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Abstract 
 
Leaf canopy plays a determining role influencing source-sink relations as any change in source activity (photosynthesis) 
affects sink metabolism. Defoliation (removal of leaves) influences growth and photosynthetic capacity of plants, 
remobilizes carbon and nitrogen reserves and accelerates sink metabolism, leading to improved source-sink relations. 

The response of plants to defoliation could be used to manipulate source-sink relations by removing lower and 
senescing leaves to obtain greatest photosynthetic capacity and efficient carbon and nitrogen metabolism under optimal 
and stressful environments. The present work enhances our current understanding on the physiological responses of 
plants to defoliation and elaborates how defoliation influences growth, photosynthetic capacity and source-sink relations 
under optimal and changing environmental conditions. 
 
Additional key words: carbon, defoliation, nitrogen, photosynthetic potential, sink, source. 
 
Introduction 
 
Productivity of crop plants depends on the efficiency of 
photosynthesis, translocation of assimilates and formation 
of active sinks. Photosynthetic green organs (leaves), the 
machinery for assimilate production, act as source while 
seeds is one of the most important sinks. There are 
several factors affecting source-sink relations. For 
example, the efficiency of photosynthetic machinery 
(e.g., the efficiency of photosynthetic conversion of inter-
cepted light into biomass), the availability of nitrogen (N) 
and balance between carbon (C) and N all play a vital 
role in determining source potential. The source activity 
drives sink metabolism and is related to the optimal use 
of C and N resources (Paul and Foyer 2001). A sink is 
generally supplied with photosynthate from a nearby 
source organ (leaves) and as growth proceeds new 
sources develop and the photosynthetic rate of older 
leaves declines (Wardlaw 1990). Older leaves have 
reduced photosynthetic functions and serve as a source of 
N and other nutrients for the plant. 

Leaves play an important role in determining photo-
synthetic potential and have significant effect on yield 
responses (Lawlor 2001). Any modification in plant  
 

canopy (the aboveground portion of plant) affects 
photons absorbed by plants and thus photosynthesis of 
individual leaves (Beadle et al. 1985). In a plant canopy, 
light-use efficiency decreases from apex to lower axis. 
Therefore, the photosynthetic potential of lower leaves on 
a plant axis is less than that of the upper leaves. Thus, one 
aspect of crop improvement is to maintain a critical leaf 
number and leaf area for the greatest photosynthetic 
capacity and most efficient metabolism (Lone et al. 
2008). The critical leaf number or leaf area may be 
maintained by the partial removal of leaves. The removal 
of leaves, partial or complete, has been defined as 
defoliation, an old practice in many parts of world. It 
provides an opportunity for the photosynthetically active 
younger leaves to grow, efficiently utilize available water 
and mineral nutrients and influence source-sink relations 
(Khan et al. 2007). Several reviews have covered diffe-
rent aspects of source-sink relations, such as the control 
of source/sink capacity or the regulation of photosyn-
thetic machinery and sink system (Austin and Edrich 
1975, Koide and Ishihara 1992, Nakano et al. 1995, Paul 
and Foyer 2001, Khan et al. 2007). The present review  
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focuses on various physiological responses of plants to 
defoliation and the influence of defoliation in the 

regulation of source-sink relations under optimal and 
changing environmental conditions. 

 
Lower leaves as photosynthetic sink 
 
Photosynthetic capacity of leaves is dependent on their 
position on the plant axis. Studies on mustard (Brassica 
juncea L.) have shown that leaves in the middle layer of 
plant axis caused overshadowing effect on the lower 
leaves, which received less light (Khan et al. 2002b). 
B. juncea is characterized by large number of broad, 
oblong-shaped leaves present in the lower layer of the 
plant axis (Weiss 1983). Murchie et al. (2002) reported 
that in C3 grasses in the upper layer leaf age acts as  
a limiting factor for photosynthesis, while acclimation to 
light was the dominant factor for the lower canopy layer. 
Leaves make a substantial contribution to seed yield up to 
flowering and at later stage the other green tissues take up 
the ability to compensate for the leaf removal by 
increasing their photosynthetic rate (Freyman et al. 1973, 
Clarke 1978). The removal of lower leaves increases the 
source-sink ratio, i.e., photosynthate production: photo-

synthate consumption, by reducing the competition for 
light and increasing the relative demand for photosyn-
thates on the remaining leaves. Gautier et al. (1999) 
reported that competition for light reduced the light inter-
ception by plant and also changed the spectral composi-
tion of light. Such a change in light quality results in 
morphogenetic responses in plants mediated through 
different photoreceptors and photosynthetic pigments. 

