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Abstract  
 
The relationship between the activity of xanthophyll cycle and chlorophyll (Chl) metabolism was investigated using two 
cultivars, Helan No. 3 (seawater-tolerant cultivar) and Yuanye (seawater-sensitive cultivar), of spinach (Spinacia 
oleracea L.) plants cultured in Hoagland’s nutrient solution, with or without seawater (40%). The results showed that, in 
plants of two cultivars with seawater, the xanthophyll cycle seems to show a principal protection mechanism against 
photoinhibition under seawater stress. Furthermore, accumulation of reactive oxygen species (ROS) in chloroplasts of 
two cultivars was enhanced by seawater to lower the activity of porphobilinogen deaminase. Namely, the conversion of 
porphobilinogen into uroporphyrinogen III involved in Chl biosynthetic processes was inhibited by seawater. In Helan 
No. 3 spinach plants with seawater, higher activity of xanthophyll cycle in the leaves dissipated more excess light 
energy, which appeared to lower the levels of ROS in chloroplasts. As a consequence, the Chl biosynthesis in Helan 
No. 3 leaves with seawater showed only a weak inhibition and the activity of chlorophyllase (Chlase) was not affected 
by seawater stress. In contrast, a more pronounced accumulation of ROS in chloroplasts of Yuanye leaves, which 
possess lower xanthophyll cycle activity, severely inhibited Chl biosynthesis and remarkably enhanced the activity of 
Chlase, which aggravates the decomposition of Chl. These results suggest that higher activity of xanthophyll cycle in 
seawater-tolerant spinach plays a role in maintaining Chl metabolic processes, probably by decreasing the levels of 
ROS, when the plants are cultured in the nutrient solution with seawater (40%). 
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Introduction 
 
Water resources in the ocean correspond to a capacity of 
about 1.34 × 1018 m3, which is equivalent to 96.8% of the 
total water of the earth. However, the freshwater on land 

is in short supply. Now, researchers have attempted to 
cultivate crops for food supply by irrigation using sea-
water (Sun et al. 2008). Spinach (Spinacia oleracea L.)  
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plants are a middle salt-tolerant crop (Shannon and 
Grieve 1998). Therefore, it is proposed to be possible to 
cultivate spinach plants by using seawater.  

Photosynthesis is essential for growth and deve-
lopment of plants and photoinhibition is a general pheno-
menon in the photosynthetic process (Anderson et al. 
1997). When the rate of absorption of light energy by 
photosynthetic pigments exceeds the rate of its 
consumption in chloroplasts, the excessive absorbed light 
energy accelerates the process of photoinhibition 
(Demmig-Adams and Adams 1992, Melis 1999). Thus, 
the extent of photoinhibition is enhanced when the 
consumption of energy during the photosynthetic fixation 
of CO2 is limited. Low and high temperatures, drought, 
and high salinity all strongly limit the photosynthetic 
fixation of CO2 and have all been shown to accelerate 
photoinhibition (Demmig-Adams and Adams 1992, 
Murata et al. 2007). However, several protective mecha-
nisms of plants are developed in the evolution of plants 
against the potentially damaging effects due to 
photoinhibition induced by environmental stresses 
(Anderson et al. 1997). Xanthophyll cycle in plants has 
been recognized as one of the most important regulatory 
mechanisms operating in plants and other photo-
synthesizing organisms at the molecular level, to protect 
the plants from photoinhibition under adversity stress 
conditions (Latowski et al. 2004). Xanthophyll cycle 
pigments such as zeaxanthin (Z), antheraxanthin (A), and 
violaxanthin（V）are interconvertible due to epoxidation 
(Z→A→V) and de-epoxidation (V→A→Z) under certain 
conditions (Kotabová et al. 2008), namely, the 
violaxanthin de-epoxidase (VDE, EC 1.10.99.3) converts 
V into Z via the intermediate, and A is activated 
(Latowski et al. 2004). According to Mathis and Burkey 
(1989) and Horton et al. (2008), the conformation of 
light-harvesting complexes of photosystem II (LHCII) is 
transformed from a light-harvesting state to a dissipative 
state by Z and pH gradient. As a result, excess energy is 
dissipated as heat. On the other hand, it has been 
suggested that protection against photoinhibition requires 
Z, as a very efficient radical scavenger and chain-
breaking antioxidant in peroxyl-radical-mediated 
peroxidation (Havaux and Niyogi 1999). 

