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Abstract  
 
Most organisms inhabiting earth feed directly or indirectly on the products synthesized by the reaction of photosynthesis, 
which at the current atmospheric CO2 levels operates only at two thirds of its peak efficiency. Restricting the 
photorespiratory loss of carbon and thereby improving the efficiency of photosynthesis is seen by many as a good option 
to enhance productivity of food crops. Research during last half a century has shown that several plant species developed 
CO2-concentrating mechanism (CCM) to restrict photorespiration under lower concentration of available CO2. CCMs 
are now known to be operative in several terrestrial and aquatic plants, ranging from most advanced higher plants to 
algae, cyanobacteria and diatoms. Plants with C4 pathway of photosynthesis (where four-carbon compound is the first 
product of photosynthesis) or crassulacean acid metabolism (CAM) may consistently operate CCM. Some plants 
however can undergo a shift in photosynthetic metabolism only with change in environmental variables. More recently, 
a shift in plant photosynthetic metabolism is reported at high altitude where improved efficiency of CO2 uptake is related 
to the recapture of photorespiratory loss of carbon. Of the divergent CO2 assimilation strategies operative in different 
oraganisms, the capacity to recapture photorespiratory CO2 could be an important approach to develop plants with 
efficient photosynthetic capacity. 
 
Additional key words: aquatic, carbon-concentrating mechanisms, crassulacean acid metabolism, C4 photosynthesis, Rubisco. 
 
Introduction 
 
Estimates suggest a stupendous increase in the global 
food demand, requiring nearly 40% increases in yield of 
wheat and rice alone by the year 2020 (Datta 2004, 
Swaminathan 2006). Yield potentials of major cereal 
crops, achieved by genetic improvement and improved 
management practices, cannot further be increased by 
addition of nitrogen. It is therefore argued that 
photosynthesis could likely be the major trait available to 
increase yield on the scale of last 50 years (Surridge 
2002, Long et al. 2006, Reynolds et al. 2009, Zhu 2010). 
A number of studies have discussed the prospects of 
enhancing photosynthetic capacity in agricultural crops 
by genetic manipulation (Matsuoka et al. 2001, Häusler 
et al. 2002, Leegood 2002, Surridge 2002, Miyao 2003, 
von Caemmerer 2003, Reynolds et al. 2009). The basic 

theme of these approaches is to improve the inefficiency 
of C3 photosynthesis, owed largely to the bifunctional 
character of the main carboxylating enzyme ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco), and its 
low catalytic rates.  

The atmosphere in which Rubisco evolved around 
3.5 milliard years had concentration of CO2 nearly ten 
times higher than that of today (Ehleringer et al. 1991, 
Blankenship 1992). This high CO2 atmosphere would 
provide optimal condition for Rubisco to catalyse 
combination of CO2 with the phosphorylated 5-carbon 
RuBP for the synthesis of sugars. However, as discovered 
about half a century ago, Rubisco also acts as an 
oxygenase under conditions of low concentrations of CO2 

or high-oxygen environment or high temperature (Bowes  
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et al. 1971). At the current atmospheric levels O2 
accounts for about 30% of the reaction catalyzed by 
Rubisco (Moroney and Somanchi 1999), which may 
increase as much as up to 50% at higher temperature 
(Nelson and Langdale 1992). This competitive inhibition 
of carboxylase activity of Rubisco leads to loss of carbon 
by way of photorespiration (Ogren and Bowes 1971). 
Therefore it is the concentrations of CO2 and O2 around 
Rubisco that determine the ratio of rates of carboxylation 
to oxygenation and the efficiency of CO2 fixation. Studies 
have shown that photorespiration can be reduced by 
growing plants under higher concentration of CO2, such 
as in greenhouses, for better growth and yields (Long  
et al. 2006). It means that the rising levels of atmospheric 
CO2 would promote photosynthetic efficiency, though 
this capacity could subsequently be impeded by  
other associated problems like increased temperature, 
decreased soil moisture, and increase in phytotoxic ozone 
(Long et al. 2005).  

Another limitation of photosynthesis lies in the low 
catalytic property of Rubisco, meaning that large quantity 
of this protein is required to accomplish the reaction 
(Long et al. 2006). The already high abundance of 
Rubisco in leaves, which accounts for 30–50% of total 
soluble protein in chloroplasts (Ellis 1979, Dhingra et al. 

