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Abstract

Environmental stresses, such as cold, heat, salinity, and drought, induce ethylene production and oxidative stress and
cause damage in plants. On the other hand, studies have shown that salicylic acid (SA) induced resistance to
environmental stresses in plants. In this research, the effects of ethylene on chlorophyll (Chl), carotenoid (Car),
anthocyanin, flavonoids, ascorbic acid, dehydroascorbic acid, total ascorbate, lipid peroxidation, and ethylene
production in leaves of canola pretreated with SA were studied. The plants were grown in pots until they have four
leaves. Leaves were sprayed for two days with three different concentrations of SA (0, 0.5, and 1 mM). The plants were
treated for three days with three concentrations of ethylene (0, 50, and 100 ppm). At the end of the ethylene treatments,
all examined parameters were measured. The results showed that the ethylene treatments induced lipid peroxidation,
while SA mitigated this effect. The ethylene treatment lowered significantly Chl and Car contents and anthocyanin
accumulation, but SA alleviated these effects. SA induced an increase in ascorbic acid content in canola plants after the
ethylene treatments. Therefore, we concluded that SA played an important role in the alleviation of damages caused by

stress conditions.
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Introduction

Ethylene is produced either chemically through the
incomplete combustion of hydrocarbons or biologically
by almost all living organisms (Wang ef al. 2002, Pech et
al. 2005). There is a lot of evidence showing that
ethylene is an essential component of a wide range of
responses to biotic and abiotic environmental stresses
Shinozaki et al. 1999, Wang et al. 2002, Guo and Ecker
2004, El-Tayeb 2005). Further, many of these stress
responses integrate ethylene signaling into more complex
circuitry involving salicylate and jasmonate signaling
(Wang et al. 2002). The effects of ethylene on plants are
regulated both at the level of its synthesis and perception
of the hormone (Caren ef al. 2007, Wang et al. 2002). It
has been shown that water stress and ethylene causes
generation of H,O, (Shinozaki et al. 1999, Zafar et al.
2011). Therefore, lipid peroxidation expressed by malon-
dialdehyde (MDA) production is expected in plant cells
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(Kao and Yang 1983). Thus, ethylene, such as many
environmental stresses, could induce the oxidative
damage in plant cells.

Salicylic acid (SA) or ortho-hydroxybenzoic acid and
related compounds belong to a diverse group of plant
phenolics (Raskin 1992, Popova et al. 1997). It is well
documented that many phenolic compounds play an
essential role in the regulation of different physiological
processes, including plant growth and development, ion
uptake, and photosynthesis (Harper and Balke 1981,
Raskin 1992). The established effects of SA on stomata
function, Chl content, transpiration rate, and respiratory
pathways lead to the assumption that SA might possess
a physiological function, it is involved most probably in
a regulation of some photosynthetic reactions (Raskin
1992, Popova et al. 1997, Singh and Usha 2003, Horvath
et al. 2007a,b).
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Abbreviations: ACC — 1-aminocyclopropane-1-carboxylic acid; ASA — ascorbic acid; DHAS — dehydroascorbic acid; ETsy —
50 ppm ethylene-treated plants; ET oo — 100 ppm ethylene-treated plants; FM — fresh mass; Car — carotenoids; Chl — chlorophyll;
GC — gas chromatography; LSD — least significant difference; MDA — malondialdehyde content; SA — salicylic acid; SAM —
s-adenosylmethionine; TBA — thiobarbituric acid; TCA — trichloroacetic acid.
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It has also been reported that SA is an effective inhibitor
of ethylene biosynthesis (Srivastava and Dwivedi 2000),
and the SA effect is pH-dependent (Ganesan and Thomas
2001). Aharoni et al. (1979) suggested that SA acted by
blocking the conversion of 1-aminocyclopropane-1-carbo-
xylic acid to ethylene, when it was applied to tobacco leaf
discs.