Chls are responsible for receiving solar energy in 
photosynthetic antenna systems and for charge separation 
and electron transport within reaction centers (Tanaka and 
Tanaka 2006). Reduced photosynthesis with increasing 
salinity has been attributed to a decline in Chls  
 

(Kolchevskii et al. 1995). However, the level of Chls is 
dependent on homeostasis between synthesis and degra-
dation in the Chl metabolic processes of plants (Yu et al. 
2006). Regulation of the levels of Chl and its derivatives, 
such as protochlorophyll (Pchl) or protoporphyrin IX 
(Proto IX), is extremely important, because these 
molecules are strong photosensitizers; that is, when 
present in excess, they will generate ROS. ROS, in turn, 
promote growth retardation or cell death. Therefore, to 
maintain healthy growth, plants must finely control the 
entire Chl metabolic process. Chl metabolism is a highly 
coordinated process that is executed via a series of 
cooperative reactions catalyzed by numerous enzymes 
(Barry 2009). Environmental stresses such as high 
salinity aggravate photoinhibition and further induce 
photooxidization over a long period to accumulate ROS 
in chloroplasts. According to Tanaka and Tanaka (2006), 
cell-death phenotypes induced by ROS have been 
observed in various plant species, in which genes 
encoding Chl biosynthetic enzymes are impaired. Thus, 
the normal process of Chl metabolism is disturbed by 
environmental-stress-induced ROS.  

Enhanced salinity is experienced as a stress condition 
in plants, since it provokes changes in the photosynthetic 
apparatus, by affecting both its structure and function. 
NaCl-imposed ionic and oxidative stress on chloroplasts 
causes structural alterations in thylakoid membranes that 
induce significant loss in the functional ability of thyla-
koid membranes, such as to perform photochemical 
electron transport (Parida et al. 2003), and leads to the 
formation of ROS in chloroplasts (Sibole et al. 1998). 
Gruszecki et al. (2006) suggested that the higher 
xanthophyll-dependent non-photochemical quenching 
(NPQ) seems to suppress the risk of salt-induced 
generation of ROS leading to a damage of photosynthetic 
organisms. However, how the xanthophyll cycle in plants 
affects the Chl metabolic process under environmental 
stress such as high salinity has not been clarified. 
Seawater adversity was caused by excess ions as a domi-
nant factor of stress, and it also aggravated photo-
inhibition of plants (Sun et al. 2008). Our earlier results 
have proven that the level of Chls in leaves of spinach 
plants was suppressed by seawater stress (Sun et al. 
2008). In the present study, our purpose is to clarify the 
relationship between xanthophyll cycle and Chl meta-
bolism, using spinach plants cultured under the seawater 
hydroponics. This should help to understand the 
physiological mechanisms of plant tolerance to seawater. 

Materials and methods 
 
Plant materials and conditions of cultivation: The 
experiment was carried out in an environment-controlled 
greenhouse. Two cultivars (cv. Yuanye and cv. Helan  
No. 3) of spinach (Spinacia oleracea L.) were used in this 
study. According to Sun et al. (2008), Yuanye is a sea-
water-sensitive cultivar and Helan No. 3 is a cultivar 

comparatively tolerant to seawater. The seeds were 
germinated on wet filter paper in a chamber at 18°C in 
the dark with 90% relative humidity (RH). The 
germinated seeds were cultured hydroponically in rock 
wool brick (one plant per brick) which was inserted in 72 
holes of plastic trays. After the fifth leaf expanded, 



