

# High-light-induced superoxide anion radical formation in cytochrome *b<sub>6</sub>f* complex from spinach as detected by EPR spectroscopy

M. SANG<sup>\*,\*\*</sup>, X.-C. QIN<sup>\*</sup>, W.-D. WANG<sup>\*</sup>, J. XIE<sup>\*\*\*</sup>, X.-B. CHEN<sup>#</sup>, K.B. WANG<sup>\*</sup>, J.-P. ZHANG<sup>##</sup>, L.-B. LI<sup>\*,+</sup>, and T.Y. KUANG<sup>\*,+</sup>

*Institute of Hydrobiology, Jilin University, Guangzhou 510632, P.R. China*<sup>\*</sup>

*Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China*<sup>\*\*</sup>

*Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P.R. China*<sup>\*\*\*</sup>

*School of Bioscience and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province 050018, P.R. China*<sup>#</sup>

*Department of Chemistry, Renmin University of China, Beijing 100872, P.R. China*<sup>##</sup>

## Abstract

The generation of superoxide anion radical ( $O_2^-$ ) in the cytochrome *b<sub>6</sub>f* complex (Cyt *b<sub>6</sub>f*) of spinach under high-light illumination was studied using electron paramagnetic resonance spectroscopy. The generation of  $O_2^-$  was lost in the absence of molecular oxygen. It was also suppressed in the presence of  $NaN_3$  and could be scavenged by extraneous antioxidants such as ascorbate,  $\beta$ -carotene, and glutathione. The results also indicate that  $O_2^-$ , which is produced under high-light illumination of the Cyt *b<sub>6</sub>f* from spinach, might be generated from a reaction involving  $^1O_2$ , and the Rieske Fe-S protein could serve as the electron donor in the  $O_2^-$  production. The mechanism of photoprotection of the Cyt *b<sub>6</sub>f* complex by antioxidants is discussed.

*Additional key words:* Cyt *b<sub>6</sub>f*; EPR; photoprotection; superoxide anion radical.

## Introduction

The cytochrome *b<sub>6</sub>f* complex (Cyt *b<sub>6</sub>f*) is one of the three most important pigment-protein complexes (PSII, PSI, and Cyt *b<sub>6</sub>f*) in the thylakoid membranes that participate in the electron transfer process of photosynthesis. A monomer of the dimeric Cyt *b<sub>6</sub>f* complex (105 kDa) contains four major subunits (Cyt *f*, Cyt *b<sub>6</sub>*, Rieske Fe-S protein, and subunit-IV), and another four low-molecular-mass subunits (Pet G, Pet L, Pet M, and Pet N). All subunits, except subunit IV, bind redox-active cofactors: Cyt *f* contains one c-type heme, Cyt *b<sub>6</sub>* contains two b-type hemes and one newly discovered heme named “heme x”, and the Rieske Fe-S protein contains a [2Fe-2S] cluster. Subunit IV, which plays a catalytic role, is thought to be the binding site of plastoquinone (Doyle *et al.* 1989, Li *et al.* 1991). The Cyt *b<sub>6</sub>f* oxi-

reductase mediates electron transfer from photosystem II (PSII) to photosystem I (PSI) and the Q-cycle around PSI, through which a transmembrane proton gradient accumulates for ATP synthesis (Mitchell 1966). Furthermore, it is involved in balancing the excitation energy distribution between the two photosystems and regulates gene expression *via* redox control to maintain efficient energy conversion (Cramer *et al.* 2006, Allen 2004). Each monomer of Cyt *b<sub>6</sub>f* also contains one chlorophyll *a* (Chl *a*) and one carotenoid molecule according to crystal structure (Kurisu *et al.* 2003, Stroebel *et al.* 2003). However, the necessity and functions of the two pigments remain unclear.

High-light illumination induces the Chl *a* bleaching of Cyt *b<sub>6</sub>f* and this process is proposed to be related with the

Received 9 June 2010, accepted 14 January 2011.

<sup>\*</sup>Corresponding author; tel.: +86 10-62591431, fax: +86 10-82594105, e-mail: libli@ibcas.ac.cn; kuangty@ibcas.ac.cn

*Abbreviations:* Car – carotene; Chl *a* – chlorophyll *a*; <sup>3</sup>Chl *a*\* – triplet excited state of chlorophyll *a*; Cyt *b<sub>6</sub>f* – cytochrome *b<sub>6</sub>f* complex; EMPO-2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide; EPR – electron paramagnetic resonance;  $O_2^-$  – superoxide anion radical; ROS – reactive oxygen species;  $^1O_2$  – singlet oxygen; TEMP – 2,2,6,6-tetramethylpiperidine;  $\beta$ -DM – n-dodecyl- $\beta$ -D-maltoside;  $\beta$ -OG – n-octyl- $\beta$ -D-glucopyranoside.