Studies have shown that SA is the cause of plant
resistance to environmental stresses, such as cold, heat,

Materials and methods

Canola plants (Brassica napus cv. Hayola 401) were
grown from seeds in pots with sand, loam, and peat
mixture (2:1:1) in a greenhouse with 16 h day/8 h night
photoperiod, temperature of 22°C day/18°C night, and
with relative humidity of 50% and luminosity of 10,000
lux. The seedlings were irrigated with water once a day
and with a half-strength Long Ashton solution once a
week (pH about 6.7) (Meidner 1994). After one month,
the plants were pretreated with SA. For this purpose, SA
was dissolved in distilled water and pH was adjusted to
ca.5.5 with KOH (El-Tayeb 2005). Triton X-100
(0.01%) was added as a surfactant. Leaves of the plants
were sprayed with solutions of 0.5 and 1 mM SA concen-
tration for 2 d (about 20 ml of SA solution sprayed on
leaves of each plant). After 2 d, the plants were trans-
ferred to boxes made of PMMA (polymethyl metha-
crylate) for the ethylene treatment. Three levels of
ethylene (0, 50, and 100 ppm) were applied through
Suba-Seal fixed on the chambers. The plants were treated
with ethylene for three days. Every day, the boxes were
opened and flashed with fresh air, then sealed again and
the particular concentrations of ethylene were applied to
boxes. Three replicates were used for each treatment.
After the treatment with ethylene, the plants were
transferred from boxes to the greenhouse. After 7 d, the
plants were harvested, divided into shoots and roots,
frozen in liquid nitrogen, and stored at —20°C for
subsequent biochemical analysis.

Chl content was determined using the methods of
Lichtenthaler (1987). In this method, Chl was extracted in
80% acetone. Extracts were centrifuged at 3,000 x g and
the absorbance of supernatant was measured at 663.2,
646.8, and 470 nm with UV-VIS spectrophotometer
(Cary 50, Varian, Germany).

Chl a, Chl b, total Chl, and Car contents were
calculated using following formulas:

Chl a = (12.25A¢632 — 2.79A¢465) % volume of super-
natant [ml] xdilution factor/sample mass [g]

Chl b= (21.21A¢64658 — 5.1 Ags32) % volume of supernatant
[ml] x dilution factor/sample mass [g]

Car = [(1000A470— 1.8Chl a — 85.02Chl 5)/198] x volume
of supernatant [ml] x dilution factor/sample mass

412

Cd, salinity, and drought (Dat ef al.1998, Senaranta et al.
2002, Sakabutdinova et al. 2003, Choudhury and Panda
2004, Agrawal et al. 2005, El-Tayeb 2005, Horvath et al.
2007, Simone et al. 2007). SA may inhibit the ethylene
biosynthesis induced by environmental stresses. Thus, in
this experiment, the effects of SA treatments on some
physiological and biochemical parameters were studied in
leaves of canola under ethylene treatments.

Anthocyanins: Frozen tissue samples (100 mg) were
soaked immediately in 10 ml of acidified methanol
[methanol: HC1 = 99:1 (v/v)]. Tissues were crushed using
a glass pestle and kept at 25°C for 24 h in the dark. The
extract was then centrifuged at 4,000 x g for 5 min at
room temperature and absorption at 550 nm was read by
a UV-VIS spectrophotometer (Cary 50, Germany) in the
supernatant. The nonspecific absorption at 640 nm was
subtracted. For the calculation of the amount of antho-
cyanins, the extinction coefficient of 33,000 M! em!
was used (Wagner 1979).

Lipid peroxidation: The level of lipid peroxidation in
plant tissues was measured by determination of MDA,
which is known to be a breakdown product of lipid
peroxidation. The MDA content was determined with the
thiobarbituric acid (TBA) reaction. Briefly, 0.2 g of a
tissue sample was homogenized in 5 ml 0.1% TCA. The
homogenate was centrifuged at 10,000 x g for 5 min. To
1 ml aliquot of the supernatant, 4 ml of 20% TCA
containing 0.5% TBA were added. The mixture was
heated at 95°C for 15 min and cooled immediately in ice.
The absorbance was measured at 532 nm. The value for
the nonspecific absorption at 600 nm was subtracted. The
level of lipid peroxidation was expressed as uM of MDA
formed using an extinction coefficient of 155 mM ' cm™'
(Heath and Packer 1968).

