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Abstract 
 
To determine how the use of a given rootstock can influence the functioning of the photosynthetic apparatus of the scion 
under salt stress, the growth, gas exchange, photosystem II (PSII) efficiency, xanthophyll cycle, and chloroplast 
ultrastructure of nongrafted, self-grafted, and pumpkin-grafted (hereafter referred to as rootstock-grafted) cucumber 
(Cucumis sativus L.) plants were investigated at day 15 after being treated with 90 mM NaCl. The reductions in plant 
growth of the rootstock-grafted plants were lower than those of the nongrafted and self-grafted plants under 90 mM 
NaCl. The net photosynthetic rate, stomatal conductance, maximal and effective quantum yield of PSII photochemistry, 
photochemical quenching coefficient, and effective quantum-use efficiency of PSII in the light-adapted state of the 
nongrafted and self-grafted plants were significantly decreased under 90 mM NaCl. However, these reductions were 
alleviated when the cucumber plants were grafted onto the pumpkin (Cucurbita moschata Duch.) rootstock. The 
intercellular CO2 concentrations were significantly increased in the nongrafted and self-grafted plants under 90 mM 
NaCl, whereas it was decreased in the rootstock-grafted plants. Nonphotochemical quenching (NPQ) and the de-
epoxidation state of the xanthophyll cycle were significantly increased under 90 mM NaCl, particularly in the rootstock-
grafted plants, suggesting the rootstock-grafted plants had higher potential to dissipate excess excitation energy and 
reduce the probability of photodamage to PSII. Under 90 mM NaCl, the number of grana was reduced, the thylakoids 
were swollen, and starch granules accumulated in all plants. However, the damage of chloroplast ultrastructure was 
alleviated in the rootstock-grafted plants. Taken together, the use of C. moschata rootstock alleviated salt stress in 
cucumber plants by delaying photoinhibition, probably due to a lower incidence of both stomatal and nonstomatal 
factors limiting photosynthesis. 
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Introduction 
 
Salinity is one of the major abiotic stresses that reduce 
the crop growth and productivity of many plants 
(Yamaguchi and Blumwald 2005, Shabala and Cuin 
2008). The inhibition of plants growth under saline 
conditions often involves a decrease in their photo-
synthetic capacity (Yang et al. 2008, Zhang et al. 2009). 
The reduced photosynthesis is caused not only by 

stomatal closure, but also by nonstomatal factors that 
reduce PSII efficiency (Neves et al. 2008). The salt stress 
causing the reduced PSII efficiency is associated with the 
PSII complex, primary charge separation in PSII, and 
pigment-protein complexes of the thylakoid membranes 
of chloroplasts (Misra et al. 2001), as well as the PSII 
activity (Lu and Vonshak 2002), and the quantum yield 
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of PSII electron transport (Xia et al. 2004). A con-
sequence of the salinity-induced limitation of photo-
synthetic capacity is the exposure of plants to excess 
energy, which, if not safely dissipated, may be harmful to 
PSII because of an over-reduction of reaction centers 
(Demmig-Adams and Adams 1996, Foyer and Noctor 
2005). 

To protect the photosynthetic apparatus from photo-
damage under stress conditions, plants have evolved  
a variety of regulatory mechanisms to minimize the 
harmful effects of excess energy (Niyogi 1999, Ort and 
Baker 2002). The thermal dissipation of excess irradi-
ance, measured as nonphotochemical quenching (NPQ), 
is of paramount importance in the protection of the 
photosynthetic apparatus against the deleterious effects of 
excess light (Jiang et al. 2006). Xanthophylls play  
a critical role in generating NPQ, and the extent of NPQ 
in leaves is correlated with the levels of zeaxanthin (Z) 
and antheraxanthin (A) (Demmig-Adams and Adams 
1996), which are formed from violaxanthin (V) through 
the xanthophyll cycle (Pfündel and Bilger 1994). In this 
process, the excess energy is harmlessly dissipated as 
heat, thereby protecting the photosynthetic apparatus 
against photoinhibition. The ameliorative effects of the 
xanthophyll cycle on the photosynthesis of plants have 
been studied under salt stress (Qiu et al. 2003). However, 

few studies are concerned with the role of the xanthophyll 
cycle in grafted plants under salt stress. 