RELATIONSHIP BETWEEN XANTHOPHYLL CYCLE AND CHLOROPHYLL METABOLISM 

569 

seedlings grown uniformly in the bricks were trans-
planted to plastic boxes containing 50 L of full strength 
Hoagland’s nutrient solution [pH 6.5±0.1, electrical 
conductivity (EC) 2.0–2.2 mS cm–1]. The plants were 
cultured in a greenhouse at 26°C during day (10 h), 
average photon flux density of the photosynthetically 
active radiation (PFD) of 300 μmol m–2 s–1 and 10°C at 
night with 65–90% RH. Nutrient solution was aerated 
using an air pump at an interval of 20 min at 18–20°C. 
After preculture for 15 days, the seedlings were cultured 
in the nutrient solution with or without seawater (40%). 
According to Sun et al. (2008), difference in tolerance to 
seawater between two spinach cultivars such as Yuanye 
and Helan No. 3 under concentration of seawater (40%) 
was the greatest. Seawater (a total salt: 26.64 g L–1, 
pH 7.8) was taken from the sea area of Dongtai, Jiangsu 
province, China, the composition of ions in the seawater 
sample was 349.98 mM of Na+, 410.14 mM of Cl–, 
40.20 mM of Mg2+, 21.15 mM of SO4

2–,7.61 mM of Ca2+, 
and 6.83 mM of K+. 

 
Experimental treatments: On the 2nd day after 
supplying seawater, spinach plants of the two cultivars 
were divided into 4 groups as follows: No. 1 was sprayed 
with 0.05% (v/v) Tween 20 or distilled water on the 
plants cultured in the Hoagland’s nutrients solution 
without or with seawater (CK or S, respectively). No. 2 
was sprayed with 0.001 mM methyl viologen (MV) 
[solved by 0.05% (v/v) Tween 20] (CK+MV or S+MV) 
to induce oxidative stress with molecular oxygen to 
produce superoxide radical (O2

· –) in the stroma of 
chloroplasts, No. 3 with 5 mM ascorbic acid (AsA) 
(CK+AsA or S+AsA) to eliminate O2

· – and H2O2 in 
plants to inhibit peroxidation of membrane lipids, No. 4 
with 0.001 mM MV at zero time, and with 5 mM AsA at 
24 h (CK+MV+AsA or S+MV+AsA). At 72 h after 
spraying on No. 1 (i.e. on the 6th day after supplying 
seawater), the 4th or 5th leaves from the top of nonstressed 
and stressed plants were collected to measure the contents 
of Chl precursors, activity of porphobilinogen deaminase 
(PBGD, EC 4.3.1.8) and chlorophyllase (Chlase, EC 
3.1.1.14). Furthermore, intact chloroplasts were isolated 
for measuring other correlative index such as O2

· – 
generation rate, hydrogen peroxide (H2O2) contents and 
malondialdehyde (MDA) contents. 

The 4th or 5th leaves from the top of nonstressed and 
stressed plants without MV, AsA or MV+AsA were 
collected to measure the light response curves of the net 
photosynthetic rate (PN-PFD) and apparent quantum yield 
(AQY). Chl fluorescence parameters were measured, at 
one time, petioles and nerves were removed from the 4th 
or 5th leaves before freezing in liquid nitrogen for 
measurement of xanthophyll cycle pigments. In addition, 
the younger leaves with petioles were dipped in full-
strength Hoagland’s nutrient solution with or without 
seawater (40%). The Hoagland’s nutrient solutions were 
composed of CK and S with or without AsA (20 mM, 

pH 6.25, AsA enhances de-epoxidation) (i.e. CK + AsA 
or S + AsA), with or without 1, 4-dithiothreitol (DTT, 
3 mM; an inhibitor of de-epoxidation) (i.e. CK + DTT or 
S + DTT), respectively, and the leaves were incubated 
under controlled environmental conditions in a growth 
chamber at 25°C with 65% RH. Light in the chamber was 
irradiated at 30 μmol m–2 s–1 for 3 h and then at 2,000 
μmol m–2 s–1 for 1 h. After the incubation, the Chl fluo-
rescence parameters and xanthophyll cycle pigments 
were measured with five replicates. 