Ethylene released was determined from detached leaves
in three replicates. In each treatment, all leaves detached
from a plant were placed in a 120 ml flask, capped with a
rubber stopper for 2 h. 1 ml of the gas-phase samples was
removed from the head space using an air-tight syringe.
The 1-ml gas samples were injected into a gas chromato-
graph (GC) (/15-34H, Agilent, USA) fitted with a flame
ionization detector and a glass column packed with (30—
100 mesh) activated alumina (180 cm % 0.34 cm outside
diameter, o0.d.). The GC was operated at the injector,
detector, and oven temperatures of 90, 200, and 250°C,
respectively. Nitrogen was used as the mobile phase. Pure
ethylene (99.9%) was used as a standard (Kalantari et al.
2000). Ethylene production was calculated per plant.
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Total soluble proteins were determined according to the
method of Bradford (1976) using bovine serum albumin
as a standard (Bradford 1976).

Ascorbate and dehydroascorbate: 200 mg of leaf tissue
was homogenized in 10 ml of 5% (w/v) metaphosphoric
acid and centrifuged for 15 min at 10,000 x g. The
concentrations of ascorbate (ASA) and dehydroascorbate

Results

Photosynthetic pigments (Chl a, b, total, and Car) were
measured in this experiment (Table 1). Chl a content
decreased in ethylene-treated plants in comparison with
the control plants. SA treatment decreased the amounts of
Chl a, b, and a+b in plants, while the pretreatment with
SA following exposure to 50 ppm ethylene caused the

(DHAS) were determined spectrophotometrically accord-
ing to the method of de Pinto et al. (1999).

Statistical analysis: The data were statistically analyzed
by two-way analysis of variance (ANOVA) using SPSS
(version 10) software and the least significant difference
(LSD) were used to test the significant differences
between treatments.

significant increase in Chl a (Table 1). The total Chl
content showed the same pattern as Chl a (a < 0.05). Car
decreased significantly in ethylene-treated plants in
comparison with the control plants. SA treatment
increased significantly Car content in the plants treated
with 50 ppm ethylene (ETs, plants) (Table 1).

Table 1. Effects of SA (0.5 and 1 mM) and ethylene treatments (0, 50, and 100 ppm) on photosynthetic pigment content of Brassica
napus. The mean comparisons of treatments were done using LSD method at p<0.05 significant level. Means followed by the same

letter(s) in each column are not significantly different at the 5% level.

Treatment Chla[mgg'(FM)]  Chlb[mgg'(FM)]  Total Chl[mgg '(FM)]  Car [mg g ' (FM)]

Control 15.04 + 1.027° 6.58 + 0.208" 21.62 +1.12° 3.53+£0.361%

0.5 mM SA 9.01 £ 0.925" 4.33 +0.589% 13.34 + 1.48"¢ 3.07 £0.380°

1 mM SA 6.13 = 1.344 2.84 +0.323¢ 8.97 + 1.66° 1.33+£0.156°

50 ppm ethylene 5.34 +0.598¢ 3.89 +0.574% 9.23 + 0.604 0.95+0.114¢

100 ppm ethylene 6.39 +0.461% 4.9 £0.750a" 11.29 +1.01% 1.65 +0.184%

0.5 mM SA 12.30 + 0.378% 5.95+0.173% 18.25 + 0.55% 4.21+0.230°

+ 50 ppm ethylene

0.5 mM SA 4.56+0.516% 4.04+0.881 8.6+ 1.30% 0.92 +0.003*

+ 100 ppm ethylene

1 mM SA 9.87 + 1.78" 5.05+0.515" 14.92 + 1.68" 2.34+0.401°

+ 50 ppm ethylene

1 mM SA 7.05 £ 1.16% 3.92+0.278% 10.98 + 1.4 1.53+0.571¢

+ 100 ppm ethylene

& Control Anthocyanin content: Ethylene treatment decreased
80 4 ’ significantly the content of anthocyanins, while SA
a B 0.5mM SA . Do . .

