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Abstract 

 
Leaf tissue damaging to seedlings can limit their subsequent growth, and the effects may be more extensive. 
Compensatory photosynthesis responses of the remnant cotyledon and primary leaf of Pharbitis purpurea to clipping 
and the effect of clipping on seedling growth were evaluated in a pot-cultivated experiment. Three treatments were 
conducted in the experiment, which were clipped cotyledon (CC), clipped second leaf (CL), and control group (CG). 
The area, thickness, mass, and longevity of the remaining cotyledon of CC exhibited over-compensatory growth. In 
contrast, seedlings of CC had under-compensatory growth in seedling height, root length, seedling mass, and root to 
shoot ratio. However, the traits of remnant cotyledon and seedling in CL treatment exhibited equal-compensatory 
growth. Net photosynthetic rate of the cotyledon of CC was significantly higher than those of CL and CG treatments, 
and the diurnal changes in photosynthetic rates showed significantly different patterns which were unimodal curve (CC) 
and bimodal curve (CL and CG), respectively. There was no significant difference between CL and CG treatment. Net 
photosynthetic rate of the primary leaf of CL was significantly higher than that of CG treatment. However, the 
photosynthetic rates of primary leaves of CL and CG treatments showed similar photosynthetic patterns characterized by 
a bimodal curve. P. purpurea seedlings used a compensatory growth strategy in the remaining cotyledon or the primary 
leaf to resist leaf loss and minimize any adverse effects. 
 
Additional key words: clipping; compensatory growth; photosynthesis; primary leaf; remnant cotyledon; seedling. 
 
Introduction 
 
The seedling stage is the most vulnerable phase of a plant 
life history (Armstrong and Westoby 1993, Bonfil 1998, 
Fenner and Thompson 2005, Harper 1977, Leishman and 
Westoby 1994, Westoby et al. 1992). The energy and 
nutrients needed for the growth and development of 
species without endosperm (i.e., most dicotyledons) are 
mainly supported by cotyledons in the early develop-
mental stages before true leaves emerge. Cotyledons are 
the first leaves of a plant, which play an important role in 
seedling development (Hanley and May 2006, Kitajima 
2003, Zhang et al. 2008). Cotyledons provide a major 
proportion of matter needed for seedling growth until the 
first true leaf becomes a significant exporter of photo-
synthates. The contribution of cotyledon photosynthesis 

for early seedling growth has been emphasized by several 
authors (Ampofo et al. 1976, Burzyński and Zurek 2007, 
Harris et al. 1986, Kitajima 1992). In addition, primary 
leaf also contributes to seedling development (Ferraro 
and Oesterheld 2002, Hikosaka et al. 2005). 

In natural conditions, it is a common phenomenon 
that partial or entire leaves are defoliated by insects, 
herbivores or factitious clipping, often leading to reduced 
fitness (Belsky 1986, Ferraro and Oesterheld 2002, 
Painter and Belsky 1993, Van Staalduinen and Anten 
2005). Both cotyledons and primary leaves are critical 
photosynthetic organs at the seedling stage. Damage to 
either or both of them may negatively influence post-
seedling development (García-Cebrián et al. 2003,  
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changes in PN were determined. Throughout all 
measurements, Tair and RH were steady at mean values of 
27 ± 2°C and 50 ± 8% at all light levels or CO2 concen-
trations. Measurements were repeated five times for each 
sample leaf, for one sample leaf per pot, and the averages 
of 5 replicates (5 pots) were used in the data analysis. 
Plants of all treatments were harvested when approxi-
mately 50% of cotyledons of controls died. Three pots 
(15 seedlings in total) of each treatment were harvested 
randomly, and the other 2 pots (10 seedlings in total) 
were retained to determine longevity of cotyledons. The 
final harvest of each treatment was carried out when the 
cotyledons died. The height and root length of harvested 
seedlings were measured with a ruler, cotyledon  
 

thickness was measured with thickness tester (Peacock 
Inc., Japan), and leaf area was measured with Sigmascan 
software program (Systat Software Inc., Richmond, 
California, USA). In addition, plant roots in each pot 
were screened out of the soil using a 2-mm sieve. After 
drying at 65°C for 48 h, each fraction was weighed. 
 
Statistical data analysis: All experiments were based on 
five replicated measurements. Data were analyzed by 
one-way analysis of variance (ANOVA) using the 
statistical software SPSS 13.0 (SPSS Inc., Chicago, IL, 
USA). The treatment mean values were compared by post 
hoc least significant difference (LSD) test. The term 
significant indicates differences for which P≤0.05.  

