

Compensatory growth and photosynthetic responses of *Pharbitis purpurea* seedlings to clipped cotyledon and second leaf

W. ZHENG*, J.Y. YANG*, Z.H. LUAN*, P. WANG**, H.X. ZHANG***, and D.W. ZHOU***,+

*Institute of Grassland Science, Northeast Normal University; Key Laboratory of Vegetation Ecology,
Ministry of Education, Northeast Normal University, Changchun 130024, China*

*State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, College of Urban and
Environmental Science, Northeast Normal University, Changchun, 130024, China*

*Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China****

Abstract

Leaf tissue damaging to seedlings can limit their subsequent growth, and the effects may be more extensive. Compensatory photosynthesis responses of the remnant cotyledon and primary leaf of *Pharbitis purpurea* to clipping and the effect of clipping on seedling growth were evaluated in a pot-cultivated experiment. Three treatments were conducted in the experiment, which were clipped cotyledon (CC), clipped second leaf (CL), and control group (CG). The area, thickness, mass, and longevity of the remaining cotyledon of CC exhibited over-compensatory growth. In contrast, seedlings of CC had under-compensatory growth in seedling height, root length, seedling mass, and root to shoot ratio. However, the traits of remnant cotyledon and seedling in CL treatment exhibited equal-compensatory growth. Net photosynthetic rate of the cotyledon of CC was significantly higher than those of CL and CG treatments, and the diurnal changes in photosynthetic rates showed significantly different patterns which were unimodal curve (CC) and bimodal curve (CL and CG), respectively. There was no significant difference between CL and CG treatment. Net photosynthetic rate of the primary leaf of CL was significantly higher than that of CG treatment. However, the photosynthetic rates of primary leaves of CL and CG treatments showed similar photosynthetic patterns characterized by a bimodal curve. *P. purpurea* seedlings used a compensatory growth strategy in the remaining cotyledon or the primary leaf to resist leaf loss and minimize any adverse effects.

Additional key words: clipping; compensatory growth; photosynthesis; primary leaf; remnant cotyledon; seedling.

Introduction

The seedling stage is the most vulnerable phase of a plant life history (Armstrong and Westoby 1993, Bonfil 1998, Fenner and Thompson 2005, Harper 1977, Leishman and Westoby 1994, Westoby *et al.* 1992). The energy and nutrients needed for the growth and development of species without endosperm (*i.e.*, most dicotyledons) are mainly supported by cotyledons in the early developmental stages before true leaves emerge. Cotyledons are the first leaves of a plant, which play an important role in seedling development (Hanley and May 2006, Kitajima 2003, Zhang *et al.* 2008). Cotyledons provide a major proportion of matter needed for seedling growth until the first true leaf becomes a significant exporter of photosynthates. The contribution of cotyledon photosynthesis

for early seedling growth has been emphasized by several authors (Ampofo *et al.* 1976, Burzyński and Zurek 2007, Harris *et al.* 1986, Kitajima 1992). In addition, primary leaf also contributes to seedling development (Ferraro and Oesterheld 2002, Hikosaka *et al.* 2005).

In natural conditions, it is a common phenomenon that partial or entire leaves are defoliated by insects, herbivores or factitious clipping, often leading to reduced fitness (Belsky 1986, Ferraro and Oesterheld 2002, Painter and Belsky 1993, Van Staalduinen and Anten 2005). Both cotyledons and primary leaves are critical photosynthetic organs at the seedling stage. Damage to either or both of them may negatively influence post-seedling development (García-Cebrián *et al.* 2003,

Received 7 July 2010, accepted 1 January 2011.

*Corresponding author; tel.: +86-431-85542231, fax: +86-431-85542206, e-mail: zhoudaowei@neigae.ac.cn

Abbreviations: CC – clipped cotyledon; CL – clipped second leaf; CG – control group; C_i/C_a – intercellular CO_2 /ambient CO_2 ; E – transpiration rate; g_s – stomatal conductance; P_N – net photosynthetic rate; RH – relative humidity in the chamber; R/S – root/shoot ratio; T_{air} – temperature in the chamber.

Acknowledgments: This study is funded by the National Key Basic Research Program (2007CB106801).

Hanley and May 2006), limiting seedling growth and ultimately reducing the biomass of seedlings (Boege 2005, Evans 1991, Holland *et al.* 1996, McNaughton 1983, 1986). However, clipping may promote plant growth by stimulating photosynthesis, altering biomass allocation and increasing growth rate (Anten and Ackerly 2001, Hilbert *et al.* 1981, Meyer 1998a, Oesterheld and McNaughton 1991, Zhao *et al.* 2008). Several studies found that the increased photosynthetic rate was a possible mechanism for compensation (Dyer 1991, Meyer 1998b, Senock *et al.* 1991, Thomson *et al.* 2003, Zhao *et al.* 2008). Previous studies have reported that plants can often compensate for biomass losses by defoliation; these studies have typically focused on grasses (Ferraro and Oesterheld 2002, Del-Val and Crawley 2005, Van Staalanden and Anten 2005). Only scant evidence has indicated compensatory responses of dicotyledonous species (Mabry and Wayne 1997, Moriondo *et al.* 2003, Thomson *et al.* 2003); comparatively little is known

about how this process occurs during their seedling stage by cotyledon or leaf damage, however.