A number of studies have shown that defoliation of 
older and senescing leaves allows the growth of func-
tional and efficient leaves (Hortensteiner and Feller 2002, 
Carlos 2006, Khan et al. 2007). This increases the 
photosynthetic potential of the remaining leaves and leads 
to enhanced biomass accumulation and seed yield. Khan 
and Ahsan (2000) working on B. juncea showed that 
eliminating the cost of maintaining senescing leaves by 
leaf removal may lead to increased plant yield. 

 
Physiological changes associated with defoliation 
 
Compensatory growth is defined as the restoration of 
morphological and physiological changes that occur in 
plants following defoliation (Collin et al. 2000). 

Root system experiences the imbalance in growth and 
allocation of reserves following defoliation. Following 
defoliation root growth is reduced, while leaf regrowth is 
maintained by the increase in the allocation of reserves 
from root to shoot (Ourry et al. 1988). Studies on rye-
grass (Lolium perenne L.) showed defoliation-induced 
reduction in root growth, diversion of assimilates (Ennik 
and Hofman 1983) and remobilization of N compounds 
from root and stubble to leaf (Millard et al. 1990). 

Moderate defoliation overcoming a threshold value 
results in the emergence of new leaves with modified 
assimilatory capacity and stimulates relative growth rate 
(Oesterheld 1992, Zhao et al. 2008). Alados et al. (1997) 
reported an enlargement of the stem, increase in leaf and 
flower number, greater vegetative growth and inflores-
cence length in albaida (Anthylis cylisoides L.) after 10% 
and 50% leaf removal by clipping. In white clover 
(Trifolium repens L.), defoliation of 1, 2, and 4 leaves for 
36 days increased stolon elongation rate, leaf area, root 
mass, leaf number, and stolon number, but total nonstruc-
tural carbohydrate decreased with the lower supply of 
phosphorus (P). However, the loss was restored by 
increasing P supply (Singh and Sale 1997). 

Various mechanisms have been proposed for compen-
satory growth, such as higher photosynthetic rate, stoma-
tal conductance and delayed senescence (Striker et al. 
2008). Defoliation reduces the photosynthetic ability of 
plants and it is restored through compensatory growth 
which allocates more C to the aboveground biomass. 

Zhao et al. (2008) have shown compensatory growth of 
clonal tissues (rhizomes) in chinese lyme grass [Leymus 
chinensis (Trin.) Tzvelev] after partial defoliation of 20% 
and 40% leaves. Defoliation up to 40–50% in T. repens 
increased the emergence and the development of young 
leaves at maturity (Marriott and Haystead 1990). An 
increase in leaf number and leaf area with partial defolia-
tion (4 and 8 mature leaves) in burnet (Sanguisorba 
minor Scop.) was reported (Doughlas et al. 1994). The 
source and sink restriction due to defoliation (removal of 
both leaf and flower at full flowering stage) is 
compensated for by enhanced flowering in soybean 
(Glycine max. L.) (Saitoh et al. 2001). Defoliation of 50% 
lower leaves on plant axis at preflowering, i.e., 40 d after 
sowing (DAS), in B. juncea resulted in enhanced photo-
synthesis and growth in the remaining leaves (Khan et al. 
2002a). Quentin et al. (2011) have reported that removal 
of 45% of leaf area of blue gum (Eucalyptus globulus 
Labill.) was compensated by the increased photosynthetic 
rate, improved water relations and increased utilization of 
carbon assimilates. 

Compensating for tissue removal, especially after 
intense defoliation, requires large amounts of energy 
investment (Reichman and Smith 1991), which is derived 
from reallocating energy stored in the remaining leaves, 
shoots, and roots of the damaged plants (Liu et al. 2007). 
The defoliation for 3–5 d at sufficient N supply resulted 
in the increase in protein content and total nonstructural 
carbohydrate in roots of red fescue (Festuca rubra L.) 
Paterson and Sim 2000); it also leads to increased 
reallocation to aboveground parts, allowing them to grow 
faster. Schnyder and Visser (1999) reported that rapid 
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regrowth was associated with the transient changes in 
water-soluble carbohydrates and C:N ratio with the 
removal of eight mature tillers in T. repens. During 
regrowth P remobilization may be another factor to 
compensate for the loss due to defoliation. P remobiliza-
tion from stubble, crown and root compartments to the 
regrowing tissues after defoliation (removal at 4-cm 
height) in grasses resulted in compensatory growth under 
P deficiency (Oyarzabal and Oesterheld 2009). 

