

Responses of cotton and wheat photosynthesis and growth to cyclic variation in carbon dioxide concentration

J.A. BUNCE

Crop Systems and Global Change Laboratory, USDA-ARS, Beltsville Agricultural Research Center, 10300 Baltimore Avenue, Beltsville MD 20705-2350, USA

Abstract

The carbon dioxide concentration in free air carbon dioxide enrichment (FACE) systems typically has rapid fluctuations. In our FACE system, power spectral analysis of CO₂ concentration measured every second with an open path analyzer indicated peaks in variation with a period of about one minute. I used open-top chambers to expose cotton and wheat plants to either a constant elevated CO₂ concentration of 180 $\mu\text{mol mol}^{-1}$ above that of outside ambient air, or to the same mean CO₂ concentration, but with the CO₂ enrichment cycling between about 30 and 330 $\mu\text{mol mol}^{-1}$ above the concentration of outside ambient air, with a period of one minute. Three short-term replicate plantings of cotton were grown in Beltsville, Maryland with these CO₂ concentration treatments imposed for 27-day periods over two summers, and one winter wheat crop was grown from sowing to maturity. In cotton, leaf gas-exchange measurements of the continuously elevated treatment and the fluctuating treatment indicated that the fluctuating CO₂ concentration treatment consistently resulted in substantial down-regulation of net photosynthetic rate (P_N) and stomatal conductance (g_s). Total shoot biomass of the vegetative cotton plants in the fluctuating CO₂ concentration treatment averaged 30% less than in the constantly elevated CO₂ concentration treatment at 27 days after planting. In winter wheat, leaf gas-exchange measurements also indicated that down-regulation of P_N and g_s occurred in flag leaves in the fluctuating CO₂ concentration treatment, but the effect was not as consistent in other leaves, nor as severe as found in cotton. However, wheat grain yields were 12% less in the fluctuating CO₂ concentration treatment compared with the constant elevated CO₂ concentration treatment. Comparison with wheat yields in chambers without CO₂ addition indicated a nonsignificant increase of 5% for the fluctuating elevated CO₂ concentration treatment, and a significant increase of 19% for the constant elevated treatment. The results suggest that treatments with fluctuating elevated CO₂ concentrations could underestimate plant growth at projected future atmospheric CO₂ concentrations.

Additional key words: acclimation; down-regulation; stomatal conductance.

Introduction

FACE systems have some advantages over other enrichment systems for exposing crop plants to anticipated future atmospheric concentrations of CO₂. One advantage is the absence of enclosures which alter wind speed, radiation, temperature, and humidity. The long-term average CO₂ concentration enrichment achieved in FACE systems can be very consistent, and 1-min averages of daytime CO₂ concentration in FACE systems are generally within 10% of the target CO₂ concentration 80 to 90% of the time. However, large rapid fluctuations in CO₂ concentration often occur (Hendrey *et al.* 1999, Okada *et al.* 2001, Bunce 2011). The importance of these rapid fluctuations

in CO₂ concentration to plant function remains uncertain. From leaf chlorophyll fluorescence measurements on wheat leaves Hendrey *et al.* (1997) concluded that fluctuations in CO₂ concentration with periods of less than one minute were unlikely to affect photosynthesis. However, Holtum and Winter (2003) measured P_N and found significantly lower mean rates when the CO₂ concentration varied with a period of 40 s compared to rates measured at a constant mean CO₂ concentration. In the experiments described here I tested whether the long-term growth and P_N of cotton and wheat plants were affected by 1-min cycles of CO₂ concentration.

Received 8 December 2011, accepted 2 May 2012.

Phone: 301-504-7629, e-mail: James.Bunce@ars.usda.gov

Abbreviations: C_i – CO₂ concentration in the substomatal (intercellular) airspace; FACE – free air carbon dioxide enrichment; g_s – stomatal conductance; P_N – net photosynthetic rate.

Acknowledgements: Dr. Bruce Kimball suggested the use of open-top chambers and a solenoid valve system to achieve the cyclic elevated carbon dioxide treatment.

