer 
term. 

In both species, Y(II) in light-acclimated plants 
responded even more sensitively to Cr(VI) than Fv/Fm 
(Subrahmanyam 2008) indicating that beside pigment-
protein complexes other components of PSII, such as 
oxygen evolving complex and D1 protein of reaction 
centres, might also be the targets of chromate-induced 
oxidative burst (Ali et al. 2006, Hörcsik et al. 2007). 
Cr(VI) induced larger inhibition of Y(II) at corresponding 
concentrations than that of RFD parameter (reflecting 
efficiency of the overall photosynthesis, Lichtenthaler  
et al. 2005) which suggested that inhibition might occur 
in the electron transport chain (Subrahmanyam 2008, 
Paiva et al. 2009). 

Vulnerability of electron transport to Cr(VI) was 
confirmed by RLC-measurements. Even the lowest 
Cr(VI) concentration resulted in stronger inhibition of 
ETR (21% in L. gibba and 52% in L. minor) compared to 
Fv/Fm, Fv/Fo, and Y(II). Such disorders narrow the 
capacity of electron transport chain resulting in depressed 
rETRmax values (Ali et al. 2008, Perreault et al. 2009) 
with increasing degrees if Cr(VI) concentration is 
elevated in the growth medium. However, at lower 
illumination levels this capacity seems to be sufficient to 
utilize absorbed energy resulting in relatively less altered  

α values of both duckweed species if Cr(VI) concen-
tration is also low. 

As a general tendency of changes observed in both 
species, chromate treatments lowered the relative number 
of open PSII reaction centres under actinic light, i.e. the 
photochemical quenching (qP) of Chl fluorescence. 

The most evident difference in response of the two 
duckweed species to Cr(VI) was found in the pattern of 
quantum yield of photochemical, regulated [Y(NPQ)] and 
nonregulated non-photochemical [Y(NO)] energy 
dissipation within the applied (0–200 μM) Cr(VI) range. 
Parallel with the decrease in efficiency of energy transfer 
from antennae to PSII reaction centres and electron 
transport chain a shift occurred from this pathway to the 
non-photochemical energy quenching mechanisms. It has 
been reported earlier that hexavalent chromium alters the 
distribution of excitation energy via regulated and 
nonregulated non-photochemical dissipation (Ali et al. 
2008, Perreault et al. 2009). Proportions of both Y(NPQ) 
and Y(NO) responded differently to Cr(VI) in L. gibba 
and L. minor. Although in both species Y(NPQ) 
increased with the applied Cr(VI) concentrations but 
species differed in the concentration of Cr(VI) where this 
parameter reached its maximum, that was 100 and 
200 μM in the case of L. minor and L. gibba, respecti-
vely. Total Car content and Car/Chl ratio did not show 
clear Cr(VI) dose-dependent changes in neither species 
which suggests that other alternative defence mechanism 
than heat dissipation is involved in the short-term 
responses to chromate. On the other hand, nonregulated 
energy dissipation increased only in L. minor within 48-h 
chromate treatments indicating more vulnerable photo-
synthesis and/or higher Cr(VI) uptake rate of this species. 
It is likely that chromate might provoke similar changes 
in the pathways of non-photochemical quenching of 
L. gibba also during longer treatment periods since RLC-
measurements indicated the same decreasing trend of 
ETRs in both species.  

In conclusion, both duckweed species responded 
sensitively to Cr(VI) under tested culture conditions but 
most of their measured physiological parameters 
exhibited different dose-dependent responses to Cr(VI). 
Maintenance of physiological stability under Cr(VI) 
treatments was more effective in L. gibba than in 
L. minor reflecting higher Cr(VI) tolerance of the former 
species in short term. This arises two important 
considerations: (1) firstly, use of the two species in 
ecotoxicological testing of environmental chemicals may 
result in different outcomes concerning their toxicity, (2) 
secondly, advantages from larger tolerance of L. gibba to 
Cr(VI), and presumably to other stresses too, versus 
L. minor may manifest themselves in competition 
between these coexisting species in their natural habitats 
when environmental constrains occur. 
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