Compensatory growth may also occur through 
synthesis of carbohydrates. Kim et al. (1993) reported 
that shoot removal in alfalfa (Medicago sativa L.) at 6 d 
resulted in the decrease in N-fixation and starch reserves 
in tap roots. However, shoot regrowth started after 14 d 
and starch content recovered to 50% of the initial value 
on day 24. In grasses, the compensatory regrowth 
occurred through the preferential allocation of assimilate 
and remobilization of C storage compounds, from leaf 
blades, crowns and roots to support recovery of pho-
tosynthetic capacity (Johansson 1993). A study by 
Pammenter and Allison (2002) has shown that defoliation 
of alternate fully emerged laminae of sugarcane 
(Saccharum officinarum L.) at 155 d decreased the 
laminae area by 40% and also resulted in proportional 
partitioning of assimilate in leaves and stem with 
increased accumulation of sucrose. 

 
C and N allocation: C and N metabolisms are highly 
integrated and regulated processes (Huppe and Turpin 
1994, Noctor and Foyer 2000, Khan et al. 2007). 
Defoliation results in change in the demand for photo-
synthesis and may influence C partitioning. C export in 
leaves has been found to be positively correlated to 
photosynthesis in different plant species including cotton 
(Gossypium hirsutum L.) (Hendrix and Huber 1986), 
sugar beet (Beta vulgaris L.) (Servaites et al. 1989), 
sorghum (Sorghum bicolor L.) and L. perenne (Wardlaw 
1990). The responses of plants to shortage of C brought 
about by defoliation (moderate or heavy) generally 
increases allocation of resources to shoot growth than 
root growth (Yang and Midmore 2004). After heavy 
defoliation, daily carbon gain of the whole plant is 
reduced, and the plant allocates available C to the 
actively growing leaves and stems to strengthen the shoot 
sink (Wilsey 1996). Priority allocation of C and N 
resources to active shoots sink is the main adaptive 
response of plants to frequent defoliation, which results in 
regrowth after defoliation (Khan et al. 2007). Besides, 
plants undergoing partial defoliation require large amount 
of N to compensate for the growth and maintenance of 
new leaves. However, N remobilization and mineral N 
uptake during recovery after defoliation depend on N 
reserve status (Louahlia et al. 1999). 

The internal cycling of C and N compounds is of 
great importance during plant development and is also  
a prerequisite for regrowth after defoliation. In B. juncea, 
N uptake capacity of roots increased in order to meet the 

shoot N requirement, but only 50% of the applied N 
fertilizer recovered in the harvested seeds (Lone and 
Khan 2007). To increase N utilization efficiency the 
availabity of photosynthate is an important requirement. 
In a study on B. juncea the supply of 100 kg(N) ha–1  
at the time of sowing and 50 kg(N) ha–1 after flowering in 
plants defoliated at preflowering (40 DAS) has been 
shown to increase the activity of carbonic anhydrase and 
photosynthetic activity compared to no-defoliation plants 
(Khan and Lone 2005). Terashima and Evans (1988) have 
shown that the increase in the activity of carboxylating 
enzymes and photosynthetic activity was due to increased 
N content and N assimilation enzymes. Craft-Brandner  
et al. (1983) and Khan et al. (2007) reported an increased 
N allocation with the increase in N supply and increased 
activity of carbonic anhydrase and ribulose-1,5-bisphos-
phate carboxylase/oxygenase (Rubisco). The mechanism 
that optimizes the whole plant C to N balance may 
become an important strategy in the improvement of C 
and N acquisition (Khan et al. 2007). 

 
Photosynthetic functions: The maximum photosynthetic 
rate is a function of growth form and is inversely related 
to the leaf longevity (Archer and Tieszen 1980). The 
removal of the unproductive leaves earlier in seed 
development changes the assimilate balance within the 
plant and increases the photosynthetic activity in the 
remaining leaves. Photosynthetic responses of plants 
following defoliation are summarized in Table 1. 