 
Chl fluorescence: Chl fluorescence was measured using 
a pulse amplitude-modulated fluorometer (PAM 2000, 
Heinz Walz GmbH, Effeltrich, Germany) on fresh leaves 
sampled at an interval of 1 h from 8:30 to 16:30 in an 
environment-controlled greenhouse. Minimum fluores-
cence (Fo) was determined by illuminating the leaf with a 
dim red light (<0.1μmol m–2 s–1) modulated at 0.6 kHz 
after keeping the leaf for 30 min in darkness. Maximum 
fluorescence of dark-adapted leaf (Fm) was obtained 
during a subsequent saturating light pulse (8,000 μmol  
m–2 s–1, 0.8 s). The leaf was then continuously illuminated 
with actinic light at an intensity of 150, 200, 350, 600, 
1,400; 1,300; 900, 300 and 80 μmol m–2 s–1 which were 
equivalent to the growth of spinach plants at an interval 
of 1 h from 8:30 to 16:30 h in the greenhouse. The 
steady-state fluorescence (Fs) was thereafter recorded, 
and a second saturating pulse of white light (8,000 μmol 
m–2 s–1 for 0.8 s) was imposed to determine the maximum 
fluorescence level in the light-adapted state (Fm’). The 
actinic light was put out and then the minimal 
fluorescence level in the light-adapted state (Fo’) was 
determined by illuminating the leaf with a far-red light 
for 3 s. The following parameters were estimated to 
characterize the fluorescence induction kinetics: (1) non-
photochemical quenching (NPQ) was calculated as 
Fm/Fm’ – 1, (2) dissipative energy (D) was calculated as  
1 – (Fv’/Fm’), (3) photochemical energy (P) was calcu-
lated as (Fm’ – Fs)/Fm’, (4) excessive energy (Ex) was 
calculated as Fv’/Fm’ × (1 – qP) (Demmig-Adams et al. 
1996), and (5) the percentages of D, P, and Ex in total 
were done. The P, D and Ex were obtained from Chl 
fluorescence at 10:30. 

 
PN-PFD and AQY: Light-response curves of the net 
photosynthetic rate were measured using portable photo-
synthesis system (Li-6400, LI-COR Inc., Lincoln, NE, 
USA) at ambient CO2 concentration [360 μmol(CO2) 
mol–1] on attached leaves after 30 min of dark adaptation 
in the morning (between 09:00 and 10:00). The 
greenhouse for measuring photosynthesis was controlled 
to maintain the leaf temperature at 22°C and the relative 
humidity at 60–70%. The leaves were exposed for 5 min 
to increase the incident PFD (0, 25, 50, 100, 150, 200, 
400, 600, 800, 1,000; 1,200; 1,500; and 1,600 μmol  
m–2 s–1) to measure gas-exchange parameters such as net 
photosynthetic rate (PN) and stomatal conductance (gs). 
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Increasing incident PFD (0, 25, 50, 100, 150, 200, and 
250 μmol m–2 s–1) was provided to measure gas-exchange 
parameters, AQY was estimated from the initially slopes 
of PN-PFD curves.  

 
Pigment extraction and its separation by HPLC: 
Extraction of xanthophyll cycle pigments was performed 
according to the method of Park et al. (2008). The 
pigments were estimated by gradient reverse-phase high-
performance liquid chromatography (HPLC) by a modi-
fied version of the method of Gilmore and Yamamoto 
(1991). Pigments were separated at 25°C on a spherisorb 
column (250 × 4 mm) preceded by a spherisorb guard 
column (4 × 4 mm), using an injection volume of 20 μL. 
The isocratic elution for 0–4 min with the solvent 
composed of acetonitrile, methanol, and 50 mM Tris 
(72:8:3, v/v/v) was followed by a 2.5-min linear gradient 
into a second solvent composed of methanol and  
n-hexane (5:1, v/v) at a flow rate of 1.5 mL min–1. The 
peak areas at 440 nm were integrated using ChromQuest 
software (ThermoQuest, San Jose, CA, USA) and 
compared to a calibration curve of purified standards of 
V, Z, and A (Sigma-Aldrich, Saint Louis, MO, USA). 
The de-epoxidation state (DES) of the xanthophyll cycle 
pigments was calculated as (Z+0.5A)/(V+A+Z), which is 
represented as the activity of the xanthophyll cycle. 

