

Salinity response pattern and isolation of catalase gene from halophyte plant *Aeluropus littoralis*

M. MODARRESI^{*,+}, G.A. NEMATZADEH^{**}, and F. MORADIAN^{***}

Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran - 14115 – 336, I. R. Iran^{*}
Genetic and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari – 578, I.R. Iran^{**}
Basic Sciences Group, Sari Agricultural Sciences and Natural Resources University, Sari – 578, I.R. Iran^{**}

Abstract

The role of the antioxidant defense system in salt tolerance of *Aeluropus littoralis* has not been yet reported; therefore in the present study, the changes of catalase (CAT) activity in this halophyte plant was investigated and CAT gene was isolated. The leaves of treated and control plants were harvested at various times, starting 1 day prior to initiating treatment, then periodically at 72-h intervals for 21 days. The data collected showed that CAT activity increased significantly with time in plants treated with 200, 400, and 600 mM NaCl when compared with the control plants. Maximum enzyme activity was observed between the 6th and 12th day at all NaCl concentrations. CAT gene was isolated and cloned via pTZ57R/T cloning vector in *Escherichia coli*. CAT gene encoded 494 amino acids and had also high homology of 90, 87, 86, and 86% with CAT genes from *Zea mays*, *Oryza sativa*, *Triticum aestivum*, and *Hordeum vulgare*, respectively.

Additional key words: bioinformatic analysis; catalase activity; gene isolation.

Introduction

Salinity is one of the most severe problems in agricultural production (Castelli *et al.* 2010, Modarresi *et al.* 2013). About 800 million ha of land throughout the world is already affected by salinity. High salinity has ionic, osmotic, and secondary negative impacts, such as hormonal and nutritional imbalances (Rubio *et al.* 2009, Seckin *et al.* 2010). In addition to ionic and osmotic components, salt stress also leads to oxidative stress through an increase in reactive oxygen species (ROS), such as superoxide (O_2^-), hydrogen peroxide (H_2O_2), and hydroxyl radicals (OH^-) (Mittler 2002, de Azevedo Neto *et al.* 2006). Plants possess several antioxidant enzyme systems to protect their cells from potential cytotoxic effects of ROS (Garratt *et al.* 2002). For instance, plants use a diverse array of enzymes, such as superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), peroxidase (POD; EC 1.11.1.7), and ascorbate peroxidase (APX; EC 1.11.1.11) to scavenge different types of ROS (Apse and Blumwald 2002, Vaidyanathan *et al.* 2003). CAT is the key enzyme for scavenging H_2O_2 by its

dismutation to O_2 and H_2O . The induction of CAT in response to different, stressful environments reflects its important role in plant defense mechanisms (Purev *et al.* 2010).

Perennial halophyte, *A. littoralis*, is a salt-emitting, rhizomatous grass, ranging in its distribution from Morocco in Northern Africa and Sicily in the Mediterranean through the Middle East to Central Asia, Iran, Pakistan, and India (Cope 1982). This plant grows as a weed in dry and salty areas and is used as forage in underdeveloped countries. It is diploid ($2n = 14$) and has a relatively small genome (approximately 342 Mb). *A. littoralis* may serve as a rich genetic resource for the identification of new genes related to salt, drought, and heat tolerance (Zouari *et al.* 2007, Modarresi *et al.* 2012).

In the present study, CAT enzyme responses in the halophyte plant, *A. littoralis*, to NaCl stress were investigated and the CAT gene from this plant was isolated and characterized.

Received 30 January 2013, accepted 8 April 2013.

[†]Corresponding author; phone: +9802144580500, e-mail: mstmodarresi@gmail.com

Abbreviations: Car(s) – carotenoid(s); CAT – catalase; Chl – chlorophyll; DTT – dithiothreitol; EDTA – ethylenediaminetetraacetic acid; ORF – open reading frame; PMSF – phenyl methanesulfonyl fluoride; POD – peroxidase; PVP – polyvinylpyrrolidone; ROS – reactive oxygen species; RWC – relative water content.

Acknowledgment: This work was supported by Genetic and Agricultural Biotechnology Institute of Tabarestan, Sari University of Agricultural Sciences and Natural Resources. The authors thank Dr. H. Pirdashti and Mr. A. Heidarzadeh (Laboratory of Environmental Stress) and Mrs. Alamdar (Laboratory of Chemistry) for their assistance and companionship.