Studies on B. juncea have shown that removal of 
shaded leaves (50% of lower leaves at 40 DAS) increases 
the supply of assimilate more than demand and thus 
improves growth and photosynthetic potential of the rest 
of the leaves (Khan et al. 2002b). Anten and Ackerly 
(2001) reported that partial defoliation (50 and 66% of 
leaves removed) in palm (Chamaedorea elegans Mart.) 
significantly increased the light available to the remaining 
leaves and light-saturated photosynthesis per unit leaf 
area by 10–18%. Recently, Li et al. (2010) reported that 
defoliation at flowering in chickpea (Cicer arietinum L.) 
when crop canopy is closed allows light penetration into 
deeper canopy and improves photosynthesis.  

Partial defoliation has rejuvenating effect on the 
remaining leaves, restoring the photosynthetic capacity to 
near the value of newly formed leaves (Wareing et al. 
1968, Khan et al. 2008). The plants after defoliation 
require more assimilates for regrowth which is balanced 
by the increased leaf assimilatory capacity and efficient N 
use (Lone and Khan 2007). Ryle et al. (1985) reported 
that recovery of N2 fixation in T. repens after removal  
of half of the shoot tissue was related to the re-
establishment and increased photosynthetic capacity after 
5, 6, or 9 d of regrowth.  

Joudi et al. (2006) reported that source restriction by 
defoliation of winter wheat (Triticum aestivum L.) 
increased net photosynthetic rate and chlorophyll (Chl) 
content of leaves, although the increase depended on the 
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Table 1. Response of photosynthetic characteristics to defoliation treatment in plants. (+) indicates positive effect and (-) indicates 
negative effect on plant characteristics. PN – net photosynthetic rate; gs – stomatal conductance; Chl – chlorophyll. 
 

Characteristics Plant Defoliation  Response Reference 

PN, gs Medicago sativa Partial defoliation + Hodgkinson (1974) 
Rubisco Phaseolus vulgaris Partial defoliation after full expansion of leaf + von Caemmerer and 

Farquhar (1984) 
PN Trifolium repens Defoliation by removing half their shoot tissue - Ryle et al. (1985) 
Rubisco Betula pendula Half of leaf lamina removed + Ovaska et al. (1993) 
Carbonic anhydrase, 
Rubisco 

Brassica juncea 30% defoliation in lower layers of plant + Khan (2002) 

PN, gs Triticum aestivum Defoliation at late tillering + Zhu et al. (2004) 
Photosynthesis Vitis vinifera Two-third defoliation from shoot lower part + Chanishvili et al. (2005)
PN, gs Brassica juncea Defoliating 50% of leaf from lower half of the 

plant 
+ Khan and Lone (2005) 

PN Acacia melanoxylon 50% of tree foliage + Medhurst et al. (2006) 
PN, plant mass Alnus tenuifolia Defoliation of 15, 25, or 40% leaf - Ruess et al. (2006) 
PN, gs, Chl Triticum aestivum Defoliating all leaves except the flag leaf or  

flag and penultimate leaf 
+ Ahmadi and Jaudi 

(2007) 
Rubisco Eucalyptus globules 50–70% defoliation + Turnbull et al. (2007) 
Photosynthesis, gs Eucalyptus pilularis, 

Eucalyptus cloeziana  
50% of green crown length + Alcorn et al. (2008) 

 
type of cultivars. Further, Ahmadi and Joudi (2007) have 
reported positive effect of various intensities of defolia-
tion performed at booting, anthesis and 20 d after anthesis 
in winter wheat. They found that Chl content and N 
remobilization in defoliated wheat plants increased at 
20 d after defoliation compared to nondefoliated plants. 
The removal of all leaves at anthesis stage even did not 
reduce grain yield and grain protein significantly. It was 
found that spike photosynthesis and increased photoassi-
milate partitioning towards grain were responsible for 
sustained grain growth in this condition. Turnbull et al. 
(2007) reported increased leaf N content and photo-
synthesis of E. globulus following partial defoliation. An 
increase in Chl concentration was suggested as a reason 
for photosynthetic rejuvenation induced by partial 
defoliation (Wareing et al. 1968).  