The seedlings of *P. purpurea*, an annual, epigeal, dicotyledonous species that often grows in frequently disturbed environments such as farmlands, fallow fields or roadsides, generally tolerate damage to leaf tissue, which is probably an important factor contributing to their ability for compensatory growth. Yet we still know little about the compensatory mechanisms by which the seedling of dicotyledonous species can tolerate such environmentally imposed constraints.

In this study, we compared the effects of clipped cotyledon or second leaf on the photosynthesis (remnant cotyledon and primary leaf) and seedling development, to determine if remnant cotyledon and primary leaf could develop compensatory strategies against clipping by morphological and physiological responses to minimize the effects of defoliation on seedling growth.

Materials and methods

Study site and material: A pot experiment was performed in the summer (July) of 2008 in the grassland ecosystem experimental station of Northeast Normal University (44°30'–44°45'N, 123°31'–123°56'E). This area is of typical mesothermal monsoon climate with plain topography in the southern of the Songnen plain (altitude: 137.8–144.8 m). The mean annual temperature is 4.6–6.4°C. The annual accumulated temperature is 2,545–3,374°C, frost-free period is 136 ± 16 d. The mean annual rainfall is about 400–500 mm which is mainly concentrated from June to August and accounts for more than 60% of the rainfall throughout the year. The annual evaporation capacity is 2–3 times more than the rainfall.

Seeds of *P. purpurea* were collected during autumn 2007 from the Songnen plain and stored in cloth bags at room temperature (20 ± 2°C).

Experimental design: Pots (20 cm in diameter and 25 cm high) were filled with a soil-sand mixture (1:1, v/v). Twenty seeds were sown in each pot, then covered with soil to the required depth of 2 cm and cultivated in the open air. Irrigation was provided when needed. Seedlings were thinned to five per pot after cotyledon emergence. Three treatments were conducted in the experiment, which were CG: a piece of cotyledon was clipped with scissors after emergence; CL: the second leaf was clipped with scissors after appearance; CG: control group (no clipping) (Fig. 1). There were 5 replicated pots for every treatment, and 5 individual plants per pot were regarded as one replicate. The removed cotyledons and leaves were labeled and dried at 65°C for 48 h to determine the biomass. Net photosynthetic rate (P_N), stomatal conductance (g_s), intercellular CO₂/ambient CO₂ (C_i/C_a), temperature in the chamber (T_{air}) and relative humidity (RH) in the chamber

of the remaining cotyledon in the CC, CL, and CK treatments and the primary leaf in the CL and CG treatments were measured with Li-6400 portable photosynthesis system (LI-COR, Lincoln, NE, USA). Diurnal changes in P_N were taken at 2-h intervals from 06:00 to 18:00 used natural sunlight for one day which was a sunny day after the appearance of the third true leaf appearance. The CO₂ curve of P_N was detected by using CO₂ injector, and started at the ambient CO₂ concentration of 380 $\mu\text{mol mol}^{-1}$ and the photosynthetically active radiation of 1,200 $\mu\text{mol m}^{-2} \text{s}^{-1}$. The leaf chamber was equilibrated for at least 15 min in order to reach a steady state. The CO₂ concentration was then decreased stepwise to 200, 100, and 50 $\mu\text{mol mol}^{-1}$ and then increased stepwise from 380 to 600, 800; 1,200 and 1,600 $\mu\text{mol mol}^{-1}$. The light curve of P_N was detected by using LED stimulative light, ten intensities were applied: 0, 50, 100, 200, 400, 600, 800; 1,200; 1,600; and 2,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$, the CO₂ concentration was set at 380 $\mu\text{mol mol}^{-1}$. Each sample leaf was given a minimum of 2 min to stabilize to each new increasing light level before measurements were taken. All measurements were taken between 08:30 and 10:30 on the day on which diurnal

Fig. 1. The mode of clipping treatment. CG – no clipping as control group; CC – a piece of cotyledon was clipped with scissors after emergence; CL – the second true leaf was clipped with scissors after appearance.

changes in P_N were determined. Throughout all measurements, T_{air} and RH were steady at mean values of $27 \pm 2^\circ\text{C}$ and $50 \pm 8\%$ at all light levels or CO_2 concentrations. Measurements were repeated five times for each sample leaf, for one sample leaf per pot, and the averages of 5 replicates (5 pots) were used in the data analysis. Plants of all treatments were harvested when approximately 50% of cotyledons of controls died. Three pots (15 seedlings in total) of each treatment were harvested randomly, and the other 2 pots (10 seedlings in total) were retained to determine longevity of cotyledons. The final harvest of each treatment was carried out when the cotyledons died. The height and root length of harvested seedlings were measured with a ruler, cotyledon

thickness was measured with thickness tester (Peacock Inc., Japan), and leaf area was measured with *Sigmascan* software program (Systat Software Inc., Richmond, California, USA). In addition, plant roots in each pot were screened out of the soil using a 2-mm sieve. After drying at 65°C for 48 h, each fraction was weighed.

Statistical data analysis: All experiments were based on five replicated measurements. Data were analyzed by one-way analysis of variance (ANOVA) using the statistical software *SPSS 13.0* (SPSS Inc., Chicago, IL, USA). The treatment mean values were compared by *post hoc* least significant difference (LSD) test. The term significant indicates differences for which $P \leq 0.05$.