Materials and methods

Plants: *A. littoralis* was collected from Mian Kaleh natural habitats and cultured in the greenhouse of the Genetic and Agricultural Biotechnology Institute of Tabarestan. Equal clones were selected and their seeds were sterilized in 0.2% (w/v) NaClO for 1 min and grown under controlled conditions of 25–30°C, 70–90% relative humidity, 8/16 h night/day photoperiod, and photosynthetic active radiation of 250 $\mu\text{mol m}^{-2} \text{s}^{-1}$. They were hydroponically cultivated using a Hoagland nutrient solution (Hoagland and Arnon 1950). The nutrient solution was bubbled with air and changed once a week. Plants were grown for 30 d, and then the nutrient solution was supplemented with different NaCl concentrations (200, 400, and 600 mM). To avoid osmotic shock, salt concentrations were increased daily stepwise with 50 mM NaCl. A nutrient solution without NaCl was used as a control, and the evaporative conditions of the nutrient solution were controlled regularly. After 21-d treatment, fully expanded leaves were collected and used for chlorophyll (Chl) and relative water content (RWC) determination.

Pigment contents: Chl *a*, *b*, and total carotenoids (Cars) were determined spectrophotometrically according to the method of Porra (2002) at 665.2, 652.4, and 470 nm, respectively (Lichtenthaler and Buschmann 2001).

RWC: The fresh mass (FM) and dry mass (DM) of the harvested plants were used to determine RWC. It was estimated by recording the turgid mass (TM) of fresh shoot samples by keeping them in water overnight, then dried in a hot air oven till constant DM was achieved (Sairam and Srivastava 2002).

$$\text{RWC} = (\text{FM} - \text{DM}) / (\text{TM} - \text{DM}) \times 100$$

Protein extraction: Every 72 h, fully expanded leaves were collected, immediately frozen in liquid nitrogen, and stored at –80°C until use. Aliquots of frozen shoot material were ground to a fine powder with liquid nitrogen and extracted [500 mg(FM)/2 ml] at 4°C in a 100 mM Tris-HCl buffer (pH 8.0) containing 10 mM EDTA, 50 mM KCl, 20 mM MgCl₂, 0.5 mM PMSF, 1 mM DTT, 0.1% (v/v) Triton X-100, and 10% (w/w) PVP. The homogenate was centrifuged at 14,000 $\times g$ for 30 min at 4–8°C, and the supernatant was used for protein content determination and for measurement of CAT activities. Five replicates per treatment were used. Protein concen-

tration was determined according to Bradford (1976) using the bovine serum albumin as a standard.

Enzyme assay: CAT activity was estimated as the decline in absorbance at 240 nm due to H₂O₂ consumption (Aebi 1984). The reaction mixture contained 50 mM sodium phosphate buffer (pH 7.0) with 0.1 mM EDTA and 1 mM H₂O₂. The reaction was activated by adding 100 μl of the leaf crude extract. The reduction in absorbance was followed for 3 min; 1 unit decomposes 1 μmol of H₂O₂ per 1 min at 25°C and pH 7.

Specific amplification and cloning of CAT gene: Total RNA was isolated from leaves by using Trizol reagent (*Invitrogen*, USA) according to the producer's instructions. After treatment with DNase I (*Roche*, USA), total RNA was used as the template for making cDNA by M-MULV reverse transcriptase (*Fermentas*, Lithuania) and reverse primer, which was designed based on the initial and terminal regions of CAT gene from other closely related plants, such as maize, barley, wheat, *etc.* Then cDNA was used as a template for following PCR. Gene-specific primers designed from Poaceae family plants, CATF (ATGGATCCCTGCAAGTCCG), and CATR (TCACATGTTGGCTTCACGTT) were used. PCR cycling conditions were as follows: 94°C for 5 min for initial denaturation; 35 cycles of 94°C for 1 min, 56°C for 1 min, and 72°C for 2 min; and 72°C for 10 min for a final extension.

The amplified PCR products were loaded onto 1.5% TAE agarose gel and purified by DNA extraction kit (*Roche*, USA), then transformed into *Escherichia coli* by pTZ5R/T cloning vector (*Fermentas*, Lithuania). After recognition of transformed colonies by blue/white screening, PCR colony was performed and plasmids containing CAT gene were purified and sequenced.

Statistical and homology analysis: All analyses were done according to a completely randomized design at 5 replications. Data analyses were carried out using *SPSS version 18* and *Microsoft Excel* program software. Homology analyses and data base searching were carried out using the Genebank programs at <http://www.ncbi.nlm.nih.gov/> and ExPASy tools at <http://www.expasy.org/>. Multiple sequence alignments and a phylogenetic tree were constructed with the program *Clustal X* at the <http://www.ebi.ac.uk/> and *MEGA 5.0* software.