An increase in stomatal conductance (gs) (Belesky 
and Hill 1997) and activity of Rubisco (Wareing et al. 
1968) are other reasons for the increase in leaves photo-
synthetic rate following partial defoliation. However, 
Khan and Lone (2005) reported that the higher increase in 
net photosynthetic rate (PN) in B. juncea plants defoliated 
at preflowering in comparison to the nondefoliated plants 
was due to mesophyll rather than stomatal effects. The 
increase in carbonic anhydrase (CA) activity and a con-
stant ratio of intercellular CO2 concentration to atmo-
spheric CO2 concentration suggested that the increase in 
net photosynthesis was due to mesophyll effects. The 
increase in CA activity increased Rubisco activity by 
increasing carboxylation reactions (Khan and Lone 
2005). Both CA and Rubisco were higher by 71.7% and 
140.0%, respectively over control after 30% defoliation 
of lower leaves at 40 DAS in B. juncea (Khan 2002). The 

increased carboxylating activity has been shown to be 
due to increased enzyme synthesis and higher leaf protein 
content after defoliation. This was due to reduced 
competition between leaves for mineral nutrients and 
metabolites supplied by the roots (Wareing et al. 1968). 
The increase in Rubisco (in C3 plants) and PEP carbo-
xylase activity (in C4 plants) following partial defoliation 
and a parallel increase in net photosynthesis suggests that 
saturating levels of these enzymes were not present in the 
leaves of the control plants (Wareing et al. 1968). 
Defoliation influences the growth of C3 and C4 species 
differently. Boryslawski and Bentley (1985) reported that 
the regrowth biomass of western wheatgrass-rosana 
(Agropyron smithii Rydb.) (C3 species) shoots was 38% 
lower in clipped plants than in unclipped plants, 
compared to only 9% lower in blue grama (Boutelou 
gracilis L.) (C4 species). C4 plants accumulate greater 
quantities of carbohydrate than C3 plants (Downton 
1971). This 'extra' photosynthate could be used  
for regrowth following defoliation. An added advantage 
of the C4 system is that its net photosynthesis, compared 
to C3 plants, is greatest in young foliage (Long et al. 
2006). Thus, the new foliage produced in response to 
defoliation would replenish the carbohydrate reserves 
more rapidly in C4 species than in C3 species. 

 
Sink strength: The term 'sink strength' refers to the capa-
city of phloem in the sink region to import assimilates 
from other parts of the plants and to release the imported 
substances into the sink apoplast. Photosynthates and N 
supply interact to control the development of leaves and 
the whole plant N acquisition provides the dominant basis 
for sink strength (Paul and Foyer 2001). Marcelis (1996) 
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Table 2. Response of biochemical, growth and yield characteristics to defoliation treatment in plants. (+) indicates positive effect and 
(-) indicates negative effect on plant characteristics. LA – leaf area, LFM – leaf fresh mass, LDM – leaf dry mass, NR – nitrate 
reductase, HI – harvest index, RGR – relative growth rate, SLA – specific leaf area. 
 

Characteristics Plant Defoliation  Response Reference 

Seed yield Vigna mungo Partial defoliation at vegetative and/or 
reproductive stage 

- Pandey and Singh (1981)

LA, LFM, LDM, NR 
activity 

Capsicum annuum Removal of all but one leaf + Vann et al. (1986) 

Grain yield and biomass Gossypium hirusitum and 
Zea mays 

Defoliation of 33% leaf (twice) - Yang and Midmore 
(2004) 

Grain yield and HI Triticum aestivum Defoliation at late tillering stage + Zhu et al. (2004) 
Leaf N and P content Eucalyptus pilularis and  

Eucalyptus cloeziana  
50% of green crown length + Alcorn et al. (2008) 

Nitrogen assimilation Brassica juncea Defoliation of 50% leaves from lower 
half of plant 

+ Lone et al. (2008) 

Higher RGR and 
compensatory 
photosynthesis 

Leymus chinensis Defoliation by 20% and 40% of arial 
mass removed 

+ Zhao et al. (2008) 

Regrowth and biomass 
production 

Agropyron spicatum Defoliation by 20% at 3 leaf stage and 
50% at peak standing crop 

+ Sheley and Svejcar (2009)

Regrowth of vegetative 
tissue 

Cicer arietinum Defoliation at vegetative growth + Li et al. (2010) 

LA and SLA,  
soluble sugars 

Eucalyptus globulus  
Labilladière 

Removal of 45% leaf area + Quentin et al. (2011) 

 
reported that formation of sink organs, i.e., tissues that 
receive nutrients, sugars and amino acids from other 
tissues determines partitioning of dry matter. 