Recently, the use of salt-tolerant rootstock was 
demonstrated to be a valid strategy in increasing the salt 
tolerance of fruit bearing vegetables, such as tomato 
(Estañ et al. 2005), eggplant (Bai et al. 2005), cucumber 
(Zhu et al. 2008a), watermelon (Yetisir and Uygur 2010), 
and melon (Edelstein et al. 2011). The increased salt 
tolerance could be attributed to the reduced transport of 
Na+ and/or Cl– to the scion (Estañ et al. 2005, Zhu et al. 
2008a, Edelstein et al. 2011). It was also suggested that 
the improved salt tolerance of grafted plants was related 
with the enhancement of antioxidant enzymes activity, 
organic solutes accumulation, and gas-exchange capacity 
(He et al. 2009, Huang et al. 2009a, Zhen et al. 2010). 
However, data on the effects of functioning of the 
photosynthetic apparatus in plants exposed to salinity 
were limited. 

The current study aims to determine how the use of a 
given rootstock can influence the functioning of the 
photosynthetic apparatus of the scion under salt stress, by 
measuring the changes in growth, net photosynthetic rate 
(PN), PSII efficiency, the de-epoxidation state of the 
xanthophyll cycle, and the chloroplast ultrastructure of 
non-, self-, and rootstock-grafted cucumber plants under 
0 and 90 mM NaCl treatments. 

 
Materials and methods 
 
Plant material and growth conditions: The present 
study was conducted in a greenhouse from September to 
November 2009 at Huazhong Agricultural University. 
During the experimental period, the air temperature was 
18–30°C, the relative humidity was 60–70%, and the 
photon flux density (PFD) average was 293 μmol m–2 s–1 
with a photoperiod of 13 h d–1. The salt-sensitive 
cucumber (Cucumis sativus L.) cv. Jinchun No. 2 (Tian-
jin Kernel Cucumber Research Institute, Tianjin, China) 
was grafted onto a salt-tolerant pumpkin (Cucurbita 
moschata Duch.) cv. Chaojiquanwang (Tangshan Four 
Seasons Seed Industry, Hebei, China) (hereafter referred 
to as rootstock-grafted plants). The nongrafted and self-
grafted cucumber plants were used as controls. 

The seeds of the rootstock Jinchun No. 2 (for self-
grafting) and Chaojiquanwang were sown on September 
2 and 8 in 50-cell seedling plug trays filled with a 2:1 
(v/v) mixture of peat and perlite, respectively. The seeds 
of the scion and nongrafted plants were both sown on 
September 12. The insert grafting method of Lee (1994) 
was performed five days after the cucumber scion seeds 
were sown, and then, the grafted plants were cultivated as 
described by Zhu et al. (2008a). 

After the graft had been established, uniform seed-
lings that had two expanded leaves were transferred to 
plastic containers (63 cm × 36.5 cm × 19 cm, 8 plants per 
container) filled with 25 L of half-strength Hoagland 
solution (Hoagland and Arnon 1950). Nine days after 

transplantation, the seedlings were exposed to 0 mM or 
90 mM NaCl for 15 days. The salt concentrations in the 
nutrient solution were increased at 30 mM d–1 increments 
until the final concentration (90 mM NaCl) was achieved. 
Each treatment was replicated six times with one 
container having 8 plants each per replicate, and all 
treatments were arranged in a completely randomized 
block design. The management of the nutrient solution 
during the experimental period was the same as described 
by Zhu et al. (2008b). 

 
Plant growth parameters: After 15 days of salt treat-
ment, six plants per treatment were harvested, and the 
roots were rinsed in deionized water and carefully blotted 
with tissue paper. After the plant height and stem 
diameter were measured, the plants were divided into 
leaves, stems, and roots. The leaf area was determined 
using a leaf area meter (LiCOR-3100, LI-COR Inc., 
Lincoln, NE, USA). The shoots (leaves and stems) and 
roots were dried at 70°C for 48 h to constant mass, and 
their dry masses were recorded. 

 
Gas-exchange measurements: PN, stomatal conductance 
(gs), intercellular CO2 concentration (Ci), and transpi-
ration rate (E) were measured from the youngest fully 
expanded leaves using a portable CIRAS-2 photosynthesis 
system (PP-Systems, Hitchin, UK) (Li et al. 2009). The 
CO2 concentration, relative air humidity, PFD, and leaf 
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temperature were maintained at 350 μmol(CO2) mol–1, 
80–90%, 800 μmol(photon) m–2

 s–1, and 25°C, 
respectively. 