Results

The cotyledon longevity, area, thickness and mass of different treatments were similar among treatments (Fig. 2). The greatest values occurred in CC, and they were significantly higher than those of CL and CG, indicating that remnant cotyledons of CC had over-compensatory growth responses to clipping. There was no significant difference between CL and CG, indicating CL treatment induced an equal-compensatory growth for remnant cotyledons. In contrast, the seedling mass and root-shoot ratio of CC were significantly lower than those of CL and CG, and there was no significant difference

between CL and CG (Table 1), which indicated an under-compensatory and equal-compensatory growth response to CC and CL treatments, respectively. Seedling size was measured in terms of seedling height and root length. Seedling height and root length of CC were significantly lower than those of CL and CG, but there was no significant difference between CL and CG (Table 1), which also indicated an under-compensatory and equal-compensatory growth response to CC and CL treatments, respectively.

Table 1. Seedling height, root length, seedling mass, and R/S of *P. purpurea* under three clipping treatments. The values are means \pm SE ($n = 3$). Values with the same letter are not statistically significant at $P < 0.05$. CC – clipped cotyledon; CL – clipped second leaf; CG – control group; R/S – root/shoot ratio.

Treatment	Seedling height [cm]	Root length [cm]	Seedling mass [g]	R/S
CC	11.97 ± 0.94^b	20.39 ± 2.55^b	0.32 ± 0.05^b	0.35 ± 0.021^b
CL	14.79 ± 1.23^a	23.48 ± 2.86^a	0.40 ± 0.04^a	0.47 ± 0.009^a
CG	15.30 ± 0.85^a	24.07 ± 2.58^a	0.42 ± 0.06^a	0.49 ± 0.018^a

Diurnal changes in P_N of cotyledons showed significantly different patterns between clipped cotyledon (CC) and unclipped cotyledon (CL and CG) treatments (Fig. 3A). The results showed that diurnal changes in P_N of CL and CG showed typical bimodal curves, and the peak values occurred at approximately 11:00 and 14:00, which were 15.67 and $15.89 \mu\text{mol m}^{-2} \text{s}^{-1}$, respectively. CC showed a unimodal curve with a maximum value ($19.64 \mu\text{mol m}^{-2} \text{s}^{-1}$) at noon. There were no significant differences of g_s among various treatments before 10:00. From 10:00 to 14:00, the daily change of g_s in CC treatment increased significantly, and it was slightly higher than those of g_s in CL and CG treatments. The daily average value of g_s of all treatments decreased after 14:00 (Fig. 3B). The daily courses of E were similar, and they did not exhibit significant differences among all treatments (Fig. 3C). C_i/C_a did not differ significantly among all treatments. They decreased in the period of

07:00-13:00; however, they increased after 15:00 (Fig. 3D).

The P_N of remnant cotyledons showed certain trends under various CO_2 concentration or light intensity treatments; P_N increased with the increase of CO_2 concentration or light intensity, and the P_N of CC were all significantly greater than those of CL and CG treatments (Fig. 4A,B). The P_N of remnant cotyledons of CC was significantly greater than that of CL and CG treatments when CO_2 concentration was greater than $100 \mu\text{mol mol}^{-1}$, and there was no significant difference between CL and CG treatments (Fig. 4A). The P_N of remnant cotyledons of CC significantly increased from $200 \mu\text{mol m}^{-2} \text{s}^{-1}$ to $800 \mu\text{mol m}^{-2} \text{s}^{-1}$, then stabilized, but that of CL and CG treatments increased significantly from $400 \mu\text{mol m}^{-2} \text{s}^{-1}$ to $800 \mu\text{mol m}^{-2} \text{s}^{-1}$, and then stabilized in spite of increased light intensity. There was no significant difference between CL and CG treatments (Fig. 4B).