Materials and methods

Design criteria: An open path CO₂ analyzer (*LI-7500, LI-Cor, Inc.*, Lincoln, NE, USA) operating at 5 Hz mounted at canopy height near the center of an area distributed FACE plot (Bunce 2011) was used to record CO₂ concentration once per second for two hour periods on two days. Four independent sequences of 1,000-s duration were randomly selected from this data set, and time series analysis (*JMP v. 5.1, SAS Institute*, NC, USA) was used to develop power spectra for each 1,000-s sequence. All four power spectra had distinct peaks at periods of approximately 20 to 80 s, and all samples had a large peak very near 60 s (Fig. 1). Based on these observations, it was decided to use a period of 60 s for the fluctuating CO₂ concentration treatments. The daytime CO₂ concentration in our FACE system, when operated with a mean enrichment of 1.4 times ambient, was frequently little enriched above ambient, but was only seldom enriched to more than twice the ambient concentration (Bunce 2011, Fig. 3). For this study, a system was designed to expose plants to CO₂ concen-

trations ranging from about 30 to 330 $\mu\text{mol mol}^{-1}$ above the concentration of outside air, with a period of one minute. This “fluctuating” elevated CO₂ concentration treatment was compared with a “constant” enrichment of 180 $\mu\text{mol mol}^{-1}$ above the concentration of the outside air, which averaged 370 $\mu\text{mol mol}^{-1}$ in the daytime.

CO₂ control: A solenoid valve was placed in the line supplying CO₂ to an open-top chamber equipped with a blower injecting air and CO₂ into the bottom of the chamber through a 10 cm diameter perforated plastic pipe running the whole length of the center of the chamber. For the fluctuating CO₂ concentration treatment, the flow rate of CO₂ to the inlet of the blower was twice the normal rate, and the solenoid valve was turned off for the first 30 s of every minute with an electronic timer. The range of CO₂ concentration achieved in the chamber was dependent on the air-volume turnover time of the chamber, which was nominally 0.6 min in both sizes of open-top chambers used in these experiments. Representative time courses of CO₂ concentration measured with the open path analyzer in “fluctuating” and “constant” elevated CO₂ concentration chambers, and in chambers with no CO₂ added are presented in Fig. 2. The sensor of the open path analyzer was mounted horizontally near the centers of the chambers, at the height of the upper canopy leaves, when plants were about 50 cm in height. This pattern of exposure with CO₂ concentration gradually oscillating between minimum and maximum values is similar to that of Holtum and Winter (2003), and is different from the pattern of sharp transitions between minimum and maximum exposures of Cardon *et al.* (1994) and Hendrey *et al.* (1997).

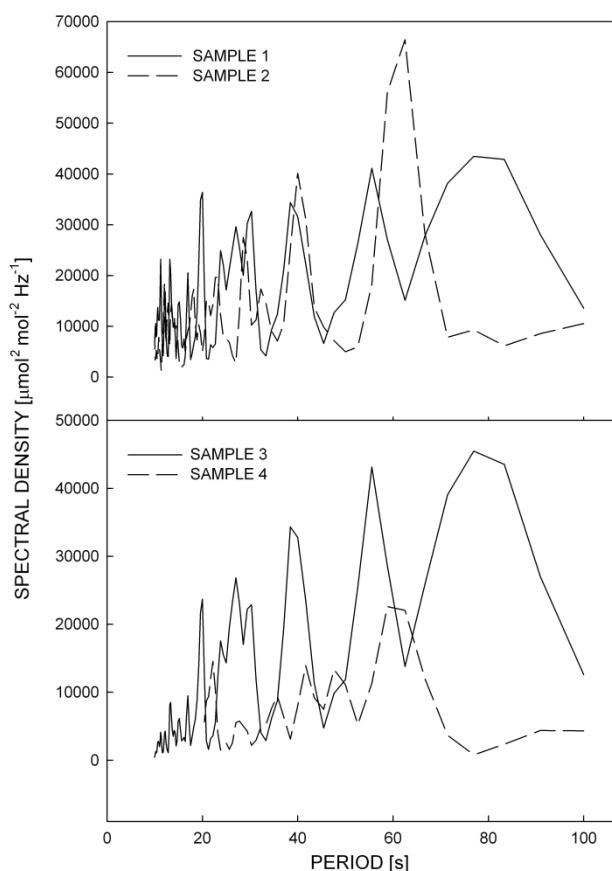


Fig. 1. Power spectra of CO₂ concentrations for four randomly selected 1,000-s periods for an area distributed free air carbon dioxide enrichment system (Bunce 2011). CO₂ concentrations were recorded at 1 Hz from an open path analyzer operating at 5 Hz.