2004), generally precludes the possibility of adding more 
Rubisco (Pyke and Leech 1987). Alternately, the 
possibility of finding an efficient Rubisco that selectively 
discriminates for its two reactions could be a good option. 
Rubisco extracted from some Mediterranean plant species 
of hot, arid, and saline environments have shown higher 
specificity for CO2 relative to O2 (Uemura et al. 1996, 
1997; Galmes et al. 2005). However, available 
information from a limited number of species showed 
that Rubisco specificity has an inverse relationship with 
its catalytic rates (Bainbridge et al. 1995). Therefore, the 
benefit of increased specificity is likely to be outweighed 
by the lowered catalytic rates (Zhu et al. 2005). Further 
on, CO2/O2 specificity values of Rubisco in some 
dinoflagellates are so low that photosynthesis in air-
equilibrated solutions appears impossible on the basis of 
diffusive CO2 entry, except aided by some mechanisms to 
concentrate carbon (Raven 2003). Carbon-concentrating 
abilities have now been known in diverse life-forms, 
ranging from cyanobacteria, micro- and macroalgae, 
bryophytes to higher plants in terrestrial and aquatic 
systems (Kaplan and Reinhold 1999, Moroney and 
Somanchi 1999, Reinfelder et al. 2000, Badger et al. 
2002, Beardall and Giordano 2002, Bowes et al. 2002, 
Hanson et al. 2002, Mercado et al. 2006). 

 
CO2-concentrating mechanism (CCM)  
 
Photosynthesis in C3 (Fig. 1A) and C4 plants (Fig. 1B) 
differs due to the ability of the later to operate CCM. 
Now reported in several organisms, CCM is believed to 
provide adaptation to low carbon dioxide concentrations 
(Moroney and Ynalvez 2007), by developing micro-
environment of high CO2 concentration around Rubisco 
that helps to suppress the oxygenase activity of Rubisco 
and the process of photorespiration. Plants whose follow 
C4 pathway of photosynthesis or CAM were the earliest 
known examples of CCM in higher plants from terrestrial 
ecosystem. Later, CCM was reported in lower plants and 
more importantly from aquatic environment. The poor 
availability of CO2 in aquatic system called for different 
strategies in different life forms. More lately, it was 
shown that some plant species can shift their photo-
synthetic metabolism with change in set of environmental 
conditions. This inherent potential of some plant species 
to develop CCM offers additional possibilities to improve 
photosynthetic performance and consequently the yield in 
crop plants.  
 
CCMs in terrestrial plants  
The CO2-concentrating pump of C4 plants 
C4 photosynthesis is a metabolic cooperation between 
two spatially separated cell types, generally the meso-
phyll cells (photosynthetic carbon assimilation or PCA 
tissue) containing enzyme phosphoenolpyruvate carboxy-
lase (PEPCase), and the chlorenchymatous bundle sheath 

(photosynthetic carbon reduction or PCR tissue) that 
contain Rubisco. PEPCase being insensitive to the sur-
rounding concentration of O2 has high affinity for HCO3¯ 
and acts as the primary carboxylase in C4 plants on a 
substrate which is bicarbonate (HCO3¯) and not CO2. The 
Km(HCO3¯) of PEPCase is about 8 µM, whereas HCO3¯ 
concentration in the cytoplasm of mesophyll cells is 
about 50 µM (Moroney and Somanchi 1999). The atmo-
spheric CO2 entering through leaf stomata is converted to 
HCO3¯

 by the action of enzyme carbonic anhydrase (CA) 
located in the mesophyll cells (Hatch and Burnell 1990).  

PEPCase catalyses the carboxylation of phosphoenol-
pyruvate (PEP) to synthesize C4 compounds like aspartic, 
citric or malic acids, as the case may be in different C4 
subtype species, which are then transported to bundle 
sheath where decarboxylation by one of the three 
decarboxylating enzymes, viz. chloroplastic NADP-malic 
enzyme (NADP-ME), mitochondrial NAD-malic enzyme 
(NAD-ME), or cytosolic phosphoenolpyruvate carboxy-
kinase (PEPCK) takes place to liberate CO2 that finally 
get fixed in the Calvin cycle. 