70 1 = 1M SA increased significantly anthocyanin content in ETs, plants
60 | W gim (0 <0.05) (Fig. 1). In those plants, which were not treated
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Fig. 1. Effects of SA (0.5 and 1 mM) and ethylene treatments
(0, 50, and 100 ppm) on anthocyanins content of Brassica
napus. Values are the means of three replicate, and bars indicate
SEM significant difference at P<0.05 according to LSD test.

with ethylene, 1mM SA significantly decreased the
amount of anthocyanins, while 0.5 mM SA had no effect
on anthocyanin content (Fig.1).

Proteins: Our studies showed that the content of proteins
increased in plants, which were pretreated with 1 mM SA
(Fig. 2). The protein content decreased significantly in
ETs plants when compared with the untreated plants. SA
pretreatments induced the increase in the protein content
in ETs, plants. Proteins decreased in SA-treated plants
treated with 100 ppm ethylene (ET)o plants), when
compared with the ETs, plants (o < 0.05).
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Fig. 2. Effect of SA (0.5 and 1 mM) and ethylene treatments
(0, 50, and 100 ppm) on protein content of Brassica napus.
Values are the means of three replicate, and bars indicate SEM
significant difference at P<0.05 according to LSD test.
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Fig. 3. Effect of SA (0.5 and 1 mM) and ethylene treatments
(0, 50, and 100 ppm) on MDA content of Brassica napus.
Values are the means of three replicate, and bars indicate SEM
significant difference at P<0.05 according to LSD test.

Lipid peroxidation: MDA content increased signifi-
cantly in the ethylene-treated plants (Fig. 3). The treat-
ment with SA increased also the MDA content. The
plants pretreated with SA had much lower MDA content
when exposed to 50 ppm ethylene. However, in those
plants, which were pretreated with 0.5m M SA and
exposed to 100 ppm ethylene, MDA content significantly
increased in comparison with the SA non-pretreated
plants (a < 0.05) (Fig. 3).

Ascorbate and dehydroascorbate contents: The content
of ASA increased in plants pretreated with 1 mM SA.
ASA content increased following SA pretreatment in
ETsy plants (Table 2). DHAS increased following
100 ppm ethylene treatment. Treatment of plants with
0.5 mM SA and 50 ppm ethylene increased the content of
DHAS, when compared with the control plants. The total
ASA content showed the same pattern as DHAS
(0 <0.05) (Table 2).
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Fig. 4. Effect of SA (0.5 and 1 mM) and ethylene treatments (0,
50, and 100 ppm) on ethylene production content of Brassica
napus. Values are the means of three replicate, and bar indicate
SEM significant difference at P<0.05 according to LSD test.

Table2. Effects of SA (0.5 and 1 mM) and ethylene treatments (0, 50, and 100 ppm) on ASA, DHAS, and total ascorbate content of
Brassica napus. The mean comparisons of treatments were done using LSD method at p<0.05 significant level. Means followed by
the same letter(s) in each column are not significantly different at the 5% level.

Treatment ASA [mg g '(FM)]  DHASA [mg g '(FM)]  Total ASA [mg g™ (FM)]
Control 0.92 +0.057° 1.19 +0.088 2.1+0139°

0.5 mM SA 1.19 +0.087% 1.34+0.12% 2.54+0.158"

1 mM SA 1.42+0.130 1.56 + 0.045% 2.98+0.139"

50 ppm ethylene 123+0.11° 1.18 +0.088 2.41 +£0.04%

100 ppm ethylene 1.13 +0.008% 3.57+£0.0714* 4.7+0.13°

0.5 mM SA+50 ppm ethylene 1.97+£0.19* 2.74 £ 0.062° 4.72+£0.13*

0.5 mM SA+100 ppm ethylene 1.63 = 0.062° 1.51+£0.140° 2.75+0166°

1 mM SA+50 ppm ethylene 1.24 + 0.024° 1.27+0.21% 2.9+0.271°

1 mM SA+100 ppm ethylene 1.39 £ 0.062" 1.12 +0.063¢ 2.51+0.097

Ethylene: Our results showed that SA caused a decrease
in ethylene production in the plants (Fig. 4). Ethylene
treatment (50 ppm) increased ethylene production in
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either 0.5 mM or 1 mM SA-pretreated plants but 100 ppm
ethylene had no significant effect on ethylene production
in the plants pretreated with SA (a < 0.05).
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Discussion