Results 
 
The cotyledon longevity, area, thickness and mass of 
different treatments were similar among treatments 
(Fig. 2). The greatest values occurred in CC, and they 
were significantly higher than those of CL and CG, 
indicating that remnant cotyledons of CC had over-
compensatory growth responses to clipping. There was 
no significant difference between CL and CG, indicating 
CL treatment induced an equal-compensatory growth for 
remnant cotyledons. In contrast, the seedling mass and 
root-shoot ratio of CC were significantly lower than those 
of CL and CG, and there was no significant difference 

between CL and CG (Table 1), which indicated an under-
compensatory and equal-compensatory growth response 
to CC and CL treatments, respectively. Seedling size was 
measured in terms of seedling height and root length. 
Seedling height and root length of CC were significantly 
lower than those of CL and CG, but there was no 
significant difference between CL and CG (Table 1), 
which also indicated an under-compensatory and equal-
compensatory growth response to CC and CL treatments, 
respectively. 

 
Table 1. Seedling height, root length, seedling mass, and R/S of P. purpurea under three clipping treatments. The values are means ± 
SE (n = 3). Values with the same letter are not statistically significant at P<0.05. CC – clipped cotyledon; CL – clipped second leaf; 
CG – control group; R/S – root/shoot ratio. 
 

Treatment Seedling height [cm] Root length [cm] Seedling mass [g] R/S 

CC 11.97 ± 0.94b 20.39 ± 2.55b  0.32 ± 0.05b 0.35 ± 0.021b 
CL 14.79 ± 1.23a 23.48 ± 2.86a  0.40 ± 0.04a 0.47 ± 0.009a 
CG 15.30 ± 0.85a 24.07 ± 2.58a  0.42 ± 0.06a 0.49 ± 0.018a 

 
Diurnal changes in PN of cotyledons showed 

significantly different patterns between clipped cotyledon 
(CC) and unclipped cotyledon (CL and CG) treatments 
(Fig. 3A). The results showed that diurnal changes in PN 
of CL and CG showed typical bimodal curves, and the 
peak values occurred at approximately 11:00 and 14:00, 
which were 15.67 and 15.89 μmol m–2 s–1, respectively. 
CC showed a unimodal curve with a maximum value 
(19.64 μmol m–2 s–1) at noon. There were no significant 
differences of gs among various treatments before 10:00. 
From 10:00 to 14:00, the daily change of gs in CC 
treatment increased significantly, and it was slightly 
higher than those of gs in CL and CG treatments. The 
daily average value of gs of all treatments decreased after 
14:00 (Fig. 3B). The daily courses of E were similar,  
and they did not exhibit significant differences among all 
treatments (Fig. 3C). Ci/Ca did not differ significantly 
among all treatments. They decreased in the period of 

07:00-13:00; however, they increased after 15:00 
(Fig. 3D). 

The PN of remnant cotyledons showed certain trends 
under various CO2 concentration or light intensity 
treatments; PN increased with the increase of CO2 
concentration or light intensity, and the PN of CC were all 
significantly greater than those of CL and CG treatments 
(Fig. 4A,B). The PN of remnant cotyledons of CC was 
significantly greater than that of CL and CG treatments 
when CO2 concentration was greater than 100 μmol mol–1, 
and there was no significant difference between CL and 
CG treatments (Fig. 4A). The PN of remnant cotyledons 
of CC significantly increased from 200 μmol m–2 s–1 to 
800 μmol m–2 s–1, then stabilized, but that of CL and CG 
treatments increased significantly from 400 μmol m–2 s–1 

to 800 μmol m–2 s–1, and then stabilized in spite of 
increased light intensity. There was no significant 
difference between CL and CG treatments (Fig. 4B). 
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primary leaf was also stimulated and increased following 
the clipping of second leaf (Fig. 5A). Nevertheless, the 
photosynthetic pattern of primary leaf did not change as 
markedly as that of remnant cotyledon. It is clear from 
this study that the slight difference of PN between natural 
conditions (Figs. 3A, 5A) and simulated conditions 
(Figs. 4, 6) might be influenced by E and gs, which were 
also verified in photosynthetic compensation of primary 
leaf. Although the effect of clipping second leaf on 
primary leaf was small because leaf area removed was 
small relative to the primary leaf area, it can also 
stimulate photosynthesis of primary leaf. This might be a 
specific compensatory mechanism of primary leaf to 
adapt a clipped new leaf. Mabry and Wayne (1997) 
suggested that plants can restore growth depending on the 

compensatory photosynthesis of remnant leaves. There is 
little evidence to justify changes of primary photo-
synthesis after such clipping treatment. Compensation is 
increasingly seen as an important way in which plants 
combat defoliation (Hidding et al. 2009, Moriondo et al. 
2003, Noy-Meir 1993). 

In conclusion, P. purpurea seedlings used a compen-
satory growth strategy in the remaining cotyledon or the 
primary leaf to resist leaf loss and minimize any adverse 
effects of defoliation. The photosynthetic responses of 
plant to defoliation suggest a trade-off between 
acclimation ability and plasticity, and should constitute 
an important future direction for research into the 
photosynthetic response to leaf loss.  
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