 
Isolation of intact chloroplasts, measurements of O2

· –

generation rate, H2O2, and MDA contents: Isolation of 
intact chloroplasts was done at room temperature 
according to the method of Takeda et al. (1982). The 
intactness of chloroplasts was estimated to be 90% by the 
ferricyanide method of Yamamoto et al. (1972b). The 
measurement of O2

· – generation rate of isolated chloro-
plasts dispersed with 50 mM sodium phosphate buffer 
(pH = 7.8) was carried out by monitoring the A530  
(JH-752, Jinghua Inc., Shanghai, China) to detect the 
hydroxylamine reaction due to the method of He et al. 
(2005). A standard curve with NO2

– was used to estimate 
the generation rate of O2

· –.Chloroplasts suspension was 
diluted with 0.2 N perchloric acid to one third. The 
diluted suspension was neutralized with KOH and then 
centrifuged at 10,000 × g for 5 min. An aliquot of the 
supernatant was used for the quantification of H2O2 
according to the modified method of Okuda et al. (1991), 
the amount of H2O2 was calculated using a standard 
graph of known concentrations. And the remaining 
supernatant was diluted with 5% trichloroacetic acid for 
the estimation of the level of lipid peroxidation from the 
relative content of thiobarbituric acid reactive products 
(TBARPs), calculated as the absorption difference 
between A532 and A600 (JH-752, Jinghua Inc., Shanghai, 
China) with an extinction coefficient of 155 mmol–1 cm–1 
(Vlckova et al. 2006). 

 
Determination of Chl precursors: Chlorophyll a (Chl a) 
and chlorophyll b (Chl b) were estimated spectrophoto-

metrically using pigment fraction extracted by 80% 
acetone with a small amount of MgCO3 (Lichtenthaler 
1987). Protoporphyrin IX (Proto IX), Mg-protoporphyrin 
IX (Mg-Proto IX) and protochlorophyll (Pchl) were 
extracted using a mixture of acetone:ammonia (1%) (4:1), 
extracts were followed by measuring the absorbance at 
575 nm, 590 nm, and 628 nm (Hodgins and van Huystee 
1986). Fresh leaves were iced-homogenized using Tris-
HCl (pH 7.2), the homogenates were centrifuged at  
5,000 × g for 15 min at 4°C, uroporphyrinogen III (Uro 
III) content in supernatants was determined by the 
method of Bogorad (1962). Leaf samples were 
homogenized with Tris-HCl buffer (pH 8.0) containing 
100 mM Tris, 50 mM mercaptoethanol, homogenates 
were centrifuged at 8,000 × g for 15 min at 4°C. 
Specifically, 2 mL of supernatants or standard were 
mixed with 2 mL of freshly prepared Ehrlich’s reagent 
and after 30 min the mixture was used to determine A555 
for the determination of porphobilinogen (PBG) by the 
method of Bogorad (1962). Fresh leaves were homo-
genized with acetic sodium buffer (pH 4.6), homogenates 
were extracted in boiling water bath for 15 min and 
centrifuged at l0,000 × g for 20 min at 4°C, the super-
natants were pooled to determine δ-aminolaevulinic acid 
(ALA) content by the method of Richard (1975). Content 
of ALA was calibrated using the standard of ALA-HCl 
(Sigma-Aldrich, Saint Louis, MO, USA). 

 
Assay of activities of PBGD and Chlase: Fresh leaves 
were homogenized with Tris-HCl buffer (pH 8.0) 
containing 50 mM Tris, 5 mM mercaptoethanol, 2 mM 
phenylmethyl sulfonyl fluoride, 2 mM EDTA-Na2 at 4°C. 
The homogenate was centrifuged at 10,000 × g for 
10 min at 4°C. The supernatant was allowed to stand at 
65°C for 20 min and then cooled in an ice bath. The 
cooled supernatant was centrifuged again as described 
above and used to determine A405.5 (JH-752, Jinghua Inc., 
Shanghai, China) for the estimation of PBGD activity by 
the method of Riminton (1960). 