The three-carbon residue diffuses back to mesophyll 
and is converted to PEP. Regeneration of PEP is the third 
key step of C4 pathway (after the initial fixation of CO2 
and its subsequent decarboxylation) catalysed by 
pyruvate orthophosphate dikinase (PPDK) located in 
mesophyll chloroplast in all C4 subtypes (Miyao 2003). 
While Kranz anatomy provides the critical structural 
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Fig. 1. Photosynthetic assimilation of atmospheric CO2, mediated by different enzymes in A: C3 plants, B: C4 plants, and C: CAM 
plants. In each of these three categories, enzymes are numbered, prefixed with small respective alphabets and encircled. C3 plants:  
a1 – carbonic anhydrase, a2 – RUBP oxygenase, a3 – phosphoglycolate phosphatase, a4 – glycolate oxidase, a5 – gluta-
mate:glyoxylate aminotransferase, a6 – glycine decarboxylase complex, a7 – Serine-glyoylate aminotransferase,  a8 – pyruvate 
reductase, a9 – glycerate kinase; C4 plants: b1 – carbonic anhydrase, b2 – PEP carboxylase, b3 – malic dehydrogenase, b4 – NAD-
malic enzyme, b5 – pyruvate orthophosphate dikinase, CAM plants: c1 – carbonic anhydrase, c2 – PEP carboxylase, c3 – malic 
dehydrogenase, c4 – NAD-malic enzyme, c5 – pyruvate orthophosphate dikinase, CH2O – sugars, RUBP – ribulose-1,5-bisphosphate, 
PGA – phosphoglyceric acid. (based on Salisbury and Ross 1886, Häusler et al. 2002) 
 
support for PCA and PCR cycles to operate, the merit  
of C4 photosynthesis lies in building high CO2 con-
centration around Rubisco in bundle sheath cells and 
recapturing the photorespiratory CO2.  

 
CAM - temporal regulation of CCM  
Similarly to C4 plants, PEPCase catalyses the first step in 
the photosynthetic assimilation of CO2 in CAM plants 
where the two carboxylases (other being Rubisco) are 
temporally, rather than spatially, separated. Other 
important features of CAM are circadian expression  
of key genes related to the photosynthetic pathway and 
their control by metabolites (Dodd et al. 2002). The day-
night cycle operates with opening of stomata during night 
to allow atmospheric CO2 to move in. During day, when 
sufficient light is available but the stomata are closed as  
a measure to conserve water, decarboxylation of the four 
carbon compound takes place to release CO2 for fixation 

through Calvin cycle (Fig. 1C). In CAM plant Littorella 
uniflora, intensive decarboxylation rates can concentrate 
CO2 to levels as high as 30,000 ppm and imparts 
stimulating effect on photosynthesis (Madsen 1987).  

Expression of CAM activity, however, can vary and 
may range from no net CO2 uptake (CAM-idling) to 
fixation of atmospheric CO2 round the clock (Dodd et al.  
2002). Under the nonlimiting conditions of light and 
water, certain species like those of Clusia operate CAM 
(CAM cycling) for the modest benefit of reducing respi-
ratory CO2 losses (Wanek et al.  2002). CAM plants have 
an exclusive advantage under conditions of acute water 
scarcity such as in arid habitats (Winter and Smith 1996, 
Moore 1999, Grams and Thiel 2002), but its represen-
tation in aquatic system (Keeley 1981) is unusual, high-
lighting the role of PEPCase to capture CO2 in dissolved 
state, especially during night when concentrations of CO2 
are relatively much higher than normal (Moore 1999).  
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and Somanchi 1999). Cyanobacteria can concentrate 
HCO3¯ more than 100-fold within the cell (Miller et al. 
1990) using active transporters (Badger et al. 2002).  

The role of CA is very critical in these organisms in 
converting HCO3¯ to CO2 (Riebesell 2000) before it can 
be fixed by Rubisco (Fig. 2A,B), and both CA and 
Rubisco are in close vicinity, usually packaged in specific 
organelles like pyrenoid in algae, carboxysome in 
cyanobacteria, or periplasmic space in case of eukaryotic 
algae (Moroney and Somanchi 1999). This close 
association of CA with Rubisco is helpful to build high 
concentration of CO2 under aquatic condition (Badger 
2003, Mercado et al. 2006). Some of the green unicellular 
algal diatoms which lack CCM and take CO2 by diffusion 
have Rubisco with high specificity for CO2 uptake 
(Palmqvist et al. 1995, Colman et al. 2002). 

 
CCM in aquatic angiosperms 
Maberly and Madsen (2002) have reviewed different 
carbon acquisition strategies in freshwater angiosperms 
which utilize HCO3¯ or CO2 from atmosphere or 
sediments, through C4 or CAM photosynthesis (Fig. 2C). 
Interestingly, about 50% of the submerged plants use 
HCO3¯ for photosynthesis (Madsen and San-Jenson 
1991). Some aquatic plants can secrete H+ into leaf 
boundary layer to enhance the conversion of HCO3¯ to 
CO2 for subsequent assimilation (Prins et al. 1982). 
Submerged grass species of Neostapfia, Orcuttia, and 
Tuctoria can take up CO2 and maintain C4 photosynthesis 

underwater (Keeley 1998). Hydrilla verticillata is a fresh-
water submerged angiosperm that has the capacity to use 
both CO2 and HCO3¯. The basic difference in C4 cycle 
that operates in aquatic angiosperms compared to that in 
terrestrial C4 plants lies in operation of β-carboxylation in 
cytosol and the process of decarboxylation and Rubisco 
carboxylation taking place in chloroplast (Bowes et al. 
2002). As an important distinction, CCM operates within 
a single cell in most of the aquatic plants as well as 
terrestrial CAM species. Despite being energetically more 
costly CCM is a way to overcome the limiting environ-
mental constraint on carbon fixation, and probably 
suggests a route to enhance photosynthetic efficiency. 
 