Results

Pigment contents: No changes occurred in Chl and total Car contents up to 400 mM, but they decreased compared

with the control at 600 mM NaCl (Fig. 1).

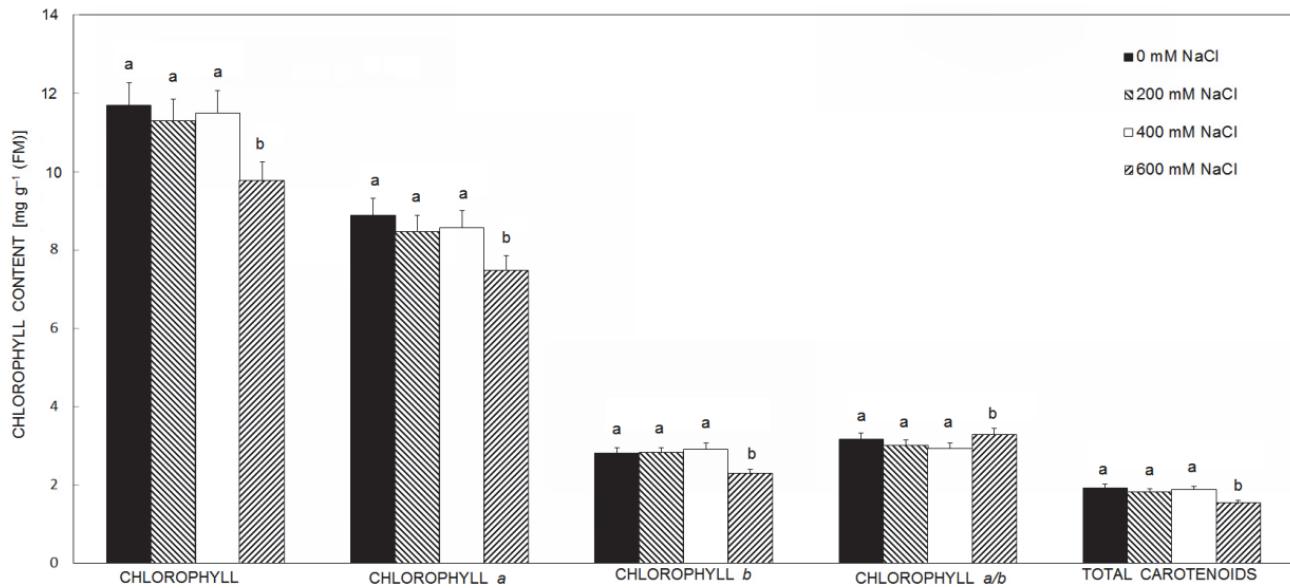


Fig. 1. Salt effects on chlorophylls and carotenoids of *Aeluropus littoralis*. Different letters in each column show significant difference at $p \leq 0.01$.

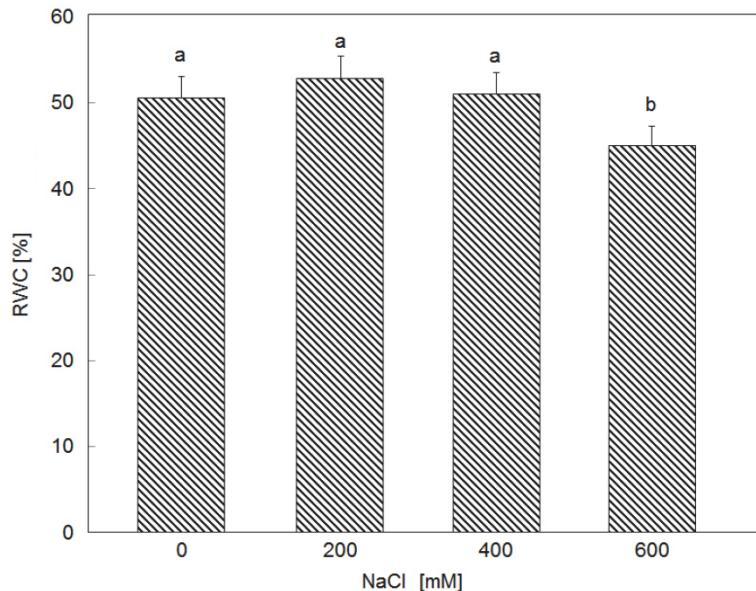


Fig. 2. Effect of salinity levels on relative water content (RWC) of *Aeluropus littoralis*. Different letters in each column show significant difference at $p \leq 0.01$.

RWC: There were no significant changes of RWC at 200 and 400 mM NaCl compared with the control, but RWC was significantly reduced at 600 mM NaCl (Fig. 2).

