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Abstract

The response of selected photosynthetic and morphological parameters of plants to drought was examined in 5 inbred
lines of maize (Zea mays L.) and their 10 F1 hybrids. The aim of the study was to establish whether the photosynthetic
performance of parental genotypes under drought conditions correlates with the performance of their progeny and
whether the net photosynthetic rate, the chlorophyll fluorescence parameters or the content of photosynthetic pigments
could be used as reliable physiological markers for early breeding generations. The relative importance of the additive
and the nonadditive (dominance, maternal) genetic effects in the inheritance of these parameters was also assessed by
means of the quantitative genetics analysis. The results showed that the nonadditive genetic effects associated with
a particular combination of genotypes or a particular direction of crossing are at least equally and often even more
important as the additivity and that these genetic effects almost totally change with the exposure of plants to drought
conditions. This was reflected in the inability to predict the response of F1 hybrids to drought on the basis of the
photosynthetic performance of their parents, which indicates that the practical usability of such parameters in maize
breeding programs is rather limited.

Additional keywords: additivity; chlorophyll fluorescence; dominance; drought; genetic analysis; maternal effects; photosynthesis;
stress tolerance.

Introduction

Maize (Zea mays L.) is susceptible to various abiotic and
biotic stress factors including drought. The economic
losses in maize production due to this stressor are quite
substantial and breeding for the improved drought
tolerance is thus one of the most important tasks maize
breeders are currently confronted with. Current strategies
for the improvement of maize drought tolerance try to

employ newer, genomics-related tools (for reviews, see
e.g. Bruce et al. 2002, Tuberosa et al. 2002, 2007,
Campos et al. 2004, Parry et al. 2005, Bézinger and
Araus 2007, Ribaut and Ragot 2007, Mullet 2009).
Unfortunately, these approaches still suffer from some
shortcomings. Experiments with gene manipulations and
production of transgenic plants with better response to
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water deficiency were mostly undertaken in model plant
species such as Arabidopsis or tobacco and only rarely
have been transferred to crop plants. The identification of
any quantitative trait loci (QTL) for a particular trait
strongly depends on the genetic background and epistatic
effects can be strong source of variation for traits that
affect plant tolerance to stress factors; moreover, QTLs
associated with stress tolerance often show low
heritability. There is also the question of the reception of
transgenic crops by the general public and of the
economic benefits associated with the incorporation of a
particular molecular marker or new technology into
breeding program (Brennan and Martin 2007). This
means that the original expectations of a significant
improvement in maize drought tolerance, thought to
occur with the advent of modern biotechnology
techniques, have yet to be fulfilled.

An alternative approach to improve plant breeding for
the better stress tolerance is the introduction of
physiological selection markers. The physiological traits
used in breeding for plant stress tolerance should show
a good correlation both to tolerance/sensitivity to the
target stress factor and to yield parameters relevant for
the respective crop species, an adequate genetic variation
in the evaluated population/genotype collection, and
a high heritability and repeatability (Sayar et al. 2008).
Among physiological parameters that are the most
frequently proposed as the indirect selection markers,
parameters associated with photosynthesis play un-
doubtedly the main role. It is not surprising, given that
the photosynthetic apparatus responds very rapidly to the
majority of stress factors that plants have to cope with
(recently reviewed, e.g., in Kreslavski et al. 2007, Sage
and Kubien 2007, Allakhverdiev et al. 2008, Chaves
et al. 2009, Lawlor and Tezara 2009 efc.). There are three
major categories of photosynthetic parameters usually
recommended for the evaluation of stress tolerance and
the introduction into breeding programs: characteristics
based on the gas exchange measurements, the determina-
tion of the content of photosynthetic pigments, and the
chlorophyll fluorescence measurements. All have been
abundantly tested in many crop species regarding their
possible utility for introduction into breeding programs
aimed at the improvement of plant stress tolerance.
However, the results of these studies are somewhat
ambiguous: although some authors have recommended at
least one of the above-mentioned parameters as a suitable
secondary selection criterion, others did not.