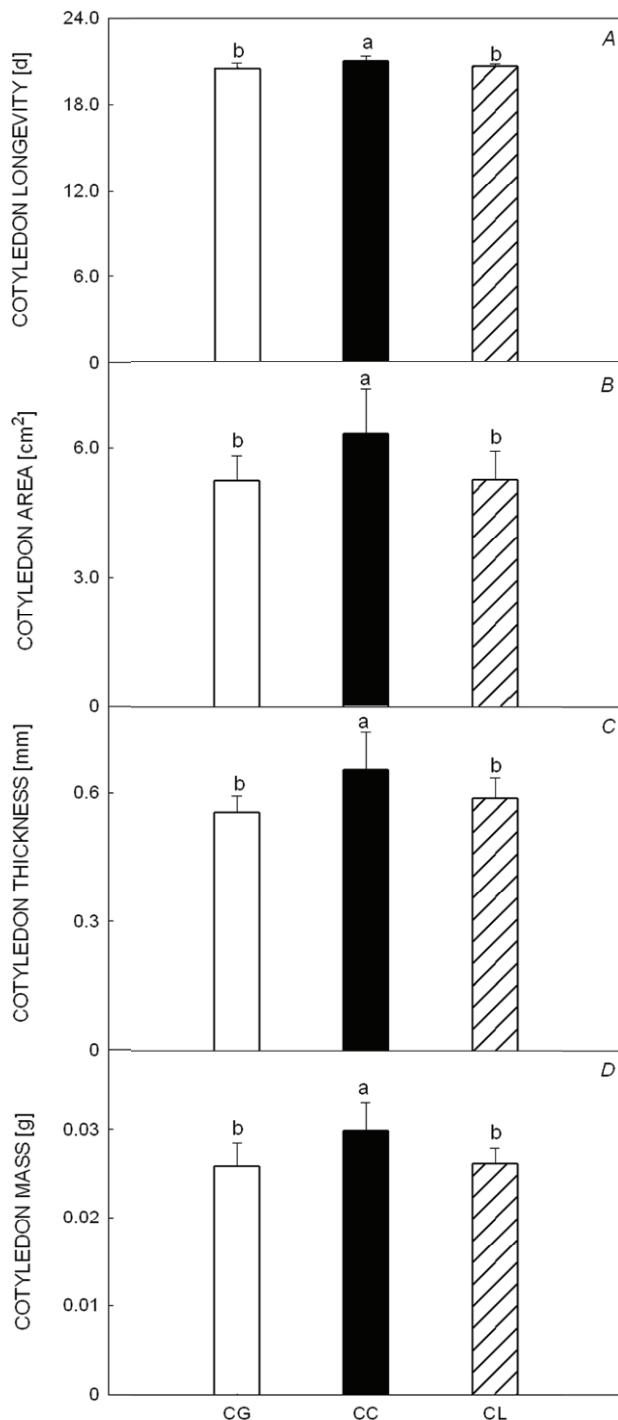


Fig. 2. Compensatory growth of *A*: cotyledon longevity, *B*: cotyledon area, *C*: cotyledon thickness, *D*: cotyledon mass of *P. purpurea* under clipped cotyledon (CC), clipped second leaf (CL) and control group (CG) treatments. The values are means \pm SD ($n = 3$). Values with the same letter are not statistically significant at $P < 0.05$.

Diurnal changes in P_N of the primary leaf showed similar patterns between clipped leaf (CL) and unclipped leaf (CG) treatments (Fig. 5A). The results showed typical bimodal curves, with peaks occurring at approxi-

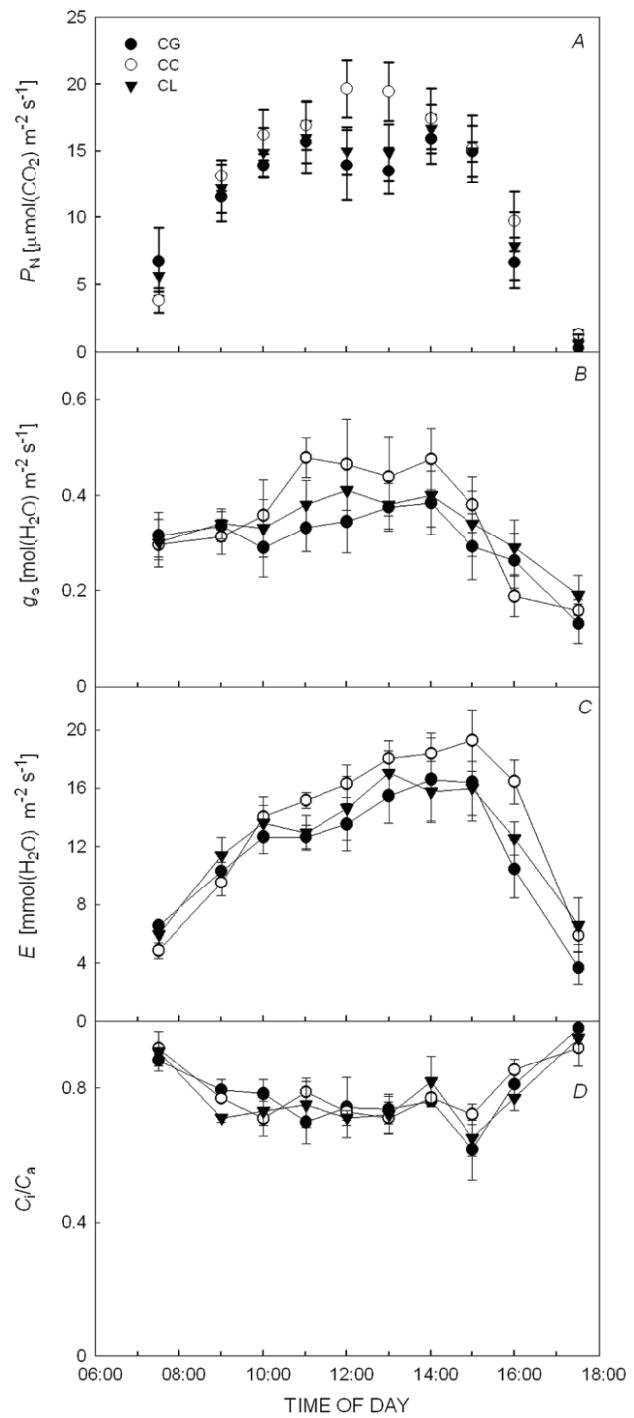


Fig. 3. Diurnal changes in the *A*: net photosynthetic rate (P_N), *B*: stomatal conductance (g_s), *C*: transpiration rate (E) and *D*: intercellular CO_2 /ambient CO_2 (C_i/C_a) of remnant cotyledon of *P. purpurea* under clipped cotyledon (CC), clipped second leaf (CL) and control group (CG) treatments. The values are means \pm SD ($n = 5$).

mately 11:00 and 15:00, and the minimum value occurring at 13:00. The P_N of CL was slightly higher than that of CG. The trends of g_s , E and C_i/C_a were similar between CL and CG treatments, indicating that clipping

did not have significant effects on g_s , E and C_i/C_a (Fig. 5B,C,D). However, clipping significantly affected P_N when CO_2 or light was provided. The P_N of CL was

significantly higher than that of CG treatment when CO_2 concentration was greater than $100 \mu\text{mol mol}^{-1}$ and light intensity was greater than $200 \mu\text{mol m}^{-2} \text{s}^{-1}$ (Fig. 6A,B).