The sink organs receive photoassimilates from source 
in the form of sucrose along a concentration gradient 
created by the uploading of osmotically active carbo-
hydrate within the source and unloading in the sink 
(Turgeon 2000). Manipulation of the source:sink ratio in 
T. aestivum during seed filling by defoliation provided 
evidence that plants experienced periods during the 
growing cycle when yield was mainly limited by the 
source strength, the sink capacity, or colimited by both 
(Borrás et al. 2004). Barimavandi et al. (2010) showed 
that yield response of maize (Zea mays L.) to defoliation 
depends on the intensity of defoliation, leaf position and 
stage of crop growth. Moser and Perry (1983) found 
reduction in total seasonal yield and tiller numbers of 
sand lovegrass (Eragrostis trichodes Nutt.) with multiple 
defoliation (seven harvesting treatment). Pandey (1984) 
reported that the removal of leaves subtending flowers 
and pods in C. arietinum during the reproductive phase 
resulted in a 40–60% reduction in seed yield compared 
with control plants, while removal of leaves below the 
flowering nodes decreased the seed yield by 25%. In 
contrast, complete defoliation resulted in a seed yield 
reduction to about 90%. In sunflower (Helianthus annuus 
L.), increase in defoliation (50% to 75%) at flowering 

stage resulted in decrease in seed yield because of the 
decrease in photosynthetic surface (Abdi et al. 2007). 
Removal of upper leaves in B. juncea caused decrease in 
yield whereas lower leaves removal increased seed yield 
(Khan et al. 2002a). Zhu et al. (2004) found that early-
sown late maturity T. aestivum responded to defoliation 
at late tillering with an increased grain yield by 7.3% 
through increased harvest index by 10.7% and grain 
water-use efficiency by 22% compared to the control, but 
defoliation at booting stage had negative effects on 
almost all components. In B. juncea defoliation at 
preflowering stage caused greatest positive effects on 
yield compared to other stages of defoliation (Khan et al. 
2002b, Khan and Lone 2005). Pecham and Morgan 
(1985) and Raut and Ali (1986) also showed a reduction 
in the number of pods and seed yield of rapeseed 
(Brassica napus L.) due to leaf removal at anthesis 
because of reduced carbon assimilation. The assimilate 
availability plays an important role in determining seed 
yield as massive remobilization takes place from the 
vegetative part to provide N to growing seeds. Ahmadi 
and Jaudi (2007) attributed the increase in grain yield in 
wheat to the enhanced photoassimilate partitioning 
towards grain and spike even under drought conditions. 
Effects of defoliation on biochemical, growth, and yield 
components are summarized in Table 2. 

 
Significance of defoliation under stress 
 
Partial defoliation has significant importance in photo-
synthetic compensation and source-sink relations under 

changing environment, and the relationship between 
source and sink differs among genotype (Wang et al. 
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1994). Under elevated CO2, defoliation has been reported 
to increase photosynthetic activity and nonstructural 
carbohydrate (sucrose) in Mediterranean grassland and 
forest trees (Korner and Miglietta 1994) and influence 
source-sink relations (Arp 1991). Plant species with 
strong sinks or with the ability to increase sink size have 
been shown to be more responsive to elevated CO2 
(Poorter 1993). Fischer et al. (1997) found that the 
response of L. perenne to elevated CO2 was restricted by 
a carbon-sink limitation due to accumulation of carbo-
hydrate. In their study on free air carbon dioxide enrich-
ment (FACE) they showed that defoliation approximately 
5 cm above the ground at regular interval of 4 to 6 weeks 
increased assimilate concentration in shoots of L. 
perenne. This reflects a change in the balance between 
source and sink activity, which was due to stimulation of 
carbon assimilation. The photosynthetic rate did not 
increase in nondefoliation plant under elevated CO2, but 
the rate increased in the remaining leaf of partially 
defoliated plant. The increase in photosynthesis under 
higher CO2 was due to reduced source activity by partial 
defoliation, whereas in intact plants the increase in CO2 
increased source activity and photosynthesis remains 
unchanged. Takagi et al. (2009) have shown that net 
photosynthesis of the defoliated plant increased by 
elevated CO2 (100 Pa) by about 35% relative to that in 
the ambient air and down regulation was not observed 
during the 14-day experimental period in tomato 
(Lycopersicum esculentum L.). Plants may respond 

positively to moderate defoliation under elevated CO2, 
but responsiveness decreases with high frequency of 
defoliation (Wand and Midgley 2004). 