The net photosynthetic rate (Py) measured with some
portable gas analysis system has been examined (together
with the stomatal conductance (g;), and sometimes
transpiration rate (£) as potential selection marker for the
detection of drought tolerance in wheat (Di Marco et al.
1988, Subrahmanyam et al. 2006, Zivéak et al. 2008),
triticale (Hura et al. 2007), maize (Zarco-Perello et al.
2005), potato (Schapendonk et al. 1989b), sugar beet
(Ober et al. 2005), faba bean (Khan et al. 2007), or
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sunflower (Jamaux et al. 1997). With the exception of
Ober et al. (2005), all the above-mentioned studies
recommended the Py (or g;) as a secondary selection
marker in breeding for an increased drought tolerance.
The chlorophyll (Chl) content is another physiological
trait often suggested as a suitable marker for the selection
against sensitivity to drought (e.g. Araus et al. 1998,
Royo et al. 2000, Fotovat et al. 2007, Olivares-Villegas
et al. 2007 and Paknejad et al. 2007 in wheat, Li ef al.
2006 in barley, Betran et al. 2003 and O’Neill et al. 2006
in maize, Silva et al. 2007 in sugarcane). As with gas-
exchange parameters, the usefulness of this parameter for
screening and selection for drought tolerance is somehow
ambiguous, as some authors advise for its use (Li et al.
2006, Fotovat et al. 2007, Silva et al. 2007) while others
advise against it (Royo et al. 2000, O’Neill et al. 2006).

However, the third group of photosynthetic para-
meters suggested for the improvement of crop production
strategies, i.e. Chl fluorescence parameters, clearly stands
out due to the rapidity and non-invasivity of this
technique and the major recent progress in the develop-
ment of the appropriate instruments. Parameters
associated both with the fast-transient and slow-transient
phase of Chl fluorescence induction kinetics, and in some
cases (Hura et al. 2007) the fluorescence emission
spectra, have been widely examined as possible tools for
screening and selection for stress tolerance, particularly
in connection with breeding for drought tolerance. Such
studies have been made e.g. in wheat (Di Marco et al.
1988, Dib et al. 1994, Flagella et al. 1995, 1998, Araus et
al. 1998, Royo et al. 2000, Subrahmanyam et al. 2006,
Paknejad et al. 2007, Sayar et al. 2008, Ziviik et al.
2008), barley (Flagella et al. 1998, Li et al. 2006,
Oukarroum et al. 2007), triticale (Hura et al. 2007),
maize (Selmani and Wassom 1991, O’Neill ef al. 20006),
sugarcane (Silva et al. 2007), Lolium-Festuca hybrids
(Koscielniak et al. 2006), potato (Schapendonk et al.
1989a, Schapendonk and Tonk 1991), or groundnut
(Clavel et al. 20006).

However, almost all the above-mentioned studies
have been made with the single purpose to examine the
suitability of various photosynthetic parameters for
simple screening of large sets of genotypes for their
tolerance of various stressors. The assessment whether
the genotypes selected in such a manner will transmit this
tolerance into the next generation and, thus, whether the
respective parameter can be used for the prediction of the
performance of hybrid progeny as well, has been made
very rarely (Fracheboud et al. 1999, Betran et al. 2003,
Koscielniak et al. 2005). Yet, without this information,
even the most suitable parameter can not help much with
the improvement of breeding programs for crop species
such as maize, which is bred with the primary purpose of
creating hybrid progeny that will eventually be cultivated
commercially. We have thus decided to examine whether
the photosynthetic performance of parental genotypes of
maize subjected to water deficiency conditions correlates
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with the performance of their progeny under such
conditions, i.e. whether various photosyntetic parameters
could be used as reliable physiological markers for early
breeding generations. As such parameters should also
display high heritability (preferably the narrow-sense
heritability, i.e., the main genetic effects determining the

Materials and methods

Five inbred lines of maize (Zea mays L.) designated as
2013, 2023, 2086, CE704, and CE810 were selected for
the study. These genotypes are part of a breeding
programme of the CEZEA Maize Breeding Station (Cej¢,
Czech Republic) and differ in various yield, morpho-
logical, and physiological parameters. As one aim of our
study was to examine the possible effect of the maternal
genotype on the response of its progeny, only those
parental combinations that could be successfully crossed
in both directions were used for the breeding of F1
generation, thus yielding ten F1 hybrids: 2013xCE704,
CE704%2013, 2013xCE810, CE810x2013, 2023x2086,
2086x%2023, 2023xCE704, CE704x2023, CE704xCES810,
and CE810xCE704.