Discussion

The development of photosynthetic organs during leaf ontogeny is worthy of attention both from theoretical and practical points of view (Kutik 1985, 1997). A suitable object for such studies are cotyledons due to their short and distinct life span (Tsukaya *et al.* 1994, Wilhelmová *et al.* 1997). In our research, the remnant cotyledon longevity of CC treatment was prolonged 1.9% and 2.4% beyond that of CL and CG treatments (Fig. 2A), respectively. This increased cotyledon longevity would ultimately lead to more photosynthate accumulation. In addition, the remnant cotyledons had an increased capacity for achieving their potential area (Fig. 2B), a result similar to studies on younger leaves (Rawson *et al.* 1980, Rawson and Turner 1982). Therefore, increased longevity and photosynthesizing area of the remnant cotyledon may be considered as a strategy to

maximize the photosynthetic compensation for the clipped cotyledon. Plant seedlings by their very nature are small and often lose aboveground tissue due to various biotic and abiotic factors (Wallace and Eigenbrode 2002, Kitajima 2003, Hanley and Fegan 2007), which may have significant positive or negative effects on subsequent plant growth and establishment (Mabry and Wayne 1997, Moriondo *et al.* 2003, Hanley and May 2006). The traits of remnant cotyledon (such as longevity, area, thickness, and mass) exhibited over-compensatory growth during the stage of cotyledon development (Fig. 2), signifying compensatory growth as a strategy to tolerate clipping (Ruiz-R *et al.* 2008). Despite the strong compensatory response of the remaining cotyledon, overall plant growth was reduced in clipped cotyledon treatment (under-compensatory growth) but not in clipped leaf treatment (equal-compensatory growth) (Table 1). One possible explanation for the diminution of the growth response is that the photosynthetic compensation of the remaining cotyledon was lower than that provided by the storage material when a minimal amount of leaf tissue (*i.e.*, one cotyledon) was removed. On the other hand, the photosynthesis of a cotyledon is more critical to survival and development than that of a primary leaf during this period. These observations might form the basis of a mechanism of defoliation avoidance for dicotyledonous species. Similar results have been observed in other pasture species (Barthram 1997, Zhao *et al.* 2008). Therefore, even after the development of the first leaf, damage to cotyledons may affect seedling survival and development, which can be fatal (Hanley and May 2006, Kitajima 2003, Sork 1987). The results of this short-term study may not directly predict post-plant growth for the long term, but early clipping of cotyledon and leaf may have lasting impacts on seedling growth. Overall, both photosynthetic organs (cotyledons and true leaves) appeared to meet the energy demands of seedlings to a large degree at the seedling stage.

Both cotyledons and true leaves are photosynthetic organs. Leaf area loss is a typical damage resulting from insects, herbivores, and factitious clipping (Lee and Bazzaz 1980, Moles and Westoby 2004). Kitajima (2003) suggested that loss of photosynthetic cotyledons will have more impact than loss of reserve cotyledons. Our results showed that without a cotyledon, the P_N of the remnant cotyledon could increase in response to clipping. A similar conclusion was drawn by Meyer (1998a) in goldenrod (*Solidago altissima*). One reason for induced compensatory photosynthesis could be that more chlorophyll is synthesized within remnant leaves (Martens and Trumble 1987). There were significantly different



Fig. 4. Changes in the net photosynthetic rate (P_N) of remnant cotyledon of *P. purpurea* under clipped cotyledon (CC), clipped second leaf (CL), and control group (CG) treatments with different A: CO_2 concentration and B: light intensity. The values are means \pm SD ($n = 5$). Values with the same letter are not statistically significant at $P < 0.05$.