*Acknowledgements:* This work has been jointly supported by the National Basic Research Program of China (973 Programs, 2009CB118501 and 2009CB220008), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-375-3 and KSCX2-YW-R-137), the National Natural Science Foundation (30900095) and the Natural Science Foundation of Hebei Province (C2008000684).

production of the singlet oxygen ( ${}^1\text{O}_2$ ) (Zhang *et al.* 1999). Suh *et al.* (2000) suggested, based on comparative studies of the intact and the Rieske-depleted Cyt *b<sub>6</sub>f* complexes from spinach, that the Rieske subunit is responsible for  ${}^1\text{O}_2$  production. Though  ${}^1\text{O}_2$  is considered as the reactive oxygen species (ROS) responsible for chemically damaging Chl *a* and the surrounding proteins (Krinsky 1979), the participation of  $\text{O}_2^-$  and other related ROS species in the high light induced photodamage to Cyt *b<sub>6</sub>f* could also be possible because of the many interconversion reactions of  ${}^1\text{O}_2$  and other ROS species (Singh 1978). Thus, the detailed  $\text{O}_2^-$  formation mechanism in the Cyt *b<sub>6</sub>f* complex of spinach is unknown, although the relevant knowledge is indispensable in understanding its photoprotective mechanism.

## Materials and methods

**Purification of the Cyt *b<sub>6</sub>f* complex:** Spinach (*Spinacia oleracea* L.) was purchased from the local market. All of the chemicals used for the Cyt *b<sub>6</sub>f* preparations and for the subsequent experiments were purchased from *Sigma* and used as received: phenylmethanesulfonyl fluoride (PMSF), sodium cholate hydrate (SC), n-dodecyl- $\beta$ -D-maltoside ( $\beta$ -DM), n-octyl- $\beta$ -D-glucopyranoside ( $\beta$ -OG), ascorbate, glutathione, hydroxyapatite, sodium lauryl sulfate and acrylamide. 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide (EMPO) was purchased from *Alexis* (Prod. No. 430-098-M050). The Cyt *b<sub>6</sub>f* complex was purified from spinach chloroplasts according to the procedure described previously (Yan *et al.* 2001). The final precipitate formed through ammonium sulfate fractionations, namely the purified Cyt *b<sub>6</sub>f* preparation, was suspended in 50 mM Tricine-NaOH (pH 8.0) containing 30 mM  $\beta$ -OG or 0.2 mM  $\beta$ -DM, and stored at  $-80^\circ\text{C}$  before use.

The Rieske-depleted Cyt *b<sub>6</sub>f* complex and the isolated Rieske Fe-S protein were prepared following the procedures by Hurt *et al.* (1981).

**EPR detection of light-induced  $\text{O}_2^-$ :** Photoproduction of  $\text{O}_2^-$  was measured by EPR spectroscopy (Lion *et al.* 1976, 1980), which is based on the observation of certain physical characteristics of active oxygen. Detection of  $\text{O}_2^-$  was carried out with 50 mM EMPO as spin trap (Olive *et al.* 2000). For this, EPR spectrometer (*ELEXSYS E500-10/12, Bruker, Germany*) was used. The samples containing Cyt *b<sub>6</sub>f* (2.5  $\mu\text{M}$  cyt *f*), 50 mM EMPO and the buffer of 50 mM Tricine-NaOH (pH 8.0) with

In the present study, we confirmed the generation of  $\text{O}_2^-$  in the Cyt *b<sub>6</sub>f* complex from spinach. We also attempted to determine the specific site and the mechanism of photoinduced formation of  $\text{O}_2^-$  for which three different kinds of Cyt *b<sub>6</sub>f* preparations, *i.e.*, the intact and the Rieske-depleted Cyt *b<sub>6</sub>f* complexes, as well as the isolated Rieske Fe-S protein, have been prepared and compared by electron paramagnetic resonance (EPR) spectroscopy. Our results unambiguously showed that, for the Cyt *b<sub>6</sub>f* complex from spinach, the Rieske Fe-S protein could serve as the electron donor which is needed for  $\text{O}_2^-$  production. Furthermore,  $\text{O}_2^-$  could also be scavenged by the antioxidants which might serve as the protection mechanism of the Cyt *b<sub>6</sub>f* complex of spinach.

0.2 mM  $\beta$ -DM, all the addition was done prior to illumination and the samples were then molecular-oxygen-saturated. A volume of approximately 80  $\mu\text{l}$  was drawn into glass capillaries, sealed and then illuminated with white light (3,000  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) for 9 min. Both before and after illumination samples were measured at room temperature. For kinetics experiments the samples were detected after illumination for certain times. The instrumental parameters were: microwave frequency 9.78 GHz, modulation frequency 100 kHz, microwave power 10 mW, modulation amplitude 1G, time constant 40 ms, field sweep 100 G, receiver gain 60 and the operating temperature  $25^\circ\text{C}$ .

The anaerobic condition, when needed, was achieved by adding 5 mM glucose, 0.1 mg  $\text{mL}^{-1}$  glucose oxidase and 0.05 mg  $\text{mL}^{-1}$  catalase to the Cyt *b<sub>6</sub>f* preparations (Crystall *et al.* 1989).