Enzyme assay: CAT activities at different NaCl concentrations are shown in Fig. 3. Similarly to SOD (data not shown), the maximum CAT activity was observed on the 12th day at 200 and 400 mM NaCl, while the maximal activity was observed on the 9th day at 600 mM NaCl (5.5, 7, and 5.5 fold, respectively, compared with the control). CAT and POD enzyme activities (data not shown) had the same trend. Additionally, the level of CAT activity was enhancing slightly during the first 3 d

of stress, while POD activity increased highly during this period.

Amplification and cloning of CAT gene and bioinformatic analysis: The RT-PCR analysis indicated full length cDNA of CAT gene with a length of 1,485 bp (Fig. 4). The sequences of the gene showed that ORF was complete. This gene (*Alcat*) encoded 494 amino acids with a 56.925 kDa molecular mass including 6.52 isoelectric points. The novel gene contained start and stop codon, which meant that it could be the complete and functional gene. The lack of secreted peptide sequences at the N-terminal were assumed due to the fact that these

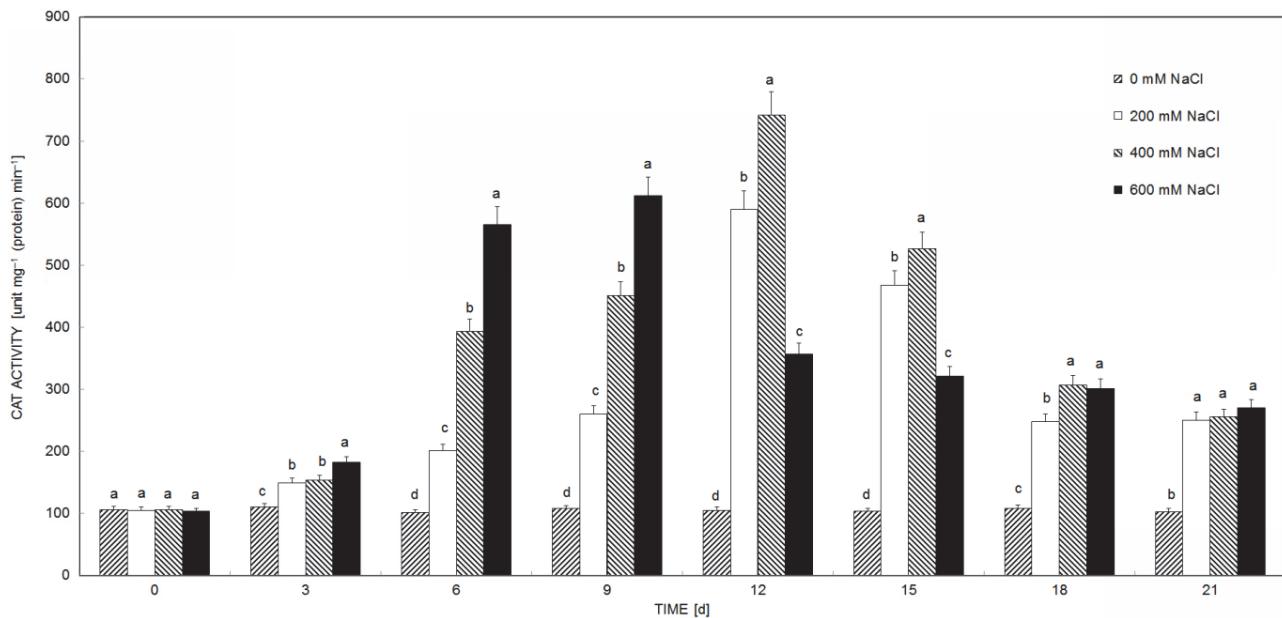


Fig. 3. The response of *Aeluropus littoralis* catalase to NaCl stress at different times (72 h periodically). Different letters in each column show significant difference at $p \leq 0.01$.