Maintaining the high levels of CO2 
Subsequent to acquisition of carbon, the major issue in 
operating an effective CCM is to prevent diffusion of 
CO2. In aquatic system, leakage is less of a concern 
because of the surrounding aqueous matrix that restricts 
diffusion of CO2 out of the cell (Sage 2002a). Microalgae 
that accumulate HCO3¯ rather than CO2, has an advantage 
of its slower diffusion through membranes and are thus 
able to maintain higher concentrations of the carbon at 
the site of fixation. In C4 plants, bundle sheath cells have 
thickened cell walls that prevent CO2 generated by 
decarboxylation reactions from diffusing out. The ability 
to efficiently curve diffusive loss of CO2 from bundle 
sheath determines the efficiency of C4 photosynthesis 
(Furbank et al. 1989). 

 
Shift in photosynthetic metabolism with change in environmental variables   
 
Higher plant species are nearly always consistent in 
following either, C3, C4 or CAM mode of photosynthesis. 
However, variation in growth conditions can induce 
certain plants to switch from one mode to another. It was 
observed quite earlier in H. verticillata and Egeria densa 
that malate content in leaves increased at the expense of 
carbon cycle intermediates when plants were grown at 
low CO2 levels (Bowes et al. 1971, Browse et al. 1977, 
Salvucci and Bowes 1983). Submergence in these two 
species was shown to decrease CO2 compensation point 
but increase the activities of enzymes PEPCase and 
NADP-ME, which in turn were related to reduced 
photorespiration (Salvucci and Bowes 1981). Now 
several plant species are known to shift their photo-
synthetic metabolism between C3, C4, and CAM modes 
with changes in environmental variables (Fig. 3). 

Meanwhile, some individuals can display more than 
one photosynthetic pathway at the same time. In aquatic 
grass Orcuttia californica, which has floating and 
submerged leaves, the submerged leaves showed CAM 
characteristics while aerial leaves followed C4 photosyn-
thesis (Keeley 1999). The marine diatom Thalassiosira 
weissflogii simultaneously operates both CCM and C4 
photosynthesis within the single cell. The C4 cycle is 
confined to cytoplasm and is spatially separated from the 

Rubisco process located in the chloroplasts (Reinfelder  
et al. 2000). The diatom has a deep vertical movement in 
sea water and needs to adapt to the fluctuating light 
conditions. While operation of CCM ensured a steady 
carbon sequestration at low CO2 concentrations in this 
organism, C4 photosynthesis is advantageous under burst 
of high light in surface water (Riebesell 2000). 

 
Shift between C3-C4 modes of photosynthesis  
C3 plants can also switch over to C4 or C4-like metabo-
lism with change in environmental conditions like 
drought, high light, low CO2 levels, high temperature, 
and submergence. A freshwater amphibious sedge 
Eleocharis vivipara, which lacks Kranz cells and follows 
C3 photosynthesis in submerged leaves, could induct 
Kranz anatomy and C4 photosynthesis in terrestrial leaves 
(Ueno et al. 1988). Similarly, C3 plants E. baldwinii and 
E. densa can shift to C4 and C4-like photosynthesis under 
submerged conditions (Uchino et al. 1995, Casati et al. 
2000). However, C4 grasses like Neostapfia colusana and 
Tuctoria greenei exhibit Kranz anatomy and C4 
photosynthesis in both aquatic and terrestrial leaves forms 
(Keeley 1998). In Hydrilla, under depleting CO2 condi-
tions, coupled with high O2 fluxes during its dense 
growth at high summer temperature, C4-like biochemistry 
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by inducting traits of C4 photosynthesis like over-
expression of C4 enzymes, improving CO2/O2 specificity 
of Rubisco, introduction of pyrenoid or carboxysomes 
into the chloroplast of C3 crops to concentrate CO2 on the 
pattern of algae and cyanobacteria for suppression of 
photorespiration (Häusler et al. 2002, Leegood 2002, 
Miyao and Fukayama 2003, Galmes et al. 2005), etc. The 
possibility of improving efficiency of photosynthesis also 
depends a great deal on overcoming its limitation under 
different sets of environmental conditions. At elevated 
levels of atmospheric CO2, the efficiency of photosyn-
thesis depends on the capacity of plants to regenerate 
RuBP (Miyagawa et al. 2001). It is speculated that the 
anticipated increase in CO2 levels by the middle of this 
century would require about 30% increase in RuBP 
regeneration capacity to reap the maximum advantage 
(Long et al. 2004). Transgenic plants with higher RuBP 
regeneration capacity have shown substantial gain in 
photosynthesis and dry matter production (Miyagawa et 
al. 2001). Photosynthetic capacity can also greatly benefit 
if photooxidative damage in leaf can be avoided by 
inducing increase in thermal dissipation of energy via the 
formation of epoxidated xanthophylls (Baroli and Niyogi 
2000, Havaux and Niyogy 1999), or altering plant canopy 
architecture to optimize light harvest at different leaf-
layers that could nearly double the efficiency of light 
energy use in full sunlight (Havaux and Niyogy 1999, Ort 
and Long 2003, Long et al. 2006, Zhu et al. 2010). 
Improved light-use efficiency leading to increase in total 
assimilates available along with improved spike fertility 
could considerably raise yield potential in crops like 
wheat (Reynolds et al. 2009). 
 