The effects of plant growth regulator, ethylene, on photo-
synthetic pigments were reported by some researchers,
e.g. it was found that Chl content decreased significantly
in ethylene-treated plants, such as rice (Kao and Yang
1983), radish (Adachi et al.1996), citrus (Jacob-Wilk and
Holland 1999), maize (Nemeth et al. 2002), and broccoli
(Costa et al. 2005). In this research, the determination of
photosynthetic pigments showed that Chl a, b, and a+b
contents were reduced in the ethylene-treated plants
(Table 1). Car content also decreased significantly after
the ethylene treatment when compared with the control
plants (Table 1). An induction of the Chl breakdown in
seedlings of cucumber treated with ethylene has been
reported by Nilsson (2005). However, in this study, when
SA was used as pretreatment, the pigment contents
significantly increased in ETsy plants (0<0.05). It has
been reported that exogenous ethylene induced probably
a change in the gene expression of Chl-degrading
enzymes under drought stress (Trebitsh et al. 1993).
Popova et al. (1997) suggested that the ethylene-induced
increase in membrane permeability during senescence is
enzyme-mediated. This could be valid also for Chl loss in
our study. Another reason of Chl degradation might be
related to induction of ROS production and oxidative
stress in the ethylene-treated plants in our study, which
caused the oxidation of photosynthetic pigments. In our
experiments, the treatment of plants with SA increased
significantly the pigment contents in ETs plants. SA has
a dual role in plants; it is dependent on its concentration,
treatment duration, and the plant species. In high
concentrations, SA could increase the amount of ROS
productions, induce the thylakoid lipid peroxidation and
chloroplast protein degradation, and so decline contents
of photosynthetic pigments. Popova et al. (2003) showed
that SA in a favourable concentration increased the
antioxidant ability of cell and induced new protein
synthesis in the photosynthetic apparatus.These results
are also in agreement with those of El-Tayeb (2005), who
reported that SA treatment reduced the stress-induced
loss in Chl content and photosynthetic rate under salinity
stress. It was also reported that Chl and Car content of
water-stressed plants increased significantly following
SA application (Simone et al. 2007). Our results showed
that SA increased Car content after 50 ppm ethylene
treatments. Induction of Car synthesis by SA could be
related to the protective role of these compounds in
photosynthetic machinery (Koyro 2006). Car could
scavenge or quench the singlet oxygen and protect the
chloroplast from lipid peroxidation and oxidative
damages (Loggini et al. 1999). SA also affected the
growth rate, anthocyanins, and Chl contents in Spirodella
polyrriza (Popova et al. 1997), Triticum aestivum
(Horvath et al. 2007), and Hordeum vulgare (Deef 2007).
Our experiments showed that anthocyanins of ETs, plants
were significantly lower than in the control plants

(Fig. 1). SA pretreatment increased the anthocyanin
content in 50 ppm ethylene, while in ETy plants, SA had
no significant effect. Accumulation of anthocyanins and
phenolic compounds has been reported under different
stress conditions (Kang ef al. 1973, Shinozaki et al. 1999,
Ganesan and Thomas 2001, Sakihama et al. 2002,
Simone et al. 2007). In addition, it has been reported that
ethylene treatment-induced oxidative stress (Kendrick
and Chang 2008). Thus, it seemed that ethylene
treatment-induced oxidative stress and the anthocyanin
accumulation in this study is related to antioxidant
characteristics of these compounds. In strawberry
cultivars, the amount of anthocyanins and total phenolic
compounds increases substantially under long-term salt
stress (Keutgen and Pawelizik 2008). Several reports
have shown that soluble phenols, anthocyanins, and
flavones accumulate in cells of plants subjected to
environmental stresses, and they are thought to have an
antioxidant role in plant cells (Kang et al. 1973,
Shinozaki et al. 1999, Ganesan and Thomas 2001,
Sakihama et al. 2002, Simone et al. 2007, Wahid and
Ghazanfar 2006). These compounds can protect the cell
via scavenging the ROS, breakdown of peroxidation
chain, hydrogen donation, quenching of singlet oxygen,
and peroxidase enzyme (Chu et al. 2000). Ethylene
treatments induced H,O, production (Shinozaki et al.
1999) and oxidative stress (Kendrick and Chang 2008).
Therefore it is likely that accumulation of anthocyanins in
this study was the reflection of stress caused by ethylene.
In addition, some researchers showed that exogenous SA
could induce the expression of many genes, including the
enzyme phenylalanine ammonia lyase (PAL), in plants
(Wen et al. 2005). Thus, we assumed that SA caused the
accumulation of anthocyanins by the induction of PAL
under the ethylene treatment.