atggatccctgcataatccggccgtcgacgcgcgttcgcacacgtcgaccacgaa
M D P C K F R P D T N G D T N W T T N
gctggcccccgtctggaaacaacaacttcgcgtccacccgtcgacacgcggcccccac
A G A P V W N N S N A L T V G Q R G P I
ctccgtcgactatcatctgattgaaaagctggcccgatggacaggagcgatcgatcc
L L E D Y H L I E K K L A Q F D R E R I P
gaacgtgtgtgatggccggggagccgtcgccaaagggtttttggatgtaccacat
E R V V H A R G A C A K G F G F E V T H D
atgacgtcgatcgatcgatccgtccgtgtccggccggacgcggacccgtgtatcc
M T S L T C A C D F L R S P G T R G T P V I
gtgcgggttcgcacgggtatccacgcggccggggacggacgtccggggacccgc
V R F S T V I H E R G S P E T I R D P R
gggttcgcgtcaatcttcacgcggggaggcaactgggacactgtggccacaacttc
G S L H T F Y T R E G N W D L L G N N F
cccgatcttcatccgcgcggcatcaatgtccggacgtgtatccacgcgttcaaggcc
P V F I D R G I K F P D V I H A F K P
aaccgcgggtcgacgtcgaggactgtggagggttgcactttgtcgaccacccgc
N P R S H V Q E Y W R V F D F L S H H P
gagagcgtcgcacaccccttccttcgtcgacgcgtggcgccgaccactaccgc
E S L H T F F L F D D V G V P T D Y R
cacatggaaagggttcgggtcaacacccatcacccgtcaacgcggccggacggc
H M E G F G V N T Y T F V N A A G K A H
tacgtcaatggccactggaaagcccgatgtccgggtgcggccatccctccacccgg
Y V K F H W P S C G V R S I L T D E E
gcggcgtcgtcgggggccgaaaccacacccgcgcggacccttcacactccat
A A L V G R N H S H A T Q D L Y D S I
gcacggaaaactcccgatggaaacttcgtcgatgtggacccttcacccgg
A A G N F P E W K L F V Q V M D P D T E
gagcgatcgacttcgcacccgtggacaccaagacccatggccggatgtcgcc
E R Y D F D P L D D T K T W P E D L L P
ttgcaacccgtcgaaaggctgtctggacccggaaacgtggacaacttcacacggaa
L Q P V G R L V D R N V D N F E N N
gagcgtcgatggccggatgtccggccggatgtcgatgtccggatctacttcgc
E Q L A F G P G L V V P G I Y Y S D D K
atgctcgatgtccggatgtccggatgtccggatgtccggatgtccggatgtcc
M L Q C R V F A Y A D T Q R Y R L G P N
tacctgtatgtccggatgtccggatgtccggatgtccggatgtccggatgtcc
Y L M L P V N A P K C A H H N N H D G
gccatggaaacttcgtccggatgtccggatgtccggatgtccggatgtccgg
A M N F M H R D E E V D Y F P S R H A P
ctggccacccggccggccggatgtccggatgtccggatgtccggatgtccgg
L R H A G A P T P V P A R P V A G K R E
aagacgaccatccggaaacgcagaacacttcacacccggatgtccggatgtcc
K T T I R K Q N D F K Q P G D R Y R S W
gatccggatgtccggatgtccggatgtccggatgtccggatgtccggatgtcc
D P D R Q E R F V R R F A D S L V H H K
gtcggccggatgtccggatgtccggatgtccggatgtccggatgtccggatgt
V S Q E L R A I W I D Y L S Q C D T S L
ggatcaaaatgtccggatgtccggatgtccggatgtccggatgtccggatgt
G S K I A D R L N V K P N M -

Fig. 4. Nucleotide sequence of the cDNA encoding *Alcat* and amino acid sequence as one letter code below it.

genes most probably correspond with proteins located in cytosol. Our analysis indicated that *Alcat*-predicted protein contained conserved active site residues, such as H65, H79, S104, and N138 (Reilly *et al.* 2001). Primary structure analysis using *Protparam* (*ExPASy-Protparam* tools) indicated that the total number of negatively charged residues (Asp + Glu) was 64, while the total number of positively charged residues (Arg + Lys) was 59. *InterProScan* and *PROSITE* programs were used to find the heme-binding site and core domains. 9 amino acids at position 345–353 were found to be involved at the CAT heme-binding site. Immune-responsive domains existed in position 424–489 and CAT core domain was detected in 16–369 amino acids position (Fig. 5). CAT proximal heme ligand signature has a consensus pattern, R-[LIVMFST AN]-F-[GASTNP]-Y-x-D-[AST]-[QEH] in all species. In this pattern, Y is the proximal heme-binding ligand. *A. littoralis* had VFAYADTQ as its heme ligand pattern. Prediction of transmembrane helices and topology of proteins (available at <http://www.enzim.hu/hmmtop/>) indicated that our deduced amino acid sequence did not have any transmembrane helices, thus, it is not used as a membrane protein in nucleus or cytosol. The *NCBI Blast* program was used to determinate homology of CAT gene from *A. littoralis* and other species. Our data showed that *Alcat* had greater identity (90%) and similarity (94%) with *Z. mays* CAT gene (Fig. 7). *O. sativa*, *T. aestivum*, and *H. vulgare* had also high homology with 90, 87, and 86%, respectively. All of these plants are from the Poaceae family. The phylogenetic analysis of the amino acid sequence of *Alcat* compared with CATs of other plants indicated that this gene was closely related to *Z. mays* CAT gene (Fig. 7). The *SOPMA* program was used to investigate secondary