Cotton (*Gossypium hirsutum* L., var. Delta Pine 555) seeds were planted in four square open-top chambers each covering 1.9 m² of ground. The chambers were 2 m in height, and the walls were clear acrylic plastic. Two of the chambers had constantly elevated CO₂ concentrations and two had fluctuating elevated CO₂ concentrations, with CO₂ added 24 h per day. These treatments were rotated among chambers in three replicate runs over two summers. In the third replicate run, an additional two chambers were planted with cotton, but were operated with no CO₂ addition. Cotton was planted on days 197 and 236 in 2010, and 201 in 2011. The soil of the field plot containing the chambers was a Codorus silt loam, a fine-loamy, mixed, mesic Fluvaquentic Dystrochrept soil, and the prior crop was *Phaseolus vulgaris* grown with a 10-10-10, N, P and K fertilizer. No fertilizer was added to the soil for the cotton. Cotton seedlings were thinned to 24 plants per chamber, in two border and two interior rows. Plants sampled for leaf gas exchange and biomass were from the center of the interior rows of each chamber, *i.e.* bordered by other cotton plants on all sides.

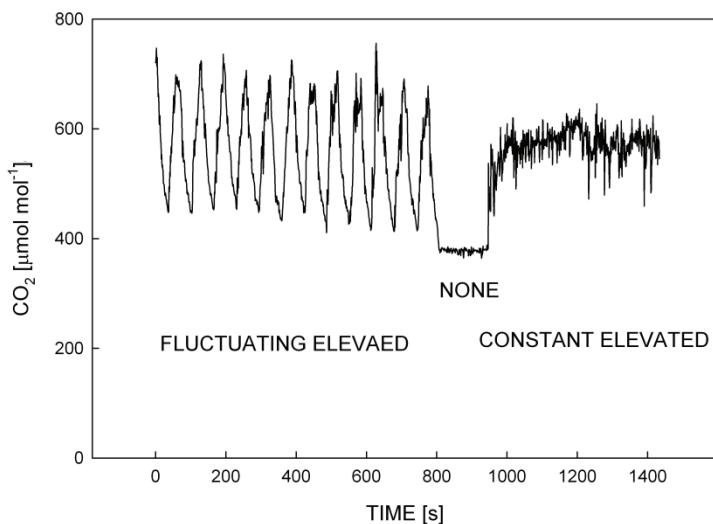


Fig. 2. Time sequences of measurements of CO₂ concentration in three CO₂ treatment chambers: fluctuating elevated, no added CO₂, and constant elevated. CO₂ concentrations were recorded at 1 Hz from an open path analyzer operating at 5 Hz. Mean concentrations were 559, 378, and 569 $\mu\text{mol mol}^{-1}$ for the three treatments, respectively.

Air samples from each chamber were pumped to an infrared CO₂ analyzer in a nearby shelter, and mean CO₂ concentration of air from each chamber, and the CO₂ concentration of outside air were each recorded once per hour. CO₂ flow rates to each chamber were adjusted daily, as necessary. Mean air temperatures for the three replicate experiments were 26.5, 21.4, and 26.3°C. The plot was not irrigated, but no significant soil water deficits occurred.

Leaf gas exchange was measured on four dates, one date for each of the two 2010 crops, and on two dates in the 2011 crop. In 2010, leaf gas-exchange measurements were made 26 d after planting. In 2011, leaf gas-exchange measurements were made at 23 and 26 d after planting. Leaf gas exchange was measured near mid-day on clear days, using a *CIRAS-1* portable photosynthesis system (*PP-Systems*, Amesbury, Massachusetts, USA) with CO₂ concentration control. Two mature upper canopy leaves from each open-top chamber were measured at the ambient air temperature and water vapor content, in full sunlight on each occasion. Leaves from chambers with constant elevated CO₂ concentration were measured only at the growth CO₂ concentrations, but leaves from the fluctuating elevated CO₂ concentration were measured at the average minimum, mean, and maximum CO₂ concentration during growth. In the 2011 crop, leaves from chambers without added CO₂ were measured at the same three CO₂ concentrations as leaves from the fluctuating elevated CO₂ concentration chambers. In cases where measurements were to be made at three CO₂ concentrations, the first measurement was made at the mean growth CO₂ concentration. No significant change in stomatal conductance (g_s) with measurement CO₂ concentration occurred during these measurements, probably because leaves were kept at the different CO₂ concentration only long enough (about a minute) for P_N to become stable. Whole shoots of eight plants per chamber

were harvested 27 d after sowing to determine shoot dry mass.