**EPR detection of light-induced  ${}^1\text{O}_2$ :**  ${}^1\text{O}_2$  is a strong electrophile but not a radical, however, it can oxidize 2,2,6,6-tetramethylpiperidine (TEMP) and form the stable N-oxyl radical (TEMPO) that allows the EPR detection of  ${}^1\text{O}_2$  (Pierre *et al.* 1997). The samples (80  $\mu\text{L}$ ) containing Cyt *b<sub>6</sub>f* (1  $\mu\text{M}$  Cyt *f*) and 37.5 mM TEMP in the buffer of 50 mM Tricine-NaOH (pH, 8.0) with 0.2 mM  $\beta$ -DM were saturated with molecular oxygen. The samples were sealed in glass capillaries, and illuminated for 9 min with white light (1,500  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) filtered out with a  $\text{CuSO}_4$  solution of 12 cm optical path from a 150 W halogen lamp. EPR spectra were recorded with the same parameter settings above.

## Results

**Light-induced formation of  $\text{O}_2^-$  in the Cyt *b<sub>6</sub>f* complex** was detected by EPR spectroscopy using EMPO as the spin-trapping agent. EMPO is a better trapping agent than the commonly used DMPO as the stability of

the EMPO-OOH adduct is eightfold that of the DMPO-OOH adduct (Zhang *et al.* 2000).

Fig. 1 shows the change in  $\text{O}_2^-$  concentration in Cyt *b<sub>6</sub>f* complex in the presence of EMPO under different

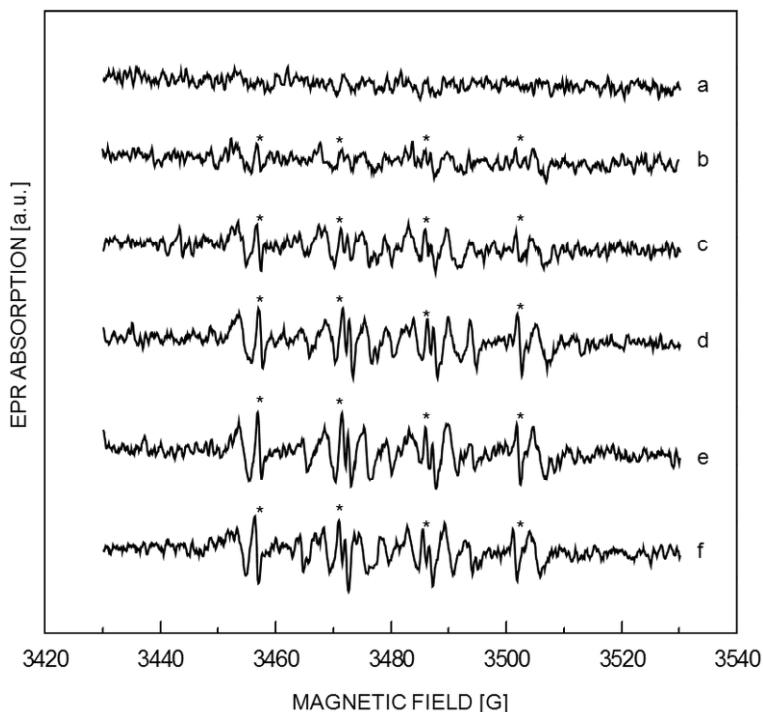



Fig. 1. Light-induced EMPO-OOH adduct EPR spectra measured in Cyt *b*<sub>5</sub>*f* of spinach after illumination with white light ( $3,000 \mu\text{mol m}^{-2} \text{s}^{-1}$ ) for (a) 0, (b) 3, (c) 6, (d) 9, (e) 12, and (f) 15 min. The spectra were recorded in the presence of Cyt *b*<sub>5</sub>*f* (2.5  $\mu\text{M}$  Cyt *f*), 50 mM EMPO, and 50 mM Tricine-NaOH (pH 8.0) with 0.2 mM  $\beta$ -DM. The samples were all molecular-oxygen-saturated. The symbol (\*) indicates line component belonging to EMPO-OOH.