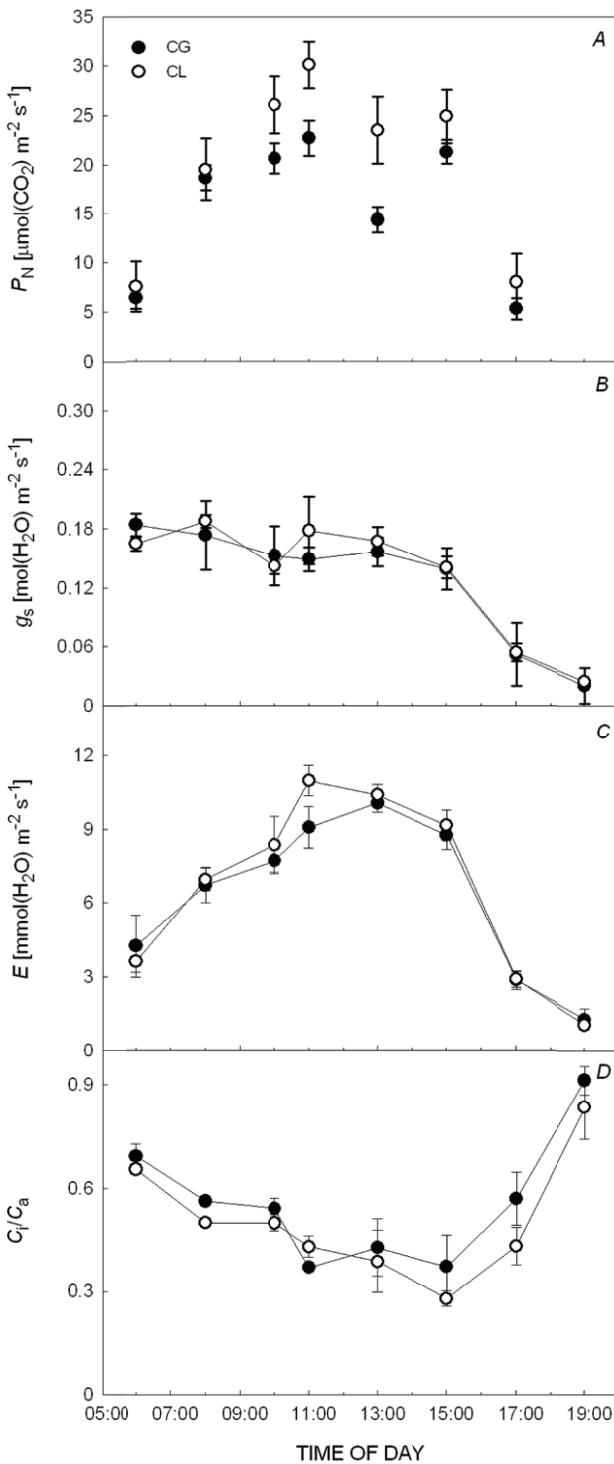


Fig. 5. Diurnal changes in the *A*: net photosynthetic rate (P_N), *B*: stomatal conductance (g_s), *C*: transpiration rate (E) and *D*: intercellular CO_2 /ambient CO_2 (C_i/C_a) of primary leaf of *P. purpurea* under clipped second leaf (CL) and control group (CG) treatments. The values are means \pm SD ($n = 5$).

patterns between clipped cotyledon (CC) and unclipped cotyledon (CL and CG) treatments; photosynthetic compensation occurred during the period of 11:00–14:00

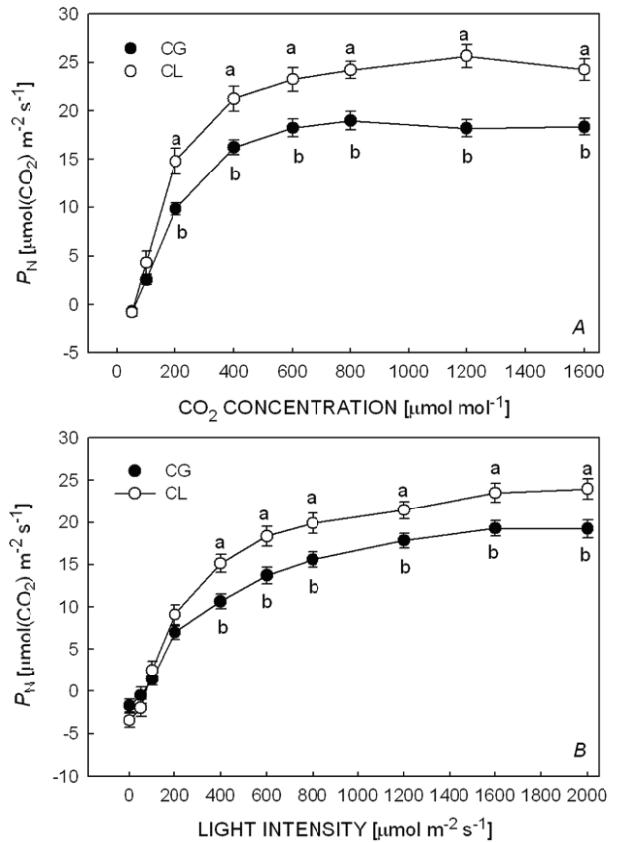


Fig. 6. Changes in the net photosynthetic rate (P_N) of primary leaf of *P. purpurea* under clipped second leaf (CL) and control group (CG) treatments with *A*: different CO_2 concentration and *B*: light intensity. The values are means \pm SD ($n = 5$). Values with the same letter are not statistically significant at $P < 0.05$.

(Fig. 3*A*), the high-temperature period during the day. The results of g_s and E demonstrated that photosynthetic compensation could conceivably have been attributed to water because the cotyledonary transpiration area of clipped treatment (CC) was two-fold smaller than that of unclipped cotyledon treatments (CL and CG). Under the same amount of water absorbed by the root system, the amount of water lost through E of clipped treatment (CC) was lower than that of unclipped cotyledon treatments (CL and CG). Therefore, the photosynthesis of the remaining cotyledon of clipped treatment was not decreased by stomatal closure, while photosynthesis of unclipped cotyledon treatments was decreased through stomatal closure to prevent water loss. Taken together, we predict that the unimodal curve of clipped treatment might not occur in some species in arid habitats, and the bimodal curve of unclipped cotyledon treatment might not occur in some species in wetland habitats. Furthermore, the results of P_N of the remnant cotyledon under various CO_2 concentration or light intensity treatments also exhibited compensatory photosynthesis.

In addition, we found that not only remnant cotyledon exhibited compensatory photosynthesis, but the P_N of

primary leaf was also stimulated and increased following the clipping of second leaf (Fig. 5A). Nevertheless, the photosynthetic pattern of primary leaf did not change as markedly as that of remnant cotyledon. It is clear from this study that the slight difference of P_N between natural conditions (Figs. 3A, 5A) and simulated conditions (Figs. 4, 6) might be influenced by E and g_s , which were also verified in photosynthetic compensation of primary leaf. Although the effect of clipping second leaf on primary leaf was small because leaf area removed was small relative to the primary leaf area, it can also stimulate photosynthesis of primary leaf. This might be a specific compensatory mechanism of primary leaf to adapt a clipped new leaf. Mabry and Wayne (1997) suggested that plants can restore growth depending on the

compensatory photosynthesis of remnant leaves. There is little evidence to justify changes of primary photosynthesis after such clipping treatment. Compensation is increasingly seen as an important way in which plants combat defoliation (Hidding *et al.* 2009, Moriondo *et al.* 2003, Noy-Meir 1993).