Winter wheat (*Triticum aestivum* L., var. Choptank) was planted on day of year 282 in 2010 in twelve rectangular open-top chambers, each covering 2.8 m² of ground. The chamber height was 2.5 m, and the chamber walls were clear acrylic plastic. There were four rows of plants per chamber, with 30 cm between rows. The soil was the same as described for the cotton experiments, and 60 g of urea was added to each chamber when wheat growth resumed in the spring. Three CO₂ concentration treatments, constant elevated CO₂ concentration, fluctuating CO₂ concentration, and no added CO₂ were randomly assigned to each of four chambers. CO₂ was added 24 h per day, except when the ground was covered with snow. Air from each chamber was pumped to an infrared CO₂ analyzer and mean CO₂ concentration from each chamber was recorded once an hour, with CO₂ flow rates adjusted daily, as necessary.

Leaf gas-exchange measurements, as described for the cotton experiment, were conducted on ten days with wheat, once in the fall of 2010, and nine times in spring, which included four days of measurements on flag leaves. A harvest of two plants from border rows in each of the four corners of each chamber was made 44 d after sowing in 2010, before shoots were damaged by low winter temperatures. At crop maturity in June 2011, 3 m of interior rows were harvested from each chamber to determine shoot and seed dry mass.

Statistics: Chambers were treated as the experimental units. Treatments were compared using *ANOVA*, except that leaf gas exchange in wheat was analyzed using repeated measures *ANOVA*, because the same experimental units were measured on multiple occasions.

Results

Cotton: For comparisons of the two elevated CO₂ concentration treatments, the measurement date affected P_N and g_s , but there was no significant interaction between measurement date and CO₂ concentration treatment for P_N or g_s . Mean values for the four measurement dates (Table 1) indicated substantially lower P_N and g_s , but similar substomatal carbon dioxide concentrations (C_i) for the plants grown with fluctuating elevated CO₂ concentration compared with constant elevated CO₂ concentration.

For the 2011 data on leaf gas exchange, plants grown without added CO₂ had higher rates of P_N than plants grown with fluctuating elevated CO₂ concentration when measured at the lower, but not at the higher CO₂ concentration, and low g_s when measured at both CO₂ concentrations (Table 2). C_i during these measurements did not differ significantly with growth conditions (Table 2). When measured at the mean elevated CO₂ concentration, plants grown without added CO₂ and those grown with constant elevated CO₂ concentration had mean P_N of 35.3 and 34.0 mmol m⁻² s⁻¹, respectively, and g_s of 668 and 574 mmol m⁻² s⁻¹, neither of which was different at $P=0.05$.

Averaged over the three replicate runs, shoot dry mass per plant averaged 1.31 g for the constant elevated CO₂

concentration treatment and 0.92 g for the fluctuating elevated CO₂ concentration treatment at 27 days after planting. These means were statistically different at $P=0.05$. In 2011, shoot dry mass for the constant elevated CO₂ concentration treatment was 1.47 times that of the treatment without added CO₂, compared with 1.25 times for the fluctuating elevated CO₂ concentration treatment. Mean masses in the three treatments were all different from each other at $P=0.05$ in 2011.

Table 1. Mean net photosynthetic rate (P_N), stomatal conductance (g_s), and substomatal concentration of carbon dioxide (C_i) of leaves of cotton plants grown with fluctuating and constant elevated carbon dioxide concentrations. Values are averaged over four measurement dates, and leaves were measured at the mean daytime elevated CO₂ concentration of 550 $\mu\text{mol mol}^{-1}$. Values within columns followed by *different letters* differed between CO₂ concentration treatments at $P=0.05$, using ANOVA.