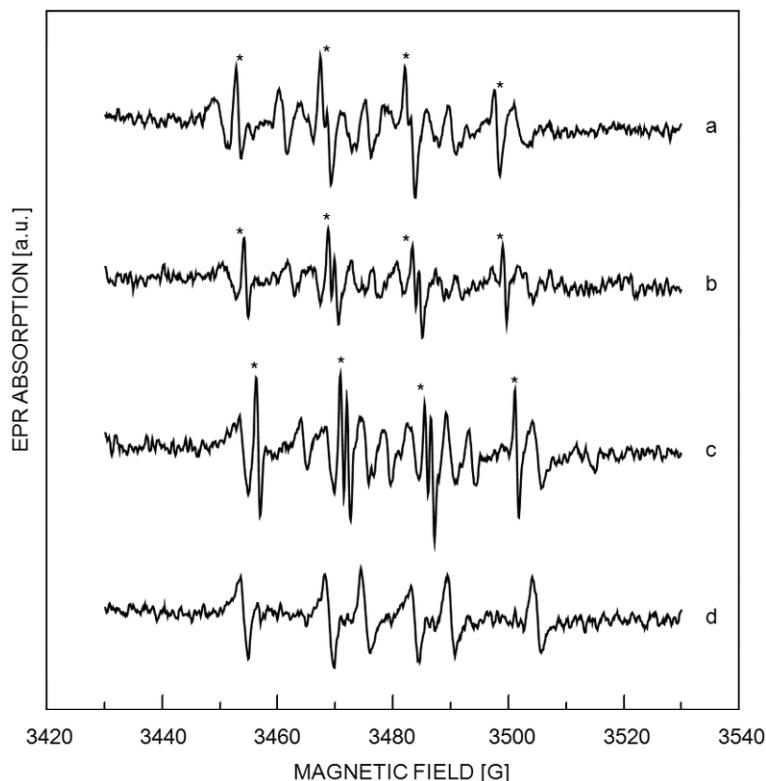



Fig. 2. EPR spectra of the EMPO-OOH adducts measured from the Cyt *b*<sub>5</sub>*f* of spinach after illumination. The spectra were obtained after illumination of Cyt *b*<sub>5</sub>*f* for 9 min with white light ( $3,000 \mu\text{mol m}^{-2} \text{s}^{-1}$ ) in the presence of Cyt *b*<sub>5</sub>*f* (2.5  $\mu\text{M}$  Cyt *f*), 50 mM EMPO, 50 mM Tricine-NaOH (pH 8.0) with 0.2 mM  $\beta$ -DM and (a) without addition, (b) with 50 mM Na<sub>3</sub>N, (c) with SOD (100 U ml<sup>-1</sup>), and (d) under anaerobic conditions prior to illumination.

illumination times. The four-line spectra exhibited all the characteristics of the EMPO-OOH adduct EPR spectra produced by the high-light-induced reaction of EMPO with  $\text{O}_2^-$  as reported in the literature (Zhang *et al.* 2000). No EPR signal was observed in the nonilluminated

Cyt *b*<sub>5</sub>*f*, showing that no  $\text{O}_2^-$  was formed in the dark (Fig. 1, a), whereas the EMPO-OOH adduct EPR signal was detected when illuminated for 3 min (Fig. 1, b). Illumination with continuous white light for 3–9 min resulted in the gradually generation of the EMPO-OOH

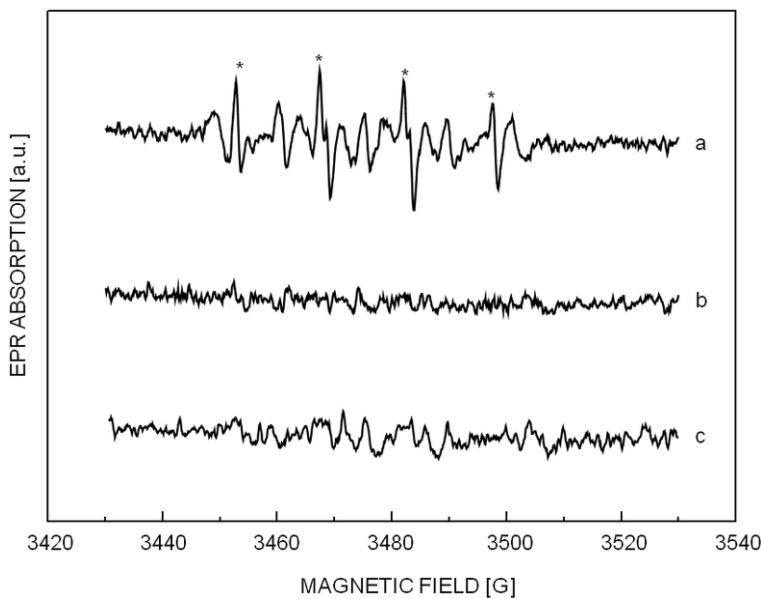



Fig. 3. EPR spectra of the EMPO-OOH adducts measured in different preparations of spinach Cyt *b<sub>6</sub>f* after illumination. (a) Intact Cyt *b<sub>6</sub>f*, (b) Rieske-depleted Cyt *b<sub>6</sub>f*, and (c) isolated Rieske Fe-S protein. Other experimental conditions were similar to those in Fig. 2.

adduct EPR signal (Fig. 1, b-d). The signal obtained after 12 min and 15 min illumination was the similar to that of 9 min, indicating that the maximal  $O_2^-$  production was reached (Fig. 1, d). These results confirm the high-light-induced  $O_2^-$  production in the Cyt *b<sub>6</sub>f* complex from spinach.