In conclusion, *P. purpurea* seedlings used a compensatory growth strategy in the remaining cotyledon or the primary leaf to resist leaf loss and minimize any adverse effects of defoliation. The photosynthetic responses of plant to defoliation suggest a trade-off between acclimation ability and plasticity, and should constitute an important future direction for research into the photosynthetic response to leaf loss.

References

Ampofo, S.T., Moore, K.G., Lovell, P.H.: Cotyledon photosynthesis during seedling development in *Acer*. – *New Phytol.* **76**: 41-52, 1976.

Anten, N.P.R., Ackerly, D.D.: Canopy-level photosynthetic compensation after defoliation in a tropical understorey palm. – *Funct. Ecol.* **15**: 252-262, 2001.

Armstrong, D.P., Westoby, M.: Seedlings from large seeds tolerate defoliation better: a test using phylogenetically independent contrasts. – *Ecology* **74**: 1092-1100, 1993.

Barthram, G.T.: Shoot characteristics of *Trifolium repens* grown in association with *Lolium perenne* or *Holcus lanatus* in pastures grazed by sheep. – *Grass Forage Sci.* **52**: 336-339, 1997.

Belsky, A.J.: Does herbivory benefit plants? A review of the evidence. – *Amer. Natur.* **127**: 870-892, 1986.

Boege, K.: Influence of plant ontogeny on compensation to leaf damage. – *Amer. J. Bot.* **92**: 1632-1640, 2005.

Bonfil, C.: The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in *Quercus rugosa* and *Q. laurina* (Fagaceae). – *Amer. J. Bot.* **85**: 79-87, 1998.

Burzyński, M., Źurek, A.: Effects of copper and cadmium on photosynthesis in cucumber cotyledons. – *Photosynthetica* **45**: 239-244, 2007.

Del-Val, E., Crawley, M.J.: Are grazing increaser species better tolerators than decreasers? An experimental assessment of defoliation tolerance in eight British grassland species. – *J. Ecol.* **93**: 1005-1016, 2005.

Dyer, M.I., Acrea, M.A., Wang, G.M., Coleman, D.C., Freckman, D.W., McNaughton, S.J., Strain, B.R.: Source-sink carbon relations in two *Panicum coloratum* ecotypes in response to herbivory. – *Ecology* **72**: 1472-1483, 1991.

Evans, A.S.: Whole-plant responses of *Brassica campestris* (Cruciferae) to altered sink-source relations. – *Amer. J. Bot.* **78**: 394-400, 1991.

Fenner, M., Thompson K.: The Ecology of Seeds, 2nd Ed. – Cambridge Univ. Press, Cambridge 2005.

Ferraro, D.O., Oesterheld, M.: Effect of defoliation on grass growth. A quantitative review. – *Oikos* **98**: 125-133, 2002.

García-Cebrián, F., Esteso-Martínez, J., Gil-Pelegón, E.: Influence of cotyledon removal on early seedling growth in *Quercus robur* L. – *Ann For Sci.* **60**: 69-73, 2003.

Hanley, M. E., Fegan, E. L.: Timing of cotyledon damage affects growth and flowering in mature plants. – *Plant Cell Environ.* **30**: 812-819, 2007.

Hanley, M.E., May, O.C.: Cotyledon damage at the seedling stage affects growth and flowering potential in mature plants. – *New Phytol.* **169**: 243-250, 2006.

Harper, J.L.: Population Biology of Plants. – Academic Press, London 1977.

Harris, M., Smith, D.L., Mackender, R.O.: Growth analysis of soybean seedlings during the lifespan of the cotyledons. – *Ann Bot.* **57**: 69-79, 1986.

Hidding, B., Nolet, B.A., de Boer, T., de Vries, P.P., Klaassen, M.: Compensatory growth in an aquatic plant mediates exploitative competition between seasonally tied herbivores. – *Ecology* **90**: 1891-1899, 2009.

Hikosaka, K., Takashima, T., Kabeya, D., Hirose, T., Kamata, N.: Biomass allocation and leaf chemical defence in defoliated seedlings of *Quercus serrata* with respect to carbon-nitrogen balance. – *Ann Bot.* **95**: 1025-1032, 2005.

Hilbert, D.W., Swift, D.M., Detling, J.K., Dyer, M.I.: Relative growth rates and the grazing optimization hypothesis. – *Oecologia* **51**: 14-18, 1981.

Holland, J.N., Cheng, W., Crossley, Jr, D.A.: Herbivore-induced changes in plant carbon allocation: Assessment of below-ground C fluxes using carbon-14. – *Oecologia* **107**: 87-94, 1996.

Kitajima, K.: Relationship between photosynthesis and thickness of cotyledons for tropical tree species. – *Funct Ecol.* **6**: 582-589, 1992.

Kitajima, K.: Impact of Cotyledon and leaf removal on seedling survival in three tree species with contrasting cotyledon functions. – *Biotropica* **35**: 429-434, 2003.