The cultivation of the plants and the experiments were
performed during April — May 2007. Kernels of both
parental and hybrid genotypes were sown into pots
(12 cm in diameter, 13 cm deep, one kernel per pot) filled
with a mixture of garden soil and sand (2:1 v/v) and
placed in a naturally lit greenhouse of the Faculty of
Science, Charles University in Prague, and of the Faculty
of Agrobiology, Food and Natural Resources, Czech
University of Life Sciences Prague (Czech Republic),
under semi-controlled conditions at a temperature of
25+42/20+2°C and air humidity 50+5/70+5% day/night for
32 days (i.e., till the V3 developmental stage of plants).
At this time point, the plants were divided into two
groups, “stress” and “control” (each approx. 30 plants per
each genotype). In the “stress” group, the water supply to
the plants was withheld for 6 days and the soil was
allowed to gradually dry up till the volumetric soil water
content was approx. 12.5% and the plants showed visible
symptoms of water deficiency stress (i.e., leaf rolling).
The control plants were normally watered during this
period. In both “stress” and “control” treatments, the
completely randomized design of experiments was used.
All physiological and morphological measurements were
made in the middle part of the 4™ leaf (counting from the
plant base) blade of 38-d-old plants (or, in some cases,
they were determined from the whole plants) with 6 to 10
replicates per each genotype/treatment combination. At
the time of the measurements, the 4 leaves were the
youngest fully developed leaves in the “stress” group of
plants and usually the second youngest ones in the
“control” group. The irradiance in the greenhouse at the
time of the measurements and at the level of the
measured leaves was approx. 800 + 350 pmol m 2 s

The Py, E and g, were measured in the leaves in situ

intraspecific variability in these parameters should be of
an additive character), we have also assessed the relative
importance of the additive and the non-additive (domi-
nance, maternal) genetic effects by means of the
quantitative genetics analysis.

using the portable gas-exchange system LCpro+ (ADC
BioScientific Ltd., Hoddesdon, Great Britain) from 8:00
to 11:30 of Central European time. The irradiance was
650 pmol m*s™' PAR, the temperature in the mea-
surement chamber was 25°C, the CO, concentration
was 550 = 50 cm® m™>, the air flow rate was 205 + 30
umol s and the duration of the measurement of each
sample was 10 min after the establishment of steady-state
conditions inside the measurement chamber. The water-
use efficiency (WUE) was calculated as Py/E. The
minimum Chl fluorescence (F;) and the maximum
Chl fluorescence (F,,) were measured also in sifu with the
portable Chl fluorometer OS30P (ADC BioScientific Ltd.,
Hoddesdon, Great Britain) with 1-s excitation pulse
(660 nm) and saturation intensity 3,000 umol m * s after
20-min dark adaptation of the leaves. The maximum
quantum efficiency of photosystem (PS) II was calculated
as F,/F, (F, = F, — Fy). The content of Chls a and b
and the content of total carotenoids (Cars) were
determined after their extraction from leaf discs with
N,N-dimethylformamide (Wellburn 1994). The relative
water content (RWC) in the leaves was established as 100 x
(FM — DM)/(SM — DM), where FM represents the fresh
mass of 10 leaf discs (diameter 6 mm) cut from the
middle part of leaf blade and immediately weighed on an
analytical balance with 0.1 mg readability, SM is the
saturated mass of the same discs after their hydration in
the dark for 5 h, and DM is the dry mass of these discs
after they were oven-dried at 80°C for 24 h. The specific
leaf mass (SLM), ie., the dry mass of the 4™ leaf
expressed per the unit of leaf area, was determined from
the same leaf discs as RWC. The DM of the 4™ leaf, the
total DM of the shoot and roots and the height of each
plant (measured from the ground to the ligule of the
youngest fully developed leaf) were also recorded at the
end of the cultivation period.

All data were statistically evaluated by two-way
analysis of variance (ANOVA) with genotypes (G), water
treatments (T) and GxT interaction as possible sources of
variability. The statistical significance of the differences
between individual genotype/treatment combinations was
tested using LSD (least significant difference) test with
0.05 probability level as the significant one. The relation-
ship between individual photosynthetic/morphological
parameters as well as the relationship between the
response of the hybrids to water deficiency and the
response of their maternal or paternal parents was
examined using the calculation of Pearson’s correlation
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coefficient (7). The response to water deficiency was
in this case always expressed as 100 x (the mean value of
the respective parameter measured in the stressed
plants/the mean value of this parameter measured in the
control plants). All statistical evaluations were made with
the CoStat computer programme, version 6.204 (CoHort
Software, Monterey, CA, the U.S.A.). The quantitative