Preparation of substrates, enzyme extraction, and 
assay of Chlase activity were performed according to the 
method of Costa et al. (2005). Protein extraction buffer 
contained: 100 mM Na2HPO4, 100 mM NaH2PO4, 0.2% 
(v/v) Triton X-100, 30 g L–1 polyvinylpolypyrrolidone, 
1 mM phenyl methyl sulfonyl fluoride, 5 mM cysteine, 
pH 6.0. Chls of spinach leaves were used as a substrate. 
6 g of fresh mass (FM) of spinach leaves were homoge-
nized in an omnimixer with 60 ml of acetone:water 
(80:20, v/v) solution at 4°C. The suspension was 
centrifuged at 9,000 × g and the supernatant was added 
with 40 ml of petroleum ether to extract the Chls. After 
this, the ether was evaporated under N2 and the Chls 
dissolved in 4–5 ml of acetone. The Chls concentration in 
the assays was kept 1.0 mg mL–1. The following reaction 
mixture was used: 100 mM sodium phosphate buffer 
(pH 7.0) with 0.15 % (v/v) Triton X-100, 0.01 mM Chls, 
16% (v/v) acetone and 2 mL of enzymatic extract in a 
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site of generation of 1O2 is mostly in the thylakoids. This 
is because Chl biosynthesis intermediates are partially 
hydrophobic, and consequently are loosely attached to the 
thylakoid membranes (Mohapatra and Tripathy 2002, 
2007). Although they are associated with the thylakoid 
membranes, these tetrapyrroles do not form pigment-
protein complexes and hence are not connected to the 
reaction center. Although some of the carotenoids are 
present in the lipid bilayer, a lot more are located in the 
pigment-protein complexes and they are spatially too far 
from Chl biosynthesis intermediates to quench their 
triplet states (Havaux et al. 2007, Mozzo et al. 2008). 
Synthesis of Chl biosynthetic intermediates are highly 
regulated and are not overproduced in plants. However, 
impairment of Chl biosynthesis, i.e. PBGD in salinity-
stressed plants, could deregulate accumulation of Chl 
biosynthesis intermediates that could produce 1O2 by type 
II photosensitization reaction causing oxidative damage 
to plants. 

In addition, H2O2 closely participates in the senes-
cence of plants, which is accompanied by the collapse of 
chloroplasts (Brennan and O’Neill 1995). As shown in 
Fig. 4B, compared with that of Helan No. 3, in chloro-
plasts of Yuanye spinach leaves, seawater stress induces 
more accumulation of H2O2, which appears to initiate a 
senescence process, and chloroplasts collapse. Further-
more, Chlase seems to show an apparent latent behavior, 
and the enzyme activity can continue to be enhanced 
during the process of senescence in barley (Sabater and 

Rodríguez 1978) and spinach plants (Yamauchi and 
Watada 1991). The phenomenon is attributed to 
combination/affinity between substance and enzyme, and 
the post-translational modification of Chlase seems to be 
a key point in Chl-decomposition process (Harpaz-Saad 
et al. 2007). It is concluded that H2O2-induced collapse of 
chloroplasts of Yuanye spinach leaves results in 
combination/affinity between substance and enzyme to 
activate the Chlase (Fig. 5B) and the subsequent 
decomposition of Chls. However, invariant activity of 
Chlase in Helan No. 3 spinach leaves is probably 
attributed to lower accumulation of H2O2 in chloroplasts 
under seawater stress. As mentioned above, higher 
xanthophyll-dependent NPQ seems to suppress the risk of 
excess light-induced generation of ROS (e.g. H2O2) in 
plants. Therefore, higher activity of xanthophyll cycle in 
Helan No. 3 spinach leaves seems to suppress the 
decomposition of Chl through reducing accumulation of 
ROS in chloroplasts under seawater stress.  

In summary, seawater stress enhanced photoinhi-
bition, which aggravated accumulation of ROS in 
chloroplasts of spinach leaves, thus decreasing PBGD 
activity, inhibiting conversion of PBG into Uro III. As a 
result, Chl content in leaves of two cultivars with 
seawater is decreased. The higher activity of xanthophyll 
cycle in seawater tolerant spinach plays a role in 
maintaining Chl metabolic processes, probably by 
decreasing the levels of ROS, when the plants are 
cultured in the nutrients solution with seawater. 
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