**Sources of light-induced  $O_2^-$  formation in the Cyt *b<sub>6</sub>f* complex:** To detect the relationship between the generation of  $O_2^-$  and  $^1O_2$ , we added 50 mM sodium azide (NaN<sub>3</sub>), a quencher of  $^1O_2$ , to the Cyt *b<sub>6</sub>f* complex, and the production of  $O_2^-$  was measured. The results indicate that the intensity of the EMPO-OOH adduct EPR signal decreased by 16% (Fig. 2, b), whereas adding the same concentration of NaN<sub>3</sub> leads to a 23% decrease in the  $^1O_2$  signal (data not shown). Approximately 69.6% of the generated  $O_2^-$  came from the reaction, in which  $^1O_2$  is one of the reactants. Interestingly, the EMPO-OOH adduct EPR signal was 1.3 times greater than the control when superoxide dismutase (SOD) was added (Fig. 2, c). An unknown reaction, which increased the EMPO-OOH adduct EPR signal, might have transpired after the addition of SOD. Furthermore, the  $O_2^-$  formation was measured under anaerobic conditions: the absence of  $O_2^-$  production (Fig. 2, d) demonstrates that molecular oxygen is required in the reaction to yield  $O_2^-$ .

Fig. 3 shows the production of  $O_2^-$  in different preparations of the Cyt *b<sub>6</sub>f* complex. The results illustrate that the EMPO-OOH adduct EPR signal was detected in the intact Cyt *b<sub>6</sub>f* complex (Fig. 3, a) whereas no EMPO-OOH adduct EPR signal was detected in the Rieske Fe-S depleted Cyt *b<sub>6</sub>f* complex (Fig. 3, b) and the Rieske Fe-S protein (Fig. 3, c). Thus, the Rieske Fe-S protein might serve as an electron donor in the  $O_2^-$  producing reaction, however, it could not function when it was isolated from the protein environment of the Cyt *b<sub>6</sub>f* complex.

Fig. 4A shows nearly identical signal intensities in the

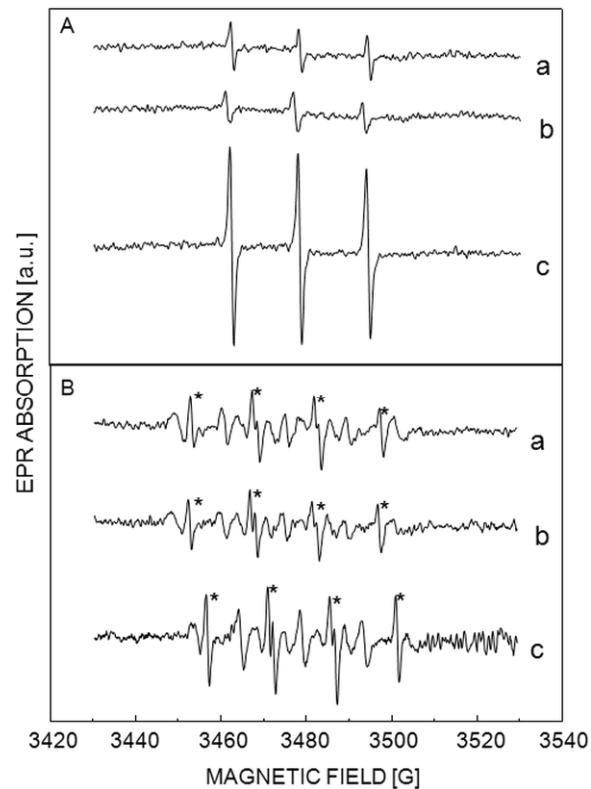



Fig. 4. A: High-light-induced TEMP- $^1O_2$  adduct EPR spectra measured in the Cyt *b<sub>6</sub>f* of spinach suspended in different detergents. The spectra were recorded in the presence of (a) 0.375 M TEMP, 50 mM Tricine (pH 8.0), 0.02%  $\beta$ -DM (b) 0.375 M TEMP, 50 mM Tricine (pH 8.0), 30 mM  $\beta$ -OG, and (c) 0.375 M TEMP, 50 mM Tricine (pH 8.0), 1% SDS. B: High-light-induced EMPO-OOH adduct EPR spectra measured in the Cyt *b<sub>6</sub>f* of spinach suspended in the different detergents. The spectra were recorded in the presence of (a) 50 mM EMPO, 50 mM Tricine (pH 8.0), 0.02%  $\beta$ -DM, (b) 50 mM EMPO, 50 mM Tricine (pH 8.0), 30 mM  $\beta$ -OG, and (c) 50 mM EMPO, 50 mM Tricine (pH 8.0), 1% SDS.