Defoliation could act as a potential method to reduce 
water stress. Partial defoliation in maize resulted in 
reduced leaf area (LA) and water transpired (Crookston 
and Hicks 1988). In a study on T. aestivum under wet and 
dry conditions, Shao et al. (2010) studied the effect of 
defoliation (mild, moderate, and severe) at heading and 
anthesis and found that defoliation helped in crop 
survival under dry conditions and the reduction in grain 
production was lesser in defoliated plants under dry 
conditions than wet conditions. Defoliation reduced the 
seasonal water use with the increase in net photosynthesis 
of leaves remaining after defoliation. Defoliation has also 
been found to reverse the salinity-induced reduction in 
stomatal conductance in L. esculentum and improved 
plant resistance to salinity stress (Takagi et al. 2009).  

Low temperature during early growth is one of the 
major environmental factors limiting Z. mays range of 
growth (Cutworth and Shaykewich 1990). Defoliation 
(complete removal of leaf blades) during Z. mays kernel 
development has been shown to induce tolerance to cold 
of germinating seeds (Frascaroli et al. 2005). The effects 
of complete defoliation at maturation in Z. mays 
positively influenced seed vigor (TeKrony and Hunter 
1995) and seed germination at low temperature (Martin 
and Zinselmeier 1996). 

  
Hormonal control of defoliation 
 
Hormones produced by the plants regulate the physio-
logical efficiency of plants by modifying the balance 
between photosynthesis and respiration (Arteca and Dong 
1981), stomatal aperture or the activity of photosynthetic 
enzymes (Khan 2005). Defoliation causes morphological 
and physiological changes in plants which are regulated 
by the plant hormones (Gifford and Evans 1981, Liu and 
Zhang 1992, Khan et al. 2002b). RongQi and LeiYan 
(2000) reported the accumulation of abscisic acid (ABA) 
in leaves of G. hirsutum on following infection with 
defoliating strain of Verticillium dahlia. The ABA levels 
in G. hirsutum cultivars, Tangmian 2 and Ejing 1, were 
1.3 and 4.2 times more than in plants inoculated with 
nondefoliating strains. Khan (2003) found decreased 
auxin content and increased ethylene level after defolia-
tion in B. juncea. The increase in defoliation (by excising 
all the 1-year-old and older needles at the time when the 
current shoot (apical meristem) was fully elongated, but 
when current-year needle growth was just started) 
resulted in the production of phenolics as a protection 
mechanism (Roitto et al. 2008). The production of phe-
nolics has been shown to increase IAA oxidase activity 
leading to decreased auxin concentration (Yang et al. 
1990, Khan 2003). Thus, auxin and ethylene are found to 
have inverse relationship during defoliation. It may be 

said that ethylene plays a central role in regrowth process 
following defoliation as ethylene has been involved in 
leaf expansion, photosynthesis process, biomass produc-
tion and seed traits (Abeles et al. 1992, Khan 2003). 
Ethylene-induced abscission is associated with the ex-
pression of polygalacturonase and β-1,4 glucan hydrolase 
in the vicinity of distal abscission zone (Dolan 1997). 
Exogenous and endogenous supply of auxin is known to 
stimulate ethylene production (Abeles 1966, Sakai and 
Imaseki 1971, Khan et al. 2002a) and young leaves 
produce more ethylene due to higher concentration of 
auxin (Morgan and Hall 1964, Khan et al. 2002a). More-
over, ethylene concentration may account for changes in 
physiological characteristics and for leaves with higher 
photoassimilatory capacity (Khan et al. 2002b). 
Conclusion: The review summarizes that defoliation in-
fluences growth, carbon gain, nutrients remobilization 
and source-sink relations. The response of plants to 
defoliation depends on the species, leaf position, timing 
of defoliation, and environmental conditions. The growth 
and photosynthetic ability of plants after defoliation are 
associated with the synthesis of auxin, abscisic acid, and 
ethylene. However, a clear understanding of the inter-
action of defoliation and phytohormones in augmenting 
source-sink relations needs investigation, as single 
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hormone may not be responsible for defoliation effects 
and only act as an inducer for the other hormone to set a 
cascade in motion. Defoliation could also be used to 
increase growth and photosynthetic rate in plants under 
abiotic stress conditions. However, further research is 

required to strengthen the role of phytohormones in the 
induction of defoliation and the response of plants to 
defoliation and source-sink relations under abiotic stress 
conditions.  
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