 
Chlorophyll (Chl) fluorescence was measured on the 
same leaves used for gas-exchange determinations using 
a FMS-2 fluorometer system (Hansatech, King’s Lynn, 
UK). The minimal fluorescence (Fo) was measured by 
exposing the leaves of dark-adapted (30 min) plants to 
modulated red light. The maximal fluorescence values of 
the dark-adapted (Fm) and light-adapted (Fm’) states were 
measured by 0.8-s saturating pulses (3,000 μmol m−2 s−1). 
After the Fm’ measurement, the actinic light (400 μmol 
m−2 s−1) was switched off and the far-red light was turned 
on for 3 s to measure the minimal fluorescence of the 
light-adapted state (Fo’). The steady-state fluorescence 
level during exposure to natural illumination (Fs) was 
also measured. Using these parameters, the following 
ratios were calculated: the maximal quantum yield of 
PSII photochemistry, Fv/Fm = (Fm − Fo)/Fm; the effective 
quantum-use efficiency of PSII in the light-adapted state, 
Fv’/Fm’ = (Fm’ − Fo’)/Fm’; the quantum yield of PSII 
photochemistry, ΦPSII = (Fm’ − Fs)/Fm’; the photochemical 
quenching, qP = (Fm’ − Fs)/(Fm’ − Fo’); and nonphoto-
chemical quenching, NPQ = (Fm − Fm’)/Fm’. 

 
Xanthophyll pigment analysis: The leaves were im-
mersed in liquid nitrogen immediately after Chl fluores-
cence determination and stored at –80°C until use. 
Photosynthetic pigments were extracted from leaves with 
80% ice-cold acetone. The xanthophyll pigments (V, A, 
and Z) were separated and qualified essentially following 

the method of Guo et al. (2006). The extracts were 
centrifugated at 10,000 × g for 3 min and the supernatants 
were filtered through a 0.45 μm membrane filter before 
injection into high-performance liquid chromatography 
(ProStar 230, Varian Inc., CA, USA). The de-epoxi-
dation form for the xanthophyll cycle was expressed as 
(A + Z)/(V + A + Z). 

 
Electron microscopy: The leaf blade segments (2 mm × 
2 mm) were fixed for 2 h with 2.5% (v/v) glutaraldehyde 
in 0.1 M of phosphate buffer (pH 7.2) followed by 2 h in 
2% (w/v) osmic acid. After dehydration in a graded 
ethanol series up to 100% ethanol, the samples were 
embedded via propylene oxide in low-viscosity Spurr’s 
resin. The ultrastructure was evaluated on transverse 
ultrathin sections of embedded objects contrasted with 
a saturated solution of uranyl acetate in 70% (v/v) 
aqueous ethanol, followed by a lead citrate solution 
treatment using a transmission electron microscope (H-
7650, Hitachi Ltd., Tokyo, Japan) at an operating voltage 
of 70 kV (Reynolds 1963). 

 
Statistical analysis: All of the parameters were measured 
with six replicates per treatment from different containers 
(n = 6). Statistical analysis was performed using the SAS 
9.1 software (SAS Institute, Cary, NC, USA). The diffe-
rences between the means were established using 
Duncan’s multiple range test (p<0.05), the linear 
correlation analysis was subjected to a correlation 
between the (A + Z)/(V + A + Z) ratio and NPQ was 
assayed using the SAS 9.1 software. 

 
Results 
 
Plant growth: No significant difference was observed in 
shoot dry mass, shoot/root ratio, and leaf area between 
the nongrafted and self-grafted treatments (Table 1). 
Although plant height, stem diameter, shoot dry mass, 
and leaf area were significantly reduced for all plants 
under the 90 mM NaCl treatment, the reduction in the 

nongrafted and self-grafted plants was more severe than 
those in the rootstock-grafted plants. Compared with 
those under the 0 mM NaCl treatment, the plant height, 
stem diameter, shoot dry mass, and leaf area of the self-
grafted plants under the 90 mM NaCl treatment decreased 
by 32%, 21%, 64%, and 67%, respectively. However, the  

 
 
Table 1. Plant growth of the nongrafted, self-grafted, and rootstock-grafted cucumber seedlings under 0 and 90 mM NaCl stress. 
Measurements were performed at day 15 after NaCl treatment. Data are the mean ± SE (n = 6). Values in each column followed by 
the same letters are not significantly different (p>0.05) according to Duncan’s multiple range test. 
 