What does it take to make a C4 plant? 
The repeated evolution of C4 syndrome in plants, despite 
its structural and enzymatic complexity, shows it to be  
a much potent route to counter the limitation of CO2 
(Long et al. 2006). C4 cycle can bestow additional 
advantage of water and nitrogen use efficiencies. The 
capacity of C4 plants to efficiently deliver CO2 to Rubisco 
restrict photorespiration to a great extent and therefore 
inducting traits of C4 photosynthesis in C3 crops have 
most repeatedly been suggested to improve yield 
potential in agricultural crops (Matsuoka et al. 2001, 
Häusler et al. 2002, Leegood 2002, Surridge 2002, Miyao 
2003, von Caemmerer 2003). C4 cycle is actually 
accomplished by more than a dozen biochemical and 
anatomical combinations (Sage 2002b).  
 
Kranz anatomy 
For a very long time Kranz anatomy had been considered 
critical for the functioning of C4 photosynthesis, and 
detection of any one aspect of the Kranz syndrome was 
accepted as a convenient measure to identify the presence 
of whole syndrome (Tregunna et al.  1970). Later, it was 
shown that a chlorenchymatous bundle sheath may not 
help a plant to be C4 if not surrounded by mesophyll cells 

(Edwards et al.  1990), and the arrangement of mesophyll 
cells surrounding the chlorenchymatous bundle sheath 
must be such so as to resist CO2 diffusion, and help build 
its concentration high enough to suppress photorespi-
ration (Furbank et al. 1990). Leakage of CO2 from the 
bundle sheath could impair the efficiency of C4 photo-
synthesis (Furbank et al. 1989). For all these reasons, 
development of adequate structural components becomes 
critical for the effective functioning of C4 photosynthesis. 
Our understanding regarding the genes controlling the 
development of different cell types in C4 plants, however, 
continues to be scant (Leegood 2002).  
 
How critical is Kranz anatomy for C4 photosynthesis?  
In terrestrial plants Borszczowia aralocaspica and 
Bienertia cycloptera, the PCA and PCR cycles of C4 
photosynthesis are reported to function without Kranz 
anatomy. C4 photosynthesis operates within a single 
photosynthetic cell through spatial compartmentation of 
photosynthetic enzymes, and by separation of two types 
of chloroplast and photosynthetic enzymes within 
chlorenchyma cell cytoplasm (Voznesenskaya et al. 
2001, 2002). In B. aralocaspica, PCR metabolism occurs 
at the end, which lies in proximity to vascular bundles, 
whereas PCR activity takes place at the distal end. In 
B. cycloptera, PCR and PCA were reported to function at 
the central and peripheral regions of the cytoplasm, 
respectively. These studies have shown that the critical 
feature regarding structural characteristics is to separate 
the PCR and PCA events in two different tissues or parts 
of the cell. The operation of C4 cycle in a single cell has 
given new dimension for induction of C4 traits into 
C3 crops (Sage 2002a).  
 