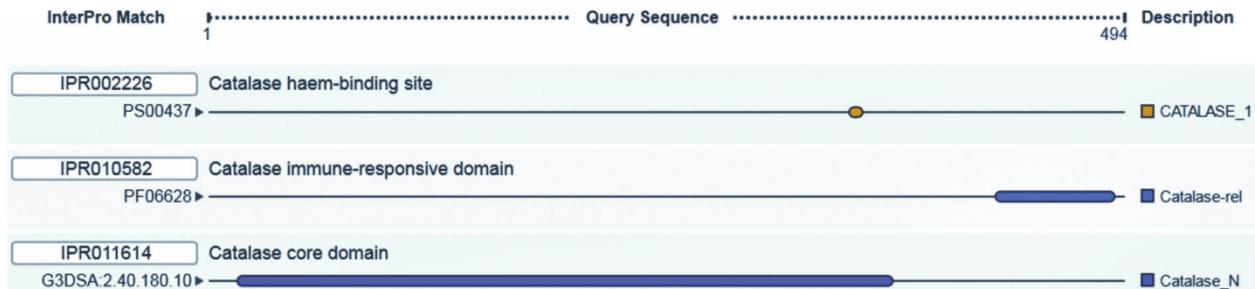


Fig. 5. Amino acid residues involved in haem-binding site, immune-responsive domain and core domain detected by *InterProScan* program.

Fig. 6. Multiple alignment of *Alcat* (ADQ28492.1) amino acid sequence with CAT amino acid sequences from other plants *Elaeis guineensis* (ACF06566.1), *Musa acuminata* (ABV55108.1), *Triticum aestivum* (ADY02963.1), and *Hordeum vulgare* (P55308.1). Sequences are aligned by the program *CLUSTAL X*. * – identical amino acid residues, : – amino acids with high similarity, · – amino acids with low similarity, and – – gaps.

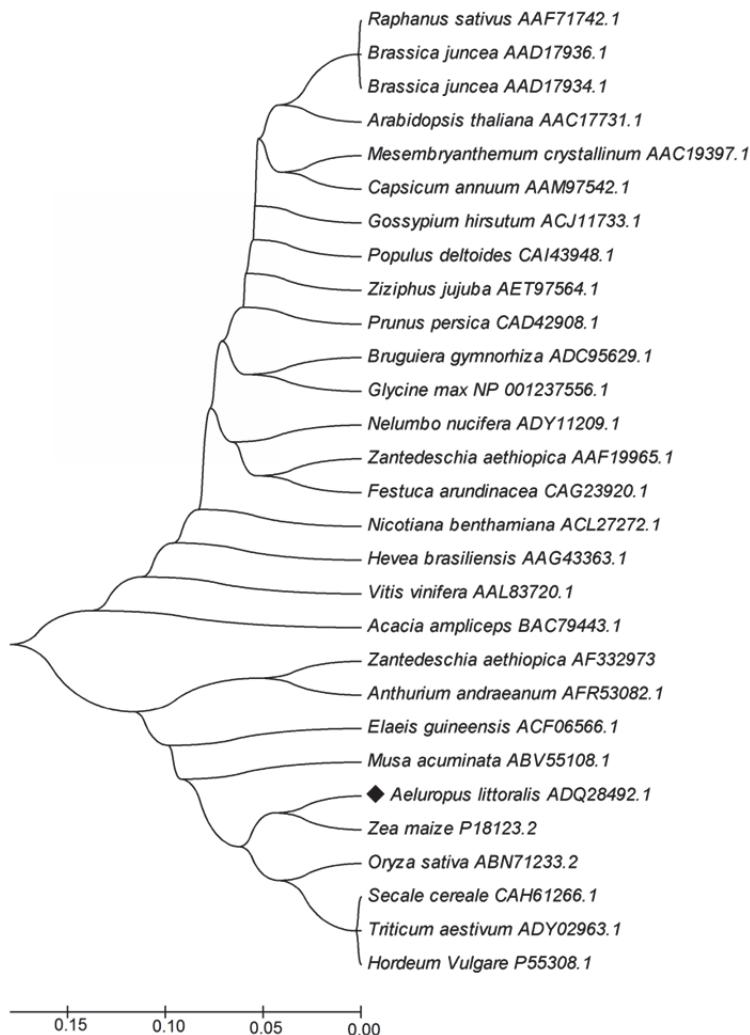


Fig. 7. Phylogenetic tree depicting the evolutionary relationship among catalase from different plants.