Results

The exposure of maize plants to six days of water
deficiency resulted in a statistically significant decrease
of the leaf RWC (Table 1), maximum quantum efficiency
of PSII (F,/F,), and Chl a and b contents (Table 2). The
content of Cars, the shoot DM and the plant height were
also lower in the stressed plants compared to the control
ones, although this difference was not statistically
significant in some genotypes (Tables 2, 3). On the other
hand, the values of F, parameter significantly increased
after the exposure of the plants to a water deficiency
period in almost all examined genotypes (Table 2), and a
similar effect was observed for WUE, although in this
case the increase was only exceptionally statistically
significant (Table 1). Both the DM and SLM of the
4™ leaf, as well as the DM of the roots mostly did not
show any significant changes resulting from disrupted
water supply (Table 3). As regards the gas-exchange
parameters (Py, E, and g), no general trend in their
response to drought simulation could be observed: their
values decreased in some of the examined genotypes but
increased or did not significantly change in others
(Table 1). This dependence of leaf gas-exchange response
to water deficiency on the genotype was confirmed by the
presence of statistically significant GxT interaction in the
results of two-way ANOVA (Table 4). Such interaction
was not found for any other photosynthetic or morpho-
logical parameter with the exception of RWC (Table 4).
This means that although the individual genotypes
differed in the values of these parameters between
themselves (as shown by both ANOVA and LSD tests,
Tables 1 to 4), the response of all examined genotypes to
the respective water treatment was always similar.

The relationship between various photosynthetic and
morphological parameters was examined using the
calculation of Pearson’s correlation coefficients. The
positive, statistically highly significant (P<0.01) correla-
tion (r = 0.79 + 0.12) was found between the Py and E
parameters, as well as between Py and g5 (r = 091 £
0.08) or £ and g, (r = 0.84 £ 0.10). Further positive
correlations were observed between F,/F,,, the content of
Chls and Cars, RWC, the plant height and the DM of
shoot, whereas the F, parameter negatively and
significantly correlated with the content of photosynthetic
pigments, RWC and the shoot DM (Table 5). Gas-
exchange characteristics did not correlate with either
RWC, Chl fluorescence parameters, photosynthetic
pigments content or morphological parameters. Other
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genetic analysis aimed at the establishment of the relative
importance of the additive and the non-additive
(dominance, maternal) genetic effects was based on the
modified model of Eberhart and Gardner (1966) as
described in Kocova et al. (2009). The computer
programme CBE3 from the Software Package CBE,
version 4.0, was used for this analysis (Wolf 1996).

correlations between photosynthetic and morphological
parameters of the plants were also statistically
nonsignificant (data not shown). WUE did not correlate
with any photosynthetic or morphological parameter
examined.

Among parental genotypes, the inbred line 2086
showed a high rate of both photosynthesis and
transpiration, as well as high stomatal conductance,
whereas the CE704 inbred line ranked the lowest in this
respect (Table 1). The inbred line 2013 was characterized
by the highest content of photosynthetic pigments under
the control conditions but was replaced in this position by
the CE810 inbred line when the plants were stressed by
water deficiency (Table 2). The inbred line 2023 usually
showed the lowest values of the content of both Chls and
Cars and the F,, or F,/F,, parameters among the parental
genotypes subjected to six days without watering
(Table 2). The ranking of the F1 hybrids strongly
depended both on the parameter examined and the water-
treatment conditions (Tables 1-3) and no clear order
could be thus established.

When the response of individual F1 hybrids to water
deficiency was compared to the response of their
respective maternal or paternal parents, no statistically
significant correlation was detected regardless of the
photosynthetic or morphological parameter examined
(Table 6). This clearly shows that it is not possible to
predict the response of hybrid genotype to drought based
on the behaviour of either its maternal or paternal parent.