Overexpression of C4 enzymes 
 
In C3 plants, the ratio of Rubisco to PEPCase is 15:1, and 
enzyme PEPCase may play a minor role in recapturing 
respiratory CO2 in tissues from developing fruits and 
seeds (Latzko and Kelly 1983, Häusler et al. 2002). 
Whereas in C4 plants, the Rubisco to PEPCase ratio is 1:1 
(Latzko and Kelly 1983, Melzer and O’Leary 1987), 
which highlights the role and significance of PEPCase in 
C4 species. Also, the properties of PEPCase in C4 plants 
are modified compared to the C3 form, such that the 
mutants lacking it, are unable to assimilate atmospheric 
CO2 (Dever et al 1995, Cholett et al. 1996). Since 
PEPCase has a high affinity for CO2, overexpression  of 
the enzyme is considered to be a promising approach to 
enhance the efficiency of carbon fixation (Miyao and 
Fukayama 2003, Jiao et al. 2005, El-Sharkawy 2009).  

Overexpression of single gene like PEPCase or 
double genes of C4 cycle has been tried in crop and other 
plants with mixed results (Hudspeth et al. 1992, Gehlen 
et al. 1996, Ishimaru et al. 1997, Ku et al. 1999, Suzuki 
et al. 2000, Takeuchi et al. 2000, Häusler et al. 2002). 
Introduction of maize PEPCase in tobacco plant while 
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resulted in two-fold increase in its activity did not result 
in any significant increase in the rate of CO2 assimilation 
(Hudspeth et al. 1992). Overexpression of enzymes like 
PEPCase in transgenic plants resulted in perturbation in 
metabolic fluxes, and in the absence of any photo-
synthetic gain, the changes in primary metabolism could 
be quite a waste of photosynthetic assimilates (Häusler et 
al. 2002, Miyao 2003). Suggestions were also made that 
introduction of PEPCase for C4-like advantage, as in case 
of Hydrilla that has rapid induction kinetics, would shape 
up only after all the C4 enzymes are fully induced (Mag-
nin et al. 1997). However, overexpression of PEPCase in 
indica rice lead to enhancement in photosynthetic rate 
under conditions of high temperature (Bandyopadhyay et 
al. 2007). Similarly, overexpression of PEPCase and 
PPDK in rice improved its photosynthetic capacity with 
enhanced tolerance to photo-oxidation and produced  
22–24% more grains (Jiao et al. 2002). Transgenic rice 
overexpressing PEPCase was shown to be more tolerant 
to photoinhibition that could improve protection from 
photooxidation (Jiao et al. 2005, Zhang et al. 2009). 

To improve photosynthesis of crop plants on the 
pattern that of C4 photosynthesis, Ku et al. (1999) 
introduced into rice maize genes encoding for enzymes 
PEPCase, PPDK, and NAD-ME, which are responsible 
for CO2 capture, regeneration of PEP, and decarboxy-
lation to liberate CO2 around Rubisco, respectively. The 
transgenic rice thus produced showed gain in the 
photosynthetic rates and grain yield by about 30% and 
35%, respectively. In the absence of any evidence of a 
functional C4 cycle, these gains are presumably due to 
improvement in plant’s ability to tolerate stress and 
increase in stomatal conductance (Surridge 2002). 
Nonetheless, the study lends support to the efforts to 
reengineer crops to improve its photosynthetic efficiency 
under specific set of conditions in which CO2 availability 
is limited. While overproducing multiple enzymes for 
enhanced photosynthetic efficiency appear to be more 
promising (Häusler et al. 2001, Miyagawa et al. 2001, 
Häusler et al. 2002, Wu et al. 2002, Miyao 2003), there 
are no published results to show that plants co-express all 
the enzymatic steps required for a C4 cycle, including 
overexpression of CA (Leegood 2002, Raines 2006).  

 
Manipulating Rubisco, Rubisco activase and carbonic anhydrase 
 
Rubisco  
Rubisco, being the key enzyme of Calvin cycle, is the 
most obvious target for attempts to improve photosyn-
thetic rate. The enzyme has eight large, chloroplast-
encoded and eight small, nuclear-encoded protein sub-
units. The large subunits contain structural information 
necessary for catalyses, and have been the center of focus 
for genetic screening and site directed mutagenesis. 
Efforts like amino acid substitution of large subunits with 
an objective to improve the catalytic properties of 
Rubisco have though not been fruitful (Spreitzer and 
Salvucci 2002, Parry et al.  2003). Much is not known 
regarding the nuclear encoded small subunits, but there 
are suggestions that the observed differences in these 
units (Andersson and Taylor 2003) might contribute to 
catalytic efficiency of Rubisco (Spreitzer 2003), and 
remains an area to be further explored (Raines 2006).  