Treatment	P_N [$\mu\text{mol m}^{-2} \text{s}^{-1}$]	g_s [$\text{mmol m}^{-2} \text{s}^{-1}$]	C_i [$\mu\text{mol mol}^{-1}$]
Constant	41.8 ^A	1180 ^A	418 ^A
Fluctuating	34.5 ^B	745 ^B	413 ^A
Ratio (F/C)	0.83	0.69	0.99

Table 2. Mean net photosynthetic rate (P_N), stomatal conductance (g_s), and substomatal concentration of carbon dioxide (C_i) of cotton plants grown with no added CO₂ or with a fluctuating elevated CO₂ concentration. Values are averaged over two 2011 measurement dates, and leaves were measured at two CO₂ concentrations. Values within columns followed by *different letters* differed between growth CO₂ concentration treatments at $P=0.05$, using ANOVA.

Measurement CO ₂ [$\mu\text{mol mol}^{-1}$]	P_N [$\mu\text{mol m}^{-2} \text{s}^{-1}$] 370	P_N [$\mu\text{mol m}^{-2} \text{s}^{-1}$] 730	g_s [$\text{mmol m}^{-2} \text{s}^{-1}$] 370	g_s [$\text{mmol m}^{-2} \text{s}^{-1}$] 730	C_i [$\mu\text{mol mol}^{-1}$] 370	C_i [$\mu\text{mol mol}^{-1}$] 730
Treatment						
None	25.0 ^A		42.1 ^A	683 ^A	633 ^A	249 ^A
Fluctuating	19.9 ^B		38.8 ^A	493 ^B	456 ^B	248 ^A
Ratio (F/N)	0.80		0.92	0.72	0.72	1.00

Table 3. Mean photosynthetic rate (P_N), stomatal conductance (g_s), and substomatal concentration of carbon dioxide (C_i) of flag leaves of wheat plants grown without added CO₂, and with fluctuating or constant elevated CO₂ concentration. Values are averaged over four measurement dates, and leaves were measured at the mean daytime elevated CO₂ concentration of 550 $\mu\text{mol mol}^{-1}$. Values within columns followed by *different letters* differed between CO₂ concentration treatments at $P=0.05$, using ANOVA.

Treatment	P_N [$\mu\text{mol m}^{-2} \text{s}^{-1}$]	g_s [$\text{mmol m}^{-2} \text{s}^{-1}$]	C_i [$\mu\text{mol mol}^{-1}$]
None	39.4 ^A	1338 ^A	472 ^A
Constant	37.1 ^B	1180 ^B	477 ^A
Fluctuating	34.4 ^C	1037 ^C	467 ^A

Wheat: The leaf gas-exchange data as a whole showed significant effects of treatment, date, and treatment by date interactions for both P_N and g_s . However, restricting the statistical analysis to measurements on flag leaves (four dates) the treatment by date interaction term became nonsignificant for both gas-exchange parameters. For flag leaves, P_N and g_s measured at the mean elevated CO₂ concentration was highest in leaves from chambers without CO₂ addition, intermediate in leaves from chambers with constant elevated CO₂ concentration, and lowest in leaves from the fluctuating elevated CO₂ concentration chambers (Table 3). Similar patterns and magnitudes of treatment effects also occurred on some other measurement dates, but there were also measurement dates when no significant treatment effects