In order to ascertain which type of genetic effects is
more important for the inheritance of the photosynthetic
parameters in maize, the quantitative genetic analysis was
performed and its results are shown in Tables 7 and 8.
Three principal conclusions could be made from these
results. First, the mode of inheritance of each parameter
examined in this study markedly differed between plants
grown in the control and the stress conditions, i.e., the
genetic effects significant under optimum water treatment
were frequently nonsignificant under water-deficiency
treatment and vice versa, or, in the case the same effect
was significant in the plants under both water treatments,
its character often changed between positive and
negative. Second, although the additive genetic effects
played an important role in the inheritance of the
examined parameters, the nonadditive effects associated
with a particular combination of genotypes (dominance
effects) or a particular direction of crossing (maternal
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effects) were at least equally and often even more
important (particularly for the gas-exchange parameters
in the plants stressed by water deficiency). And third,
each evaluated parameter displayed a unique combination

Discussion

The effects of drought on plants have been studied for a
long time and the changes induced by insufficient water
supply have been thoroughly examined from the whole
plant/plant population level to the biochemical and
molecular levels (Bray 2007, Chaves et al. 2009, Farooq
et al. 2009). The reduction of photosynthetic efficiency is
a well-known symptom of drought-induced stress
displayed by many plant species. In our study with inbred
and hybrid genotypes of maize we observed the reduction
of the Py after the plants had been exposed to the 6-d
period of water deficiency, and this reduction was usually
accompanied by a decrease in the values of both g; and E.
Those genotypes that either did not show any changes of
the stomatal function or even displayed an increased g
after drought simulation compared to the nonstressed
plants, were usually also characterized by increased
values of both E and Py, and there was a strong positive
correlation between these parameters. At the initial stages
of water deficit, the reductive effect of stomatal closure
on E is thought to be greater than the effect on photo-
synthetic CO, assimilation, but with further development
of water deficit, both processes are reduced rather
dramatically (Chaves et al. 2002, Chaves and Oliveira
2004, Flexas et al. 2004). The actual contribution of the
diminished stomatal conductance to drought-induced
limitation of photosynthesis has been much discussed
during past decades, particularly concerning its relative
importance in comparison with that of the metabolic
limitation and/or impaired ATP synthesis (Flexas and
Medrano 2002, Lawlor 2002). The majority of scientists
working in this area of research now accept the “stomatal
control“ model which proposes that stomatal closure and
decrease of g; are the primary causes of the reduction of
Py under mild drought conditions, with metabolic

of genetic effects participating in its inheritance, thus pre-
venting any selection of a particular genotype/genotype
combination as a general bearer of strong additive or
nonadditive effects.

alterations (the inhibition of ATP synthesis and the
inadequate RuBP regeneration associated with this
inhibition) following later and developing gradually as
drought progresses further (Chaves et al. 2002, 2009,
Lawlor 2002, Reddy et al. 2004, Christensen and
Feldman 2007, Lawlor and Tezara 2009).

Table 4. Analysis of variance of selected physiological and
morphological parameters of maize plants of five inbred lines
and their ten F1 hybrids grown either under normal conditions
or subjected to six days of water deficiency. Genotypes (G),
water treatments (T) and their interaction (GxT) were included
in the analysis as the possible sources of variation and their
levels of statistical significance (P) are shown. RWC — relative
water content; WUE — water-use efficiency; Py — net photo-
synthetic rate; E — transpiration rate; g; — stomatal conductance;
Fy — minimum chlorophyll fluorescence; F,/F,, — maximum
quantum efficiency of photosystem II; Chl — chlorophyll; Cars —
carotenoids; DM — dry mass.

Parameter G T GxT
RWC <0.001 <0.001 0.02
WUE 0.01 <0.001 0.68
Py <0.001 0.02 <0.001
E <0.001 <0.001 <0.001
g <0.001 <0.001 <0.001
F, 0.03 <0.001 0.18
F,/F= (F—Fo)/Fn 0.72 <0.001 0.85
Chl a content <0.001 <0.001 0.15
Chl b content <0.001 <0.001 0.23
Cars content <0.001 <0.001 0.19
Specific mass of the 4™ leaf 0.78 0.78 0.20
DM of the 4" leaf <0.001 0.04 0.64
Shoot DM <0.001 <0.001 0.24
Root DM <0.001 <0.001 0.09
Plant height <0.001 <0.001 1.00

Table 5. Correlations between selected chlorophyll fluorescence parameters (Fy, F./F,), the content of photosyntetic pigments, the
relative water content of leaves, the shoot dry mass and plant height, measured in five inbred lines of maize and their ten F1 hybrids
grown either under normal conditions or subjected to six days of water deficiency. Values of Pearson’s correlation coefficients (r) +
SE(r), n = 30, are shown together with their statistical significance (* — significant at P=0.05, ~* — significant at P=0.01,
ns — nonsignificant). Chl — chlorophyll; Cars — carotenoids; RWC — relative water content; DM — dry mass.