Natural variation in the catalytic properties of Rubisco 
in different photosynthetic organisms could be exploited 
to engineer Rubisco with higher CO2 specificity, with a 
specific advantage under high temperature (Kostov et al. 
1997, Tabita 1999). It has been calculated that intro-
duction of such a Rubisco would increase catalytic value 
two times in crop plants and could increase photo-
synthesis by 20% (Reynolds et al. 2000, Raines 2006). 
However, introducing Rubisco with high specific factor 
in transgenic plants would only be advantageous if not 
accompanied by any loss in the rate of carboxylation 
(Andrews and Witney 2003, Parry et al. 2003, Raines 
2006). Attempts to engineer a better Rubisco could be 
further complicated owing to different complexities like 
species specificity of Rubisco activase, need for different 

activase inhibitors, proteins, etc. (Spreitzer 2003). Some 
tight binding inhibitors of Rubisco like CA1P (2-carbo-
xyarabinitol-1-phosphate) accumulate under stress condi-
tions and are responsible for low Rubisco activity, release 
of which can be affected by another enzyme Rubisco 
activase (Keys et al. 1995, Medrano et al. 1997). In 
addition to decreasing the activity of Rubisco such inhi-
bitors also confer protection from oxidative or proteolytic 
damage (Khan et al. 1999). Elucidating biosynthetic and 
degradative pathways for the synthesis or degradation of 
these inhibitors can help modulate Rubisco activity and 
stability (Parry et al. 2008).  

 
Rubisco activase (RA) 
There is evidence to show that Rubisco activation in C3 
plants markedly decreases above 30–35oC (Robinson and 
Portis 1988). It is also well known that limitation of 
photosynthesis at high temperature owes much to 
susceptibility of enzyme RA rather than Rubisco itself 
(Feller et al. 1998, Rokka et al. 2001). RA therefore is an 
important component to be addressed in order to improve 
photosynthetic performance under high temperatures – 
a likely condition under changing climate scenario. Over-
expression of RA or changing it to a more stable form is 
expected to impart advantage under moderate heat stress 
(Parry et al. 2003). Since certain C4 plants are known to 
be photosynthetically active even at critically high tem-
perature up to 48oC, it is suggested that these could be a 
source of RA for plants under hot environment (Raines 
2006). RA with increased thermostability produced by 
DNA shuffling resulted in increase in photosynthetic 
rates and leaf area (Zhu et al. 2005). 
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Carbonic anhydrase (CA) 
CA has a role in catalyzing reversible conversion of CO2 
and HCO3

– in the leaf tissues of both C3 and C4 plants. In 
C3 plants, it is believed to facilitate diffusion of CO2 
across the chloroplast membrane (Price et al. 1994, 
Williams et al. 1996). In C4 plants, PEPCase uses HCO3

– 

as its primary substrate for fixation of CO2 into oxal-
acetate, a conversion accomplished by CA in the meso-
phyll cell cytosol (von Caemmerer et al. 2004). In the 
absence of cytoplasmic CA, photosynthesis in C4 plants 
was reported to slow down by a factor of 104 (Badger and 
Price 1994). 

Three evolutionarily unrelated families of CAs, viz.  
α-, β - and γ-CA are reported from higher plants, algae 
and cyanobacteria (Moroney et al. 2001). While all of the 
three types are present in higher plants, only α-CA and  
β-CA have been reported from cyanobacteria and α-CA 
from animals. Arabidopsis database shows nearly 

14 genes potentially encoding CA (Moroney et al. 2001). 
CA represents 1–20% of the total soluble protein which 
put it next only to Rubisco protein (Tiwari et al. 2005). In 
aquatic angiosperms and algae, CA located external to 
cell membrane plays a key role in facilitating CO2 to enter 
the cell surface. Since HCO3

- is the predominant species 
at alkaline pHs, the periplasmic CA are critical for both 
active and passive entry of CO2 into the cell (Badger 
2003). In cyanobacteria, carboxysomal CA supplies CO2 

to Rubisco. Absence of CA in certain regions helps 
HCO3

- to accumulate in high concentrations, thereby 
minimizing leakage of CO2 (Badger 2003). Much needs 
to be understood regarding the number, location and 
physiological roles of the CAs in different organisms. In 
most of the discussions on biotechnological approaches 
aiming to transfer C4-like features into C3 plants, CA has 
received much less attention (Häusler et al. 2002). 

 
Can we do away with photorespiration? 
 
If oxygenase reaction of Rubisco is merely a waste of 
carbon resource, eliminating it by impairing one of the 
associated enzymes or reaction of the pathway could 
perhaps be a simpler option to inhibit photorespiration. 
However, work carried out in this direction revealed that 
mutants lacking any one of the associated enzyme of 
photorespiratory metabolism do not survive, except under 
conditions of high CO2 or low oxygen – both conditions 
decrease oxygenation (Somerville 2001). Attempt to 
reduce the activity of glycine decarboxylase, which is one 
of the associated enzymes of photorespiration, has 

resulted in reduction in photosynthesis and growth rates 
(Henkes et al. 2001). Leaves of some high altitude plants 
are shown to operate photorespiratory cycle as one of 
several other strategies to provide strong electron sink for 
photoprotection (Streb et al. 1998). Photorespiratory 
cycle may also provide metabolites for other metabolic 
processes, such as glycine for the synthesis of glutathione 
which has a role in stress protection (Wingler et al. 
2000). Therefore, important thing is not to do away with 
photorespiration but to recapture carbon of the 
photorespiratory cycle.  