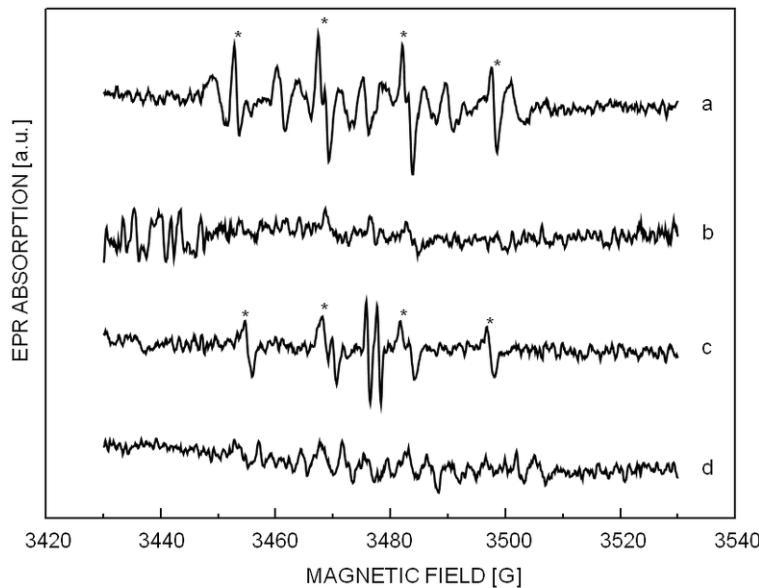



Fig. 5. EPR detection of EMPO-OOH adducts for the intact Cyt *b*<sub>6</sub>*f* preparation from spinach as scavenged by extraneous antioxidants: (a) without scavenger (b) with  $\beta$ -carotene (c) with ascorbate, and (d) with glutathione prior to illumination. Other experimental conditions were similar to those in Fig. 2.

$\beta$ -DM and  $\beta$ -OG preparations (Fig. 4*A*, a and b), whereas the signal intensity in the SDS preparation was 4.2 times higher (Fig. 4*A*, c) than those of the former two preparations. The conditions of the Cyt *b*<sub>6</sub>*f* complex suspended in different buffers were diverse: the connection state becomes loose and the Chl might be separated from the complex suspended in SDS buffer (Chen *et al.* 2006). As a result, the free Chl *a* increased, which increased the production of  $^1\text{O}_2$ , Fig. 4*B* shows the production of  $\text{O}_2^-$  by the Cyt *b*<sub>6</sub>*f* complex suspended in the different buffers. The production of  $\text{O}_2^-$  in the  $\beta$ -DM and  $\beta$ -OG buffers were comparable with each other (Fig. 4*B*, a and b), whereas in SDS, the production was 1.5 times higher than that produced in the complex suspended in  $\beta$ -DM (Fig. 4*B*, c).

Therefore,  $^1\text{O}_2$  production corresponded with the  $\text{O}_2^-$

generation in the same suspended buffers. This supports the possibility that  $\text{O}_2^-$  was produced from an  $^1\text{O}_2$  involving reaction.

**Effects of scavengers on the  $\text{O}_2^-$  production in the Cyt *b*<sub>6</sub>*f* complex:** To investigate the  $\text{O}_2^-$  scavenging properties of ascorbate, glutathione, and  $\beta$ -carotene, we measured the  $\text{O}_2^-$  production with the addition each of the scavengers and compared the results with those of the untreated control. Fig. 5 shows that the  $\text{O}_2^-$  was 100% scavenged by  $\beta$ -carotene (Fig. 5, b) and glutathione (Fig. 5, d), whereas ascorbate only scavenged 45% of  $\text{O}_2^-$  (Fig. 5, c). The characteristic EPR signal of ascorbate is shown in trace c. The results indicate that ascorbate, glutathione, and  $\beta$ -carotene are all effective  $\text{O}_2^-$  scavengers.

## Discussion

Thylakoid membranes, especially PSII, are capable of producing  $\text{O}_2^-$  under illumination (Asada 2006, Pospíšil 2009). This phenomenon is called the Mehler reaction (Mehler 1951). The Mehler reaction was suggested to occur in PSI (Asada *et al.* 1974, Furbank *et al.* 1983). Some studies also show that  $\text{O}_2^-$  is generated by PSII rather than by PSI, and pheophytin and  $Q_A$  are the main electron donors to molecular oxygen (Pospíšil *et al.* 2004). Furthermore, Cyt *b*<sub>559</sub> is also shown as a source of  $\text{O}_2^-$  in PSII (Pospíšil *et al.* 2006). These results demonstrate that high-light illumination of the Cyt *b*<sub>6</sub>*f* complex of spinach leads to the production of  $\text{O}_2^-$  (Fig. 1), and provides another site of  $\text{O}_2^-$  generation in the thylakoid. Interestingly, the increase in the EMPO-OOH signal upon the addition of SOD (Fig. 2, c) might be due to the secondary iron signal produced by the reaction of protein and  $\text{O}_2^-$ . Further research is necessary

to detect the precise reason for this phenomenon. Furthermore, the molecular oxygen requirement for the production of  $\text{O}_2^-$  showed that  $\text{O}_2$  is involved in  $\text{O}_2^-$  production in the Cyt *b*<sub>6</sub>*f* complex of spinach (Fig. 2, d), although the remaining signal is still unknown.