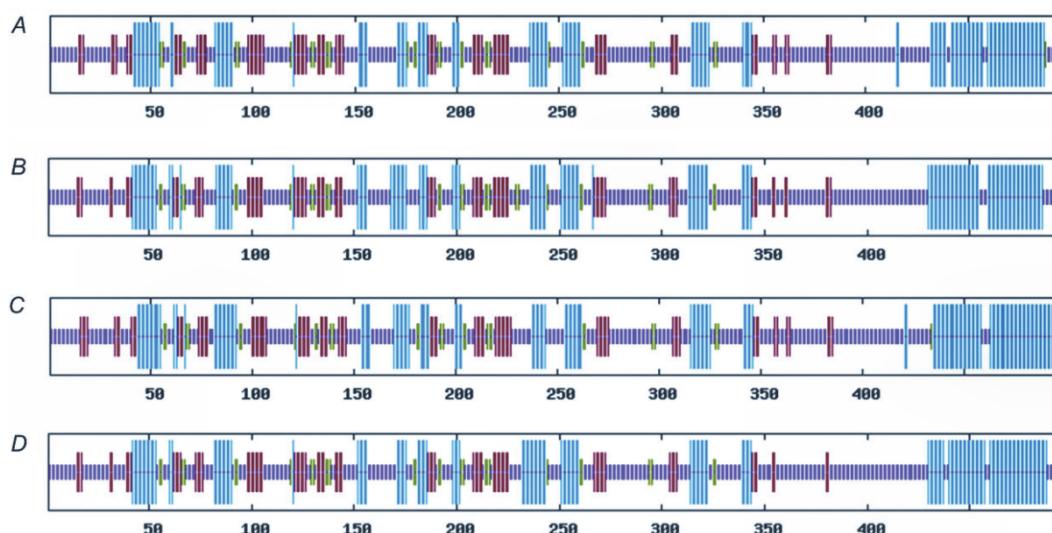


Fig. 8. Comparison of the CAT genes secondary structure of (A) *Aeluropus littoralis* (ADQ28492.1), (B) *Oryza sativa* (ABN71233.2), (C) *Zea mays* (P18123.2), and (D) *Vitis vinifera* (AAL83720.1). The helix, sheet, turn, and coil are investigated by lines in order from the tallest to the shortest.

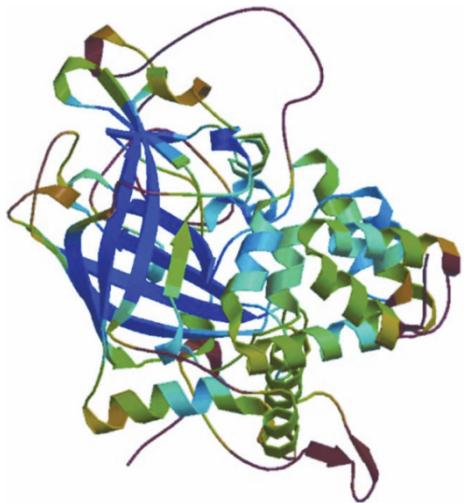


Fig. 9. The 3D structure of *Aeluropus littoralis* catalase protein predicted by SWISS-MODEL software.

Discussion

A. littoralis is a halophyte C₄ grass belonging to the Poaceae family (Zouari *et al.* 2007). The primary results of this study indicated that this halophyte plant needed almost 150–250 mM NaCl for its optimal growth. Under high NaCl concentration (600 mM), plant growth decreased and plant internodes and leaf surface were reduced compared with control plants (data not shown). Previously, Khan *et al.* (2001) and Sobhanian *et al.* (2010) showed that growth of two halophyte plants, *Salicornia rubra* and *Aeluropus lagopoides*, increased at 200 and 150 mM NaCl concentration, respectively. It seems that halophyte plants use moderate salinity for osmotic adjustments, maintenance of turgor and cell water content (Flowers and Colmer 2008).

This result indicated that leaf photochemistry in *A. littoralis* was well protected under salt stress, as it was also reported on salt-stressed barley (Seckin *et al.* 2010) and maize cultivars (Shabala *et al.* 1998). Previously, Barhoumi *et al.* (2007) reported that Chl (a + b) and Car content were not significantly influenced in *A. littoralis* by salt treatment until 400 mM NaCl. The decrease in Chl a and Chl b might be due to either the increased activity of the Chl degrading enzyme, chlorophyllase (Rao and Rao 1981), or the destruction of the chloroplast structure and the instability of pigment-protein complexes in 600 mM NaCl (Noreen and Ashraf 2009). Also at 600 mM NaCl stress, the Chl a/b ratio increased. A damage of mesophyll cell chloroplast was one of reasons for higher Chl a/b ratio in *A. littoralis* leaves.