Decrease in protein content is a common phenomenon
after the ethylene treatment (Zhu 2001). The reason for
this is that amino acids in proteins react with active
radicals, which may be induced by ethylene, and are
degraded (El-Tayeb 2005). In this study, the decline in
the protein content was observed in ETs plants (Fig. 2).
Protein degradation might occur under these conditions,
because of the induction of oxidative stress by ethylene.
It has been reported that cells exhibit increased rates of
proteolysis following the exposure to oxidation-inducing
agents (Inze and Montagu 2000, Yazdanpanah et al.
2011). Vera and Conejero (1990) also showed that
ethephon (ethylene releasing substance) caused a degra-
dation of proteins in tomato leaf discs. SA application
increased the protein content in ETsy plants. In ETq
plants, the protein content did not decrease, while SA
pretreatment caused the reduction of the protein amount.
The increase in amount of proteins could be related to the
synthesis of antioxidant enzymes or other stress proteins.
SA pretreatment alleviated the oxidative stress under such
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conditions and the synthesis of stress proteins probably
decreased. MDA formation in plants exposed to stress
and ethylene, is a reliable indicator of free radical
formation in the tissue, and it is currently used as an
indicator of lipid peroxidation (Meirs et al. 1992,
Borsanio et al. 2001). The level of the lipid peroxidation
(MDA content) increased significantly in the ethylene
treated plants. The plants pretreated with SA had much
lower MDA content than plants treated with ethylene
alone (Fig. 3). Similarly, in barley seedlings, foliar
application of SA decreased MDA content as well as
electrolyte leakage under salt stress (El-Tayeb 2005).
Metwally et al. (2003) also found that treatment with SA
decreased significantly the MDA content in Cd-treated
plants. Yazadanpanah et al. (2011) reported that SA
significantly decreased the MDA content in drought-
stressed plants. Further investigation showed that SA
could decline the lipid peroxidation through the inhibition
of lipoxygenase activity, decline in H,O, content, and
thus maintaining the integrity of cellular membranes
under stress conditions (Janda ef al. 2007).

Plant cells are normally protected against the detri-
mental effects of active oxygen by a complex antioxidant
system. Active oxygen species can be scavenged by both
enzymatic and nonenzymatic detoxification mechanisms
(Ingram and Bartels 1996, Shinozaki et al. 1999). ASA is
an essential metabolite implicated in vital cell functions,
and plays a key role in quenching active oxygen
(Shinozaki et al. 1999). ASA content increased following
SA pretreatment in ETs, plants (Table 2). DHAS did not
show any increase following SA pretreatment. Pretreat-
ment of plants with SA and following exposure to
50 ppm ethylene caused the significant increase in
DHAS. Total ASA content showed the same pattern as
DHAS. A marked increase in ASA, DHAS, and total
ASA contents have been reported in other plants and
discussed as an adaptive response against oxidative
damage induced by ethylene (Vera et al. 1990). Oxida-
tion of ASA by O, -can result in the production of
monodehydroascorbate, which is converted then, both
enzymatically and nonenzymatically, to ASA and DHAS
(Kang et al. 1973, Inze and Montagu 2000, Borsanio et
al. 2001). Free oxygen radicals are highly toxic and can
damage many important cellular components, such as
lipids and proteins (Harper and Balke 1981, Shinozaki et
al. 1999). The decrease of MDA content in ET,¢ plants
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