Chl a content ~ Chl b content Cars content RWC Shoot DM Plant height

r=+SE () r+ SE () r+ SE (r) r=+SE () r=+SE (r) r+ SE ()
Fo -0.84+0.10" -0.82+0.11" -0.66+0.14"™ -0.80+0.12" -046+0.17" ns
F./Fpn 0.90+0.08"  0.89+0.09" 0.58+0.15"  0.97+0.05" 0.57+0.16" 046+0.17
Chl a content 0.99 +0.03™ 0.82+0.11"  0.86+0.10" 0.70£0.14"  0.56+0.16"
Chl b content 0.80+0.11"  0.85+0.10" 0.74+0.13"  0.64+0.15"
Cars content 0.50+0.16" 0.58+0.15" 041+0.17"
RWC 0.60+0.15" 0.51+0.16"
Shoot DM 0.84+0.10"
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Table 6. Correlations between the response of maize F1 hybrids and the response of their maternal or paternal parent to water
deficiency. Values of Pearson’s correlation coefficients (r) + SE(r), n = 30, are shown together with their statistical significance
(ns — nonsignificant). The response of each genotype to water deficiency (i.e. the data the correlation coefficients were calculated
from) was expressed as 100 x (the mean value of the respective parameter measured in stressed plants/ the mean value of the

parameter measured in control plants). For abbreviations see Table 4.

Parameter Hybrid-maternal parent Hybrid-paternal parent
r+ SE(r) r+ SE(r)
RWC -032+034"™ -037+032"™
WUE 0.19+0.35™ 0.18+0.35™
Py -0.07+035™ -030+034"™
E —-021+£035"™ -032+034"™
Zs 0.17+£0.35™ -047+031"™
Fo 0.19+0.35™ 0.34+0.33™
Fo/Fin= (Fu—Fo)/Fr, 0.11+£0.35™ -042+032"™
Chl a content -0.05+035"™ -0.10+£035"™
Chl b content 0.49+031" 0.10+£0.35™
Cars content 0.42+0.32™ -0.27+034™
Specific mass of the 4" leaf ~ —0.29 + 0.34 ™ -0.50+031"™
DM of the 4" leaf 0.40+0.32™ 0.06 +£0.35™
Shoot DM 0.35+0.33™ 0.05+0.35™
Root DM 0.34+0.33™ -0.08+0.35"™
Plant height 0.34+0.33™ 0.25+£0.34™

The maximum quantum efficiency of PSII photo-
chemistry and the content of Chls a and b also rather
strongly decreased in our drought-stressed experimental
plants, which indicates that the conditions of our drought
simulation imitated severe drought stress. Primary
photosynthetic processes are considered to be rather
resilient to water deficit and the drought-induced decrease
of photosynthetic electron transport efficiency occurs
only secondarily, being caused by an imbalance between
the generation of NADPH and its utilization in the
photosynthetic carbon reduction cycle (Cornic and
Fresneau 2002, Baker and Rosenquist 2004). Severe
drought can nevertheless lead to an increased generation
of reactive oxygen species leading to photooxidation and
the degradation of photosynthetic membrane proteins
(particularly D1, D2 and CP43 proteins of PSII) and
associated pigments and lipids (Cornic and Fresneau
2002, Yordanov et al. 2003, Reddy et al. 2004). Although
a certain relationship was observed between the effect of
drought on the efficiency of PSII photochemistry and the
Py in some of our genotypes (e.g. in the inbred line 2023
or the F1 hybrid CE704x2023), no such correlation
between Py and F,/F,, (or between Py and the content of
photosynthetic pigments) existed for the majority of
genotypes, which, together with the above-mentioned
observations, suggests that the net photosynthesis in the
leaves of our drought-stressed plants was not limited by
the efficiency of PSII or the amount of Chls or Cars but
rather by the functioning of stomata.