RWC stable at 200 and 400 mM NaCl showed that this halophyte plant was highly tolerant to salt stress. Lee *et al.* (2005) have already reported that RWC of seven moderately or highly tolerant seashore paspalums was statistically similar to that of the control until 300 mM NaCl. It was directly reflective of the water status of

structure analysis. Results revealed that *Alcat* consists of 130 alpha helices, 30 beta turns, 77 extended strands, and 257 random coils. These results are similar to those of the secondary structure analysis of *O. sativa* with 130 α -helices, 28 β turns, 74 extended strands, and 260 random coils. Also, *Secale cereale* has 131 α -helices, 32 β turns, 73 extended strands, and 258 random coils (Fig. 8). *A. littoralis* did not have any β bridge in its CAT secondary structure as other similar plants. It seems that salt-tolerant species, such as *A. littoralis* and *Setaria italica* (foxtail millet), have more extended strands. It is possible that extended strands are effective in tolerance to unfavourable environmental conditions. The 3D structure of *Alcat* was predicted by the Swiss-Model program (Fig. 9). This program used 1m7sA from CAT crystal structure of *Pseudomonas syringae* as a template. The root mean square deviation between *Alcat* and the template '1m7sA' was 1.80 Å over 479 aligned residues.

plants and its decrease suggested that the salinity caused water deficit in the plants. The negative effect on plant water relations was induced by accumulation of soluble salts, which slowed down the uptake of water and nutrients, causing osmotic stress effects and toxicity (Yang *et al.* 2009), despite the fact that RWC of some other halophytes, such as *Sauda salsa* (Lu *et al.* 2002) and *Atriplex nummularia*, was not changed or enhanced under salt-stress conditions (Silveira *et al.* 2009). According to Mohsenzadeh *et al.* (2006), a reduction in RWC of up to 5% produced no negative impact on plant health and growth.

CAT enzyme activity increased under NaCl stressful condition. CAT has a significant role in the plant defense system against oxidative stress. It is produced in peroxisomes and glyoxysomes. This enzyme catalyzes a redox reaction, in which dismutation of H₂O₂ gives rise to water and oxygen (Ali and Alqurainy 2006, Ashraf 2009). Increases in CAT activity after salt exposure have been mentioned by Pérez-López *et al.* (2010) and Yang *et al.* (2009), however, a reduction of CAT activity has been reported in certain plant species exposed to numerous environmental stresses, such as salinity (Parida and Das 2005) and drought (Zhang and Kirkham 1994). Khosravinejad *et al.* (2008) observed a rapid and continued increase in CAT activity of salt-tolerant barley cultivars under salt stress. In cotton, significantly higher constitutive concentrations of CAT and POD were found in salt-tolerant lines than in salt-sensitive lines, while the activities of these enzymes remained unchanged or decreased in salt-sensitive cultivars (Gossett *et al.* 1996).

The CAT enzyme can play an important role in tolerance to salinity in many halophyte plants. These halophytes belong to the Poaceae family and they can be highly efficient genetic sources for tolerance of abiotic

stress for improving other species such as wheat, rice, and so on. To achieve this goal some antioxidant enzyme genes were isolated and cloned (Modarresi *et al.* 2012), such as SOD (HM107007), CAT (HQ389206), and APX

(JF907687, JF819725). Further experiments for transformation of these genes to crop plants and analysis of the transformed plants responses under salt stress conditions are currently underway.

References

Aebi, H.: [13] Catalase *in vitro*. – In: Lester, P. (ed.): Methods in Enzymology Pp. 121-126. Academic Press. Orlando 1984.

Ali, A., Alqurainy, F.H.: Activities of antioxidants in plants under environmental stress. – In: Motohashi, N. (ed.): The Lutein-Prevention and Treatment for Diseases Pp. 187-256. Transworld Research Network, Trivandrum 2006.

Apse, M.P., Blumwald, E.: Engineering salt tolerance in plants. – *Curr. Opin. Biotech.* **13**: 146-150, 2002.

Ashraf, M.: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. – *Biotech. Adv.* **27**: 84-93, 2009.

Barhoumi, Z., Djebali, W., Smaoui, A. *et al.*: Contribution of NaCl excretion