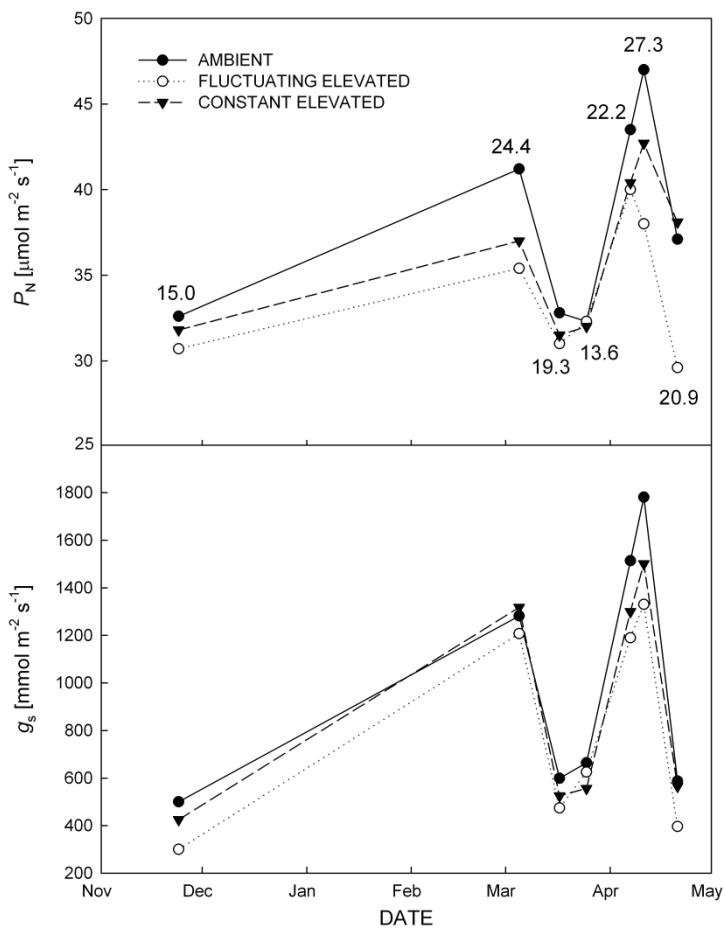


Fig. 3. Mean values of leaf net photosynthetic rate (P_N) and stomatal conductance (g_s) in leaves of vegetative wheat plants on different measurement dates, for three CO₂ treatments. Measurements were made at 370 $\mu\text{mol mol}^{-1}$ for the “ambient” CO₂ concentration treatment and at 550 $\mu\text{mol mol}^{-1}$ for the “elevated” CO₂ concentration treatments. Numbers indicate mean leaf temperatures during the measurements on each date. The treatment, date, and treatment by date interaction terms were all significant at $P=0.05$ for both P_N and g_s , using repeated measures ANOVA.

Table 4. Harvest data for winter wheat crops grown in open-top chambers without added CO₂, with constant elevated CO₂ concentration, and with fluctuating elevated CO₂ concentration. Values are means for four chambers per treatment. Values within columns followed by *different letters* differed between growth CO₂ concentration treatments at $P=0.05$, using ANOVA. DM – dry mass.

Treatment	At day 44		At crop maturity	
	Total shoot [g(DM) plant ⁻¹]	[g(DM) m ⁻²]	Total shoot [g(DM) m ⁻²]	Seed [g(DM) m ⁻²]
None	0.98 ^C	373 ^B	125 ^B	
Constant	1.43 ^A	445 ^A	149 ^A	
Fluctuating	1.20 ^B	395 ^B	131 ^B	

Discussion

The results of this study indicated that the cyclically varying elevated CO₂ concentration treatment reduced the long-term growth of both species compared with a more constant CO₂ concentration treatment with the same mean CO₂ concentration. Lower P_N also occurred, and could have been responsible for the slower dry matter production. As pointed out by Hendrey *et al.* (1997) and Holtum and Winter (2003), because P_N has a saturating response to CO₂ concentration, mean P_N would always be less for

occurred, without any obvious relationship with growth stage or measurement temperature (Fig. 3).

The dry mass of shoots of wheat plants at an early vegetative stage of development (44 days after sowing) was highest in the constant elevated CO₂ concentration treatment and lowest in the treatment without added CO₂ (Table 4). At maturity, total shoot mass and seed mass per ground area were significantly higher for the constant elevated CO₂ concentration treatment than either the fluctuating elevated CO₂ concentration treatment or the treatment without CO₂ addition, which did not differ significantly from each other (Table 4).

leaves exposed only to the maximum and minimum CO₂ concentration than for those exposed only to the mean concentration. In both our and the Holtum and Winter (2003) fluctuating CO₂ concentration treatments, plants were exposed to the whole range of concentrations (Fig. 2), not just to the minimum and maximum, as in the Cardon *et al.* (1994) and the Hendrey *et al.* (1997) treatments, so the anticipated effect on mean P_N would be smaller. From the frequency distribution of exposure to

different CO₂ concentration, in combination with the observed CO₂ concentration response curves, assuming an instantaneous response of P_N to CO₂ concentration leads to an estimated reduction in mean P_N of only 3 ± 1% for both cotton and wheat due to this direct effect of variation in CO₂ concentration. In FACE systems which expose plants intermittently to much higher CO₂ concentrations than used here, this effect would be larger, because very high CO₂ concentrations would increase mean CO₂ concentration but have little additional effect on P_N . In these experiments in open-top chambers, the observed down-regulation of P_N was far more important in reducing P_N in the fluctuating CO₂ concentration treatments, especially in cotton, than was this effect due to the curvilinear photosynthetic response.