It is reported that the electron leakage might happen on 2Fe-2S and 4Fe-4S (Edreva 2005). No  $\text{O}_2^-$  was detected in the preparation of the Rieske Fe-S depleted and Rieske Fe-S proteins (Fig. 3, b and c) whereas the  $^1\text{O}_2$  production was detected (data not shown), which indicates that Rieske Fe-S might have participated in the formation of  $\text{O}_2^-$ . In addition, the Fe-S cluster was presumably the production site of the superoxide anion radical in mitochondrial complex I (Genova *et al.* 2001). Our results concur with those reports. No  $\text{O}_2^-$  was formed in the Rieske Fe-S protein because its separation from Cyt *b*<sub>6</sub>*f* cut off the electron transfer cycle. Rieske

Fe-S protein might be an electron donor needed for the O<sub>2</sub><sup>·-</sup> production. The results indicate that an intact electron transport cycle is necessary for O<sub>2</sub><sup>·-</sup> production. Further study is necessary to elucidate the mechanism underlying this question. Moreover, the production of O<sub>2</sub><sup>·-</sup> in the Cyt *b<sub>6</sub>f* complex of spinach seems to be related with the singlet oxygen as about 69.6% of the EMPO-OOH adduct EPR signal was from the <sup>1</sup>O<sub>2</sub> involving reaction. A study regarding the production of O<sub>2</sub><sup>·-</sup> by hematoporphyrin and light indicates that by adding 1,4-diazabicyclo[2.2.2]octane (DABCO), a <sup>1</sup>O<sub>2</sub> quencher, the intensity of the DMPO/OH spin adduct was reduced, which is consistent with the involvement of <sup>1</sup>O<sub>2</sub> in O<sub>2</sub><sup>·-</sup> production (Buettner and Oberley 1980). Our results are also consistent with these reports. Furthermore, the comparable yield of O<sub>2</sub><sup>·-</sup> and <sup>1</sup>O<sub>2</sub> in the same suspended

buffer further indicates the possibility that O<sub>2</sub><sup>·-</sup> might be produced from an <sup>1</sup>O<sub>2</sub> involving reaction (Fig. 4).

Previous studies indicated that <sup>1</sup>O<sub>2</sub> is an important factor of photodamage to the Cyt *b<sub>6</sub>f* complex of spinach and the production of <sup>1</sup>O<sub>2</sub> was detected by EPR spectroscopy (Suh *et al.* 2000). In this study, we also detected the production of O<sub>2</sub><sup>·-</sup> in this complex. These results illustrate that <sup>1</sup>O<sub>2</sub> and O<sub>2</sub><sup>·-</sup> are both produced under high-light illumination of Cyt *b<sub>6</sub>f* complex, and that the production of the O<sub>2</sub><sup>·-</sup> might be related to the Rieske Fe-S protein. The present study has also proven that β-carotene, ascorbate, and glutathione are efficient O<sub>2</sub><sup>·-</sup> scavengers, implying that the photoprotection mechanism of the Cyt *b<sub>6</sub>f* in spinach might be partly implemented through various antioxidant substances in the thylakoid membranes.

## References

Allen, J.F.: Cytochrome *b<sub>6</sub>f*: structure for signaling and vectorial metabolism. – *Trends Plant Sci.* **9**: 130-137, 2004.

Asada, K., Kiso, K., Yoshikawa, K.: Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. – *J. Biol. Chem.* **249**: 2175-2181, 1974.

Asada, K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. – *Plant. Physiol.* **141**: 391-396, 2006.

Buettner, G.R., Oberley, L.W.: The apparent production of superoxide and hydroxyl radicals by hematoporphyrin and light as seen by spin-trapping. – *FEBS Letters* **121**: 161-164, 1980.

Chen, X.B., Zhao, X.H., Zhu, Y., Gong, Y.D., Li, L.B., Zhang, J.P., Kuang, T.Y.: Hydrogen peroxide-induced chlorophyll *a* bleaching in the cytochrome *b<sub>6</sub>f* complex: a simple and effective assay for stability of the complex in detergent solutions. – *Photosynth. Res.* **90**: 205-214, 2006.

Cramer, W.A., Zhang, H.M., Yan, J.S., Kurisu, G., Smith, J.L.: Transmembrane traffic in the cytochrome *b<sub>6</sub>f* complex. – *Annu. Rev. Biochem.* **75**: 769-90, 2006.

Crystall, B., Booth, P.J., Klug, D.R., Barber, J., Porter, G.: Resolution of a long lived fluorescence component from D1/D2 cytochrome *b*-559 reaction centres. – *FEBS Lett.* **249**: 75-78, 1989.

Doyle, M.P., Li, L.B., Yu, L., Yu, C.A.: Identification of a *Mr* = 17,000 protein as the plastoquinone-binding protein in the Cytochrome *b<sub>6</sub>f* complex from spinach chloroplasts. – *J. Biol. Chem.* **264**: 1387-92, 1989.

Edreva, A.: Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. – *Agr. Ecosyst. Environ.* **106**: 119-133, 2005.

Furbank, R.T., Badger, M.R., Osmond, C.B.: Photoreduction of oxygen in mesophyll chloroplasts of C<sub>4</sub> plants. A model system for studying an *in vivo* Mehler reaction – *Plant Physiol.* **73**: 1038-1041, 1983.