 
Exploiting the underutilized photosynthetic capacity in plants  
 
History of intensive selection to increase crop yield over 

the past century has not shown any increase in the rate of 
photosynthesis per unit leaf area. Increase in yield capa-
city instead relates better to increase in photosynthesis 
per unit ground area as a result of increases in leaf area 
and nitrogen content (Reynolds et al. 2000) due to 
application of nitrogen fertilizer. Total photosynthesis 
and its underutilized capacity in plants therefore remains 
a great potential to be tapped. 

Decades of research has shown that older wheat 

cultivars were severely sink-limited, a situation that has 
not improved appreciably in modern cultivars. Sink 
potential in crop plants can however be enhanced by 
genetic improvement in radiation-use efficiency under 
different stages of growth and fluctuating environmental 
conditions (Reynolds et al. 2000). It has been suggested 
that improved radiation use efficiency may not only 
increase the total assimilates available for spike growth as 
in case of wheat but could minimise floret abortion 
affected by underutilized photosynthetic capacity during 
grain filling (Reynolds et al. 2009). Sink strength of crop 

plants could also be improved by manipulating the spike 
morphology (number of spikelets/spike, increased grain 
number and size) (Dencic 1994, Reynolds et al. 2000). 
Optimizing composition of the photosynthetic apparatus, 
as well as leaf nitrogen distribution, throughout the 
canopy could make photosynthesis equally efficient at 
different light intensities (Evans 1993, Zhu et al. 2010). 
Improved yield potential in modern maize owes largely to 
tolerance of photosynthesis to low temperatures during 
the early part of the day and soil moisture deficits during 
grain filling (Tollenaar and Wu 1999). Studies conducted 
on cotton and bread wheat showed stomatal conductance 
related positively to crop yield during period of heat 
stress (Lu et al. 1998), and the trait can serve to screen 
better cultivars for higher temperature regimes.  

Photosynthetic rate of the whole canopy can be 
enhanced by manipulation of leaf angle, which is under 
relatively simple genetic control, regulated by only two to 
three genes (Reynolds et al. 2000). In wheat again, erect 
leaf lines showed improvement in both biomass and grain 
yield compared to control (Innes and Blackwell 1983). 
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Some other traits that could be targeted for crop 

improvement may include delaying leaf senescence or 
extending crop duration and the timing of crop develop-
ment to suit the type of environment in which crop is 
grown (Richards 2000). By delaying leaf senescence in 
genetic variants in Sorghum, deconstruction of the 
photosynthetic apparatus during leaf senescence could be 
partially or completely prevented (Thomas and Howarth 
2000). Suppression of drought-induced leaf senescence in 
transgenic plants (Nicotiana tabaccum), by expressing an 
isopentenyltransferase gene, resulted in outstanding 
drought tolerance, accompanied by vigorous growth after 
a long drought period that killed the control plants. Such 

drought-tolerant crops can grow under restricted water 
regimes without diminution of yield (Rivero et al. 2007). 

Finally, global climate change is expected to increase 
the frequency and severity of abiotic constraints, leading 
to greater prevalence or incidences of drought and or 
temperature stresses, water logging, and salinity. The 
renewed agricultural goals call for engineering more 
versatile and resilient crops, tolerant to environmental 
stresses like drought, submergence, salt or metal toxicity, 
in addition to improving yield potential from both 
irrigated and nonirrigated lands (Herring 2008, Takeda 
and Matsuoka 2008).  

 

Conclusion 
 

Meeting future world food demand banks heavily on 
biotechnological approaches important among which is to 
improve photosynthesis or exploit its underutilized 
capacity in plants. The inefficiency of C3 photosynthesis, 
which owes largely to the bifunctional character of 
Rubisco and its low catalytic rates, could greatly be im-
proved taking examples from photosynthetic organisms 

where such limitations have successfully been overcome. 
Apart from improving CO2 sequestration, optimizing 
photosynthetic performance in relation to different 
stresses like temperature and drought could also 
appreciably enhance yield potential of crops under field 
conditions. The enormous plasticity found within photo-
synthetic organism offers some clues in this regard. 
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