This is the first report to document down-regulation of P_N in response to long-term exposure to fluctuating CO₂ concentrations. Both Holtum and Winter (2003) and Hendrey *et al.* (1997) exposed plants to fluctuating CO₂ concentrations only for several minutes. The larger down-regulation of P_N at lower measurement CO₂ concentration than at high CO₂ concentration documented here in cotton suggests a larger reduction in carboxylation capacity than in RuBP regeneration capacity, because carboxylation capacity is generally limiting at low measurement CO₂ concentrations, and regeneration capacity

becomes limiting at high CO₂ concentrations. Lack of change in C_i with growth CO₂ concentration treatment suggests that the treatment effects on g_s were a response to changes in P_N , rather than the reverse (Bounoua *et al.* 1999). Cardon *et al.* (1994) reported that fluctuations in CO₂ concentration disrupted g_s , but did not report responses to fluctuations with periods as short as the 1-min cycle used in these experiments.

Although the period of the cyclic variation in CO₂ concentration used here was based on periods observed in a FACE system, FACE systems also expose plants to a much wider range of CO₂ concentration and to more abrupt changes in CO₂ concentration than used here (Hendrey *et al.* 1999, Bunce 2011). The large effects of this limited magnitude, cyclic variation in CO₂ concentration observed here on plant biomass production in both cotton and wheat could conceivably be larger or smaller than possible effects of the more variable fluctuations in CO₂ concentration occurring in FACE systems. Season-long, side-by-side comparisons of plant growth responses to elevated CO₂ concentration in FACE and open-top chambers, like the shorter study by Kimball *et al.* (1997), would be worthwhile, as well as other efforts to evaluate and understand the impacts of rapid fluctuations in CO₂ concentration on plants.

References

Bounoua, L., Collatz, G.J., Sellers, P.J. *et al.*: Interaction between vegetation and climate: radiative and physiological effects of doubled atmospheric CO₂. – *J. Climate* **12**: 309-324, 1999.

Bunce, J.A.: Performance characteristics of an area distributed free air carbon dioxide enrichment (FACE) system. – *Agr. Forest Meteorol.* **151**: 1152-1157, 2011.

Cardon, Z.G., Berry, J.A., Woodrow, I.E.: Evidence of the extent and direction of average stomatal response in *Zea mays* L. and *Phaseolus vulgaris* L. on the frequency of fluctuations in environmental stimuli. – *Plant Physiol.* **105**: 1007-1013, 1994.

Hendrey, G.R., Long, S.P., McKee, I.F., Baker, N.R.: Can photosynthesis respond to short-term fluctuations in atmospheric carbon dioxide? – *Photosynth. Res.* **51**: 179-184, 1997.

Hendrey, G.R., Ellsworth, D.S., Lewin, K.F., Nagy, J.: A free-air enrichment systems for exposing tall forest vegetation to elevated atmospheric CO₂. – *Global Change Biol.* **5**: 293-309, 1999.

Holtum, J.A.M., Winter, K.: Photosynthetic CO₂ uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO₂. – *Planta* **218**: 152-158, 2003.

Kimball, B.A., Pinter, P.J., Jr., Wall, G.W. *et al.*: Comparisons of responses of vegetation to elevated carbon dioxide in free-air and open-top chamber facilities. – In: Allen, L.H., Jr., Kirkham, M.B., Olszyk, D.M., Whitman, C.E. (ed.): *Advances in Carbon Dioxide Research*. Pp.113-130. Amer. Soc. Agron., Crop Sci. Soc. Amer., and Soil Sci. Soc. Amer., Madison 1997.

Okada, M., Lieffering, H., Nakamura, H., Yoshimoto, M., Kim, H.Y., Kobayashi, K.: Free-air CO₂ enrichment (FACE) using pure CO₂ injection: system description. – *New Phytol.* **150**: 251-260, 2001.