Genova, M.L., Ventura, B., Giuliano, G., Bovina, C., Formiggini, G., Castelli, G.P., Lenaz, G.: The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. – *FEBS Lett.* **505**: 364-368, 2001.

Hurt, E., Hauska, G., Malkin, R.: Isolation of the Rieske iron-sulfur protein from the cytochrome *b<sub>6</sub>f* complex of spinach chloroplasts. – *FEBS Lett.* **134**: 1-5, 1981.

Krinsky, N.I.: Biological roles of singlet oxygen. – In: H.H. Wasserman, (ed.): *Singlet Oxygen*. Vol. 40, Pp. 597-641. Academic Press, New York 1979.

Kurisu, G., Zhang, H.M., Smith, J.L., Cramer, W.A.: Structure of the cytochrome *b<sub>6</sub>f* complex of oxygenic photosynthesis: Tuning the cavity. – *Science* **302**: 1009-1014, 2003.

Li, L.B., Zou, Y.P., Yu, L., Yu, C.A.: The catalytic role of subunit IV of the Cytochrome *b<sub>6</sub>f* complex from spinach chloroplasts. – *Biochim. Biophys. Acta* **1057**: 215-222, 1991.

Lion, Y., Delmelle, M., van de Vorst, A.: New method of detecting singlet oxygen production. – *Nature* **263**: 442-443, 1976.

Lion, Y., Gandin, E., van de Vorst, A.: On the production of nitroxide radicals by singlet oxygen reaction: An electron-paramagnetic-res study. – *Photochem. Photobiol.* **31**: 305-309, 1980.

Mehler, A.D.: Studies on the reactions of illuminated chloroplasts. II. Stimulation on inhibition of the reaction with molecular oxygen. – *Arch. Biochem. Biophys.* **34**: 339-351, 1951.

Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. – *Biol. Rev. Cambridge Phil. Soc.* **41**: 445-602, 1966.

Olive, G., Mercier, A., Le Moigne, F., Rockenbauer, A., Tordo, P.: 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide: evaluation of the spin trapping properties. – *Free Radical. Biol. Med.* **28**: 403-408, 2000.

Pospíšil, P., Arató, A., Liszkay, A.K., Rutherford, W.A.: Hydroxyl radical generation by photosystem II. – *Biochemistry* **43**: 6783-6792, 2004.

Pospíšil, P., Šnyrychová, I., Kruk, J., Stržálska, K., Nauš, J.: Evidence that cytochrome b559 is involved in superoxide production in photosystem II: effect of synthetic shortchain plastoquinones in a cytochrome b559 tobacco mutant. – *Biochem. J.* **397**: 321-327, 2006.

Pospíšil, P.: Production of reactive oxygen species by photosystem II. – *Biochim. Biophys. Acta-B* **1787**: 1151-1160, 2009.

Pierre, Y., Breyton, C., Lemoine, Y., Robert B., Vernotte, C., Popot, J.L.: On the presence and role of a molecule of chlorophyll *a* in the cytochrome *b<sub>6</sub>f* complex. – *J. Biol. Chem.* **272**: 21901-21908, 1997.

Singh, A.: Interconversion of singlet oxygen and related

species: Introduction. – *Photochem. Photobiol.* **28**: 429-433, 1978.

Stroebel, D., Choquet, Y., Popot, J.L., Picot, D.: An atypical haem in the cytochrome *b<sub>6</sub>f* complex. – *Nature* **426**: 413-418, 2003.

Suh, H.J., Kim, C.S., Jung, J.: Cytochrome *b<sub>6</sub>f* complex as an indigenous photodynamic generator of singlet oxygen in thylakoid membranes. – *Photochem. Photobiol.* **71**: 109-113, 2000.

Yan, J.S., Liu, Y.L., Mao, D.Z., Li, L.B., Kuang, T.Y.: The presence of 9-cis-β-carotene in cytochrome *b<sub>6</sub>f* complex from spinach. – *Biochim. Biophys. Acta* **1506**: 182-188, 2001.

Zhang, H., Joseph, J., Felix, C., Kalyanaraman B: Bicarbonate enhances the hydroxylation, nitration, and peroxidation reactions catalyzed by copper, zinc superoxide dismutase. Intermediacy of carbonate anion radical. – *J. Biol. Chem.* **275**: 14038-14045, 2000.

Zhang, H.M., Huang, D., Cramer, W.A.: Stoichiometrically bound β-carotene in the cytochrome *b<sub>6</sub>f* complex of oxygenic photosynthesis protects oxygen damage. – *J. Biol. Chem.* **274**: 1581-1587, 1999.

Zhang, S., Weng, J., Pan, J.X., Tu, T.C., Yao, S., Xu, C.H.: Study on the photogeneration of superoxide radicals in Photosystem II with EPR spin trapping techniques. – *Photosynth. Res.* **75**: 41-48, 2003.