We have also observed a rather interesting discre-
pancy between the results of our gasometric measure-
ments and the consistently shown drought-induced
decrease in RWC, the PSII efficiency or the content of
photosynthetic pigments. Plant water status is not

influenced only by water loss from leaves (associated
with the efficiency of £ and the stomatal closure) but also
by water acquisition through roots and its transport into
different parts of plants. Thus, some genotypes with
greater root system and smaller stature could uptake more
water from soil and transport it more efficiently, ensuring
no need for stomatal closure at the time point the other,
less-adapted genotypes already respond to drought by
decreasing their transpiration rate. Maintaining the
stomata open would then result in none or only a small
diminishion of Py, but could also lead to an increased E
resulting in greater water loss, as reflected in the decrease
of RWC. As to why there was no significant correlation
between PSII response to drought and Py, this could be
explained in several ways. Following the experiments
described in this paper, we have made a more detailed
analysis of plant drought response in the most drought-
tolerant (whose Py was not much affected by drought)
and -sensitive (which also had diminished Py) parental
line from the set analyzed here (Hola et al., manuscript in
preparation). Its results showed several things: (/) the
activity of PSI increased in the tolerant line after drought
period so the cyclic electron transport could compensate
for the nonfunctional PSII; (2) the same applied for the
amount and activity of Rubisco and the amount of
Rubisco activase; (3) the amount of proteins of PSII
oxygen-evolving complex and light-harvesting antennae
decreased in the sensitive line and was less affected in the
tolerant genotype; and (4) the proteosynthesis as a whole
(and particularly the synthesis of various protective
proteins) was intensified in the tolerant genotype. All
these factors, together with the delayed stomatal closure,
could contribute to the maintenance of high Py (or,
indeed, its increase) even under drought conditions
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in genotypes displaying a greater tolerance to this
stressor.

The utilization of any physiological parameter in plant
breeding and selection programs aimed at the
improvement of plant tolerance of stressors requires the
fulfillment of several criteria such as the possibility of
relatively simple and fast measurements of the respective
parameter in many samples, its good correlation with the
tolerance/sensitivity to the target stress factor, and an
adequate intraspecific genetic variation (Brennan and
Martin 2007, Sayar et al. 2008). The photosynthetic
parameters examined in our study certainly satisfy the
first condition (particularly the Chl fluorescence
measurements) and more-or-less meet also the second
condition (based on the presence of positive correlations
between Chl fluorescence parameters or the content of
photosynthetic pigments and the drought-induced
changes in plant morphology and water status). Other
authors have also described good association between
maize drought tolerance and Chl fluorescence excitation
spectra (Grzesiak et al. 2007a) or Chl content (Grzesiak
et al. 2007b). From this point of view, the measurement
of Py seems to be the least suitable among the three
categories of photosynthetic parameters examined, as it is
rather time-consuming and the relationship between Py
and drought-induced changes in plant morphology and
development is not unequivocal (Grzesiak et al. 2006).

As regards the intraspecific variability in photo-
synthetic characteristics, its existence in maize has been
previously noted by various authors and confirmed also
in our study. Genotypic differences in the content of Chls
in maize leaves were found e.g. by Oclke and Andrew
(1966), Rao et al. (1978), Monma and Tsunoda (1979),
Baer and Schrader (1985), Crafts-Brandner and Poneleit
(1992), Mehta et al. (1992) or Krebs ef al. (1996), and the
intraspecific variability in Chl fluorescence parameters
was also described for this plant species in some previous
papers (e.g. Csapo et al. 1991, Dolstra et al. 1994, Krebs
et al. 1996). Thus, it would seem that both these
categories of photosynthetic parameters are eminently
suitable for their inclusion into breeding programs aimed
at the improvement of maize drought tolerance. However,
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the situation is not so simple. Another condition that
should be met by such parameters is their high heritability
with particular regard to the additive component of
genetic variation (Sayar et al. 2008). And herein lies the
main problem: although the quantitative genetic analysis
of our data showed that the additivity certainly can play
an important role in the inheritance of the photosynthetic
pigments content, the nonadditive (particularly domi-
nance) genetic effects were even more important. Similar
phenomenon was found by Oeclke and Andrew (1966),
Baer and Schrader (1985) or Mehta et al. (1992), who
also analyzed various components of genetic variation in
the Chl content in maize leaves. As regards Py and other
leaf gas-exchange parameters, we have found not only the
presence of the dominance genetic effects, but the
maternal effects as well, so the situation here is even
more complex. The parameters associated with Chl
fluorescence did not seem to suffer from such limitations
in our study but their intraspecific variability was lower
than that of the content of photosynthetic pigments.
Moreover, our results clearly demonstrated that the
genetic effects participating in the inheritance of the
examined photosynthetic parameters almost totally
changed when the plants were exposed to drought
conditions. Koérnerova and Hola (1999) and Kocova et al.
(2009) described a similar phenomenon for the activities
of PSI or PSII and the contents of Chls and Cars in maize
plants stressed by low temperatures. Such changes of the
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