Kutík, J.: Chloroplast development. – In: Šesták, Z. (ed.): Photosynthesis during Leaf Development. Pp.51-75. Academia, Praha, Dr W. Junk Publishers, Dordrecht – Boston – Lancaster 1985.

Kutík, J.: Plasticity of chloroplast ultrastructural development. – *Acta Univ. Carolinae Biol.* **41**: 89-98, 1997.

Lee, T.D., Bazzaz, F.A.: Effects of defoliation and competition on growth and reproduction in the annual plant *Abutilon theophrasti*. – *J. Ecol.* **68**: 813-821, 1980.

Leishman, M.R., Westoby, M.: The role of large seed size in shaded conditions: experimental evidence. – *Funct. Ecol.* **8**: 205-214, 1994.

Mabry, C.M., Wayne, P.W.: Defoliation of the annual herb

Abutilon theophrasti: mechanisms underlying reproductive compensation. – *Oecologia* **111**: 225-232, 1997.

Martens, B., Trumble, J.T.: Structural and photosynthetic compensation for leafminer (*Diptera: Agromyzidae*) injury in lima beans. – *Environ Entomol.* **16**: 374-378, 1987.

McNaughton, S.J.: Compensatory plant growth as a response to herbivory. – *Oikos* **40**: 329-336, 1983.

McNaughton, S.J.: On plants and herbivores. – *Am Nat.* **128**: 765-770, 1986.

Meyer, G.A.: Mechanisms promoting recovery from defoliation in goldenrod (*Solidago altissima*). – *Can J Bot.* **76**: 450-459, 1998a.

Meyer, G.A.: Pattern of defoliation and its effect on photosynthesis and growth of goldenrod. – *Funct. Ecol.* **12**: 270-279, 1998b.

Moles, A.T., Westoby, M.: What do seedlings die from and what are the implications for evolution of seed size? – *Oikos* **106**: 193-199, 2004.

Moriondo, M., Orlandini, S., Villalobos, F.J.: Modelling compensatory effects of defoliation on leaf area growth and biomass of sunflower (*Helianthus annuus* L.). – *Eur. J. Agron.* **19**: 161-171, 2003.

Noy-Meir, I.: Compensating growth of grazed plants and its relevance to the use of rangelands. – *Ecol. Appl.* **32**-34, 1993.

Oesterheld, M., McNaughton, S.J.: Effect of stress and time for recovery on the amount of compensatory growth after grazing. – *Oecologia* **85**: 305-313, 1991.

Painter, E.L., Belsky, A.J.: Application of herbivore optimization theory to rangelands of the western United States. – *Ecol. Appl.* **3**: 2-9, 1993.

Rawson, H.M., Constable, G.A., Howe, G.N.: Carbon production of sunflower cultivars in field and controlled environments. II. Leaf growth. – *Aust. J. Plant Physiol.* **7**: 575-586, 1980.

Rawson, H.M., Turner, N.C.: Recovery from water stress in five sunflower (*Helianthus annuus* L.) cultivars. II. The development of leaf area. – *Aust. J. Plant Physiol.* **9**: 449-460, 1982.

Ruiz-R, N., Ward, D., Saltz, D.: Leaf compensatory growth as a tolerance strategy to resist herbivory in *Pancratium sickenbergeri*. – *Plant Ecol.* **198**: 19-26, 2008.

Senock, R.S., Sisson, W.B., Donart, G.B.: Compensatory photosynthesis of *Sporobolus flexuosus* (Thurb.) Rydb. following simulated herbivory in the northern Chihuahuan Desert. – *Bot. Gaz.* **152**: 275-281, 1991.

Sork, V.L.: Effects of predation and light on seedling establishment in *Gustavia superba*. – *Ecology* **68**: 1341-1350, 1987.

Thomson, V.P., Cunningham, S.A., Ball, M.C., Nicotra, A.B.: Compensation for herbivory by *Cucumis sativus* through increased photosynthetic capacity and efficiency. – *Oecologia* **134**: 167-175, 2003.

Tsukaya, H., Tsuge, T., Uchimiya, H.: The cotyledon: A superior system for studies of leaf development. – *Planta* **195**: 309-312, 1994.

van Stalduinen, M.A., Anten, N.P.R.: Differences in the compensatory growth of two co-occurring grass species in relation to water availability. – *Oecologia* **146**: 190-199, 2005.

Wallace, S.K., Eigenbrode, S.D.: Changes in the glucosinolate-myrosinase defense system in *Brassica juncea* cotyledons during seedling development. – *J. Chem. Ecol.* **28**: 243-256, 2002.

Westoby, M., Jurado, E., Leishman, M.: Comparative evolutionary ecology of seed size. – *Trends Ecol. Evol.* **7**: 368-372, 1992.

Wilhelmová, N., Wilhelm, J., Kutík, J., Haisel, D.: Changes in French bean cotyledon composition associated with modulated life-span. – *Photosynthetica* **34**: 377-391, 1997.

Zhang, H., Zhou, D., Matthew, C., Wang, P., Zheng, W.: Photosynthetic contribution of cotyledons to early seedling development in *Cynoglossum divaricatum* and *Amaranthus retroflexus*. – *New Zeal. J. Bot.* **46**: 39-48, 2008.

Zhao, W., Chen, S.P., Lin, G.H.: Compensatory growth responses to clipping defoliation in *Leymus chinensis* (Poaceae) under nutrient addition and water deficiency conditions. – *Plant Ecol.* **196**: 85-99, 2008.