Treatment Plant height [cm] Stem diameter [cm] Shoot dry mass [g] Root dry mass [g] Shoot/root ratio Leaf area [cm2] 

0 mM       

Nongrafted 127.75 ± 2.82a 0.61 ± 0.02ab   9.74 ± 0.77b 1.23 ± 0.12a   7.99 ± 0.32bc 2,039.54 ± 195.57c

Self-grafted 128.77 ± 4.16a 0.62 ± 0.02ab 10.87 ± 1.02b 1.30 ± 0.15a   8.62 ± 0.70b 2,789.82 ± 172.50b

Rootstock-grafted 135.63 ± 6.22a 0.65 ± 0.05a 15.71 ± 1.99a 1.43 ± 0.20a 11.06 ± 0.39a 3,810.39 ± 347.67a

90 mM       

Nongrafted   82.80 ± 3.33c 0.48 ± 0.03c   3.85 ± 0.24c 0.49 ± 0.06b 8.26 ± 0.82b    868.04 ± 66.62d 
Self-grafted   86.92 ± 4.35c 0.49 ± 0.02c   3.86 ± 0.36c 0.51 ± 0.02b 7.60 ± 0.74bc    917.53 ± 88.17d 
Rootstock-grafted 106.13 ± 3.66b 0.53 ± 0.04bc   7.73 ± 0.82b 1.25 ± 0.15a 6.26 ± 0.22c 1,774.50 ± 104.40c
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photosynthetic apparatus from excess of energy and 
partial stomatal closure (Ghanem et al. 2008). On the 
other hand, in the nongrafted and self-grafted plants, 
these mechanisms were less effective at this time point, 
probably because of more stomatal closure and growth 
impairment in the plants. These data agree with the 
hypothesis recently stated in tomato (Pérez-Alfocea et al. 
2010). 

The xanthophyll cycle-dependent nonconstitutive 
thermal dissipation is an important component of NPQ, 
which is a vital photoprotective process during various 
adverse environmental stresses (Qiu et al. 2003, Jiang  
et al. 2006, Zhou et al. 2006). In the current study, the Z 
level was significantly increased by the de-epoxidation of 
V under salt stress, particularly in the rootstock-grafted 
plants (Fig. 3A,B). The rootstock-grafted cucumber plants 
showed higher NPQ levels and xanthophyll cycle 
capacities, which suggests that thermal dissipation safely 
and effectively removes excess excitation energy when 
the cucumber plant is grafted onto a salt-tolerant root-
stock, thereby delaying photoinhibition (Fig. 2A). 

Electron microscopy showed that chloroplasts were 
significantly affected in the leaves of the NaCl-treated 
plants. Under the 90 mM NaCl treatment, the thylakoid 
membranes were swelled and the starch content was 
increased (Fig. 5). This response was similar with the 
ultrastructural observations of NaCl-treated wheat 
cultivars (Salama et al. 1994). The starch accumulation 

may be attributed to the higher rate of assimilate 
synthesis than the rate of assimilate export from the leaf 
(He et al. 1994). Compared with those of the rootstock-
grafted plants, the larger starch grains of the nongrafted 
and self-grafted plants were a reflection of the inability of 
salinity-affected cells to mobilize starch. The immobili-
zation could be due to either membrane disorders, 
resulting in an increase in membrane permeability, or to 
destruction of enzymes, which could decrease photo-
synthesis (Strid et al. 1990). When cucumber plants were 
grafted onto salt-tolerant rootstocks, the deleterious effect 
was mitigated. The ultrastructure alteration of the chloro-
plast in the nongrafted and self-grafted plants was at least 
partially caused by excess excitation energy that was not 
dissipated effectively. 

In conclusion, the use of C. moschata rootstock 
alleviates salt stress in cucumber plants by delaying 
photoinhibition during the osmotic phase of salinity 
(15 days of salinity), probably due to a lower incidence of 
both stomatal and nonstomatal factors that limit photo-
synthesis. Hormonal and nutritional signals inherent to 
the rootstock affecting source and sink relations could be 
the basis for better regulation of scion processes under 
saline conditions. Furthermore, the similar responses of 
the nongrafted and self-grafted cucumber plants to salt 
stress suggest that the improved salt tolerance of the 
rootstock-grafted plants was more affected by the 
rootstock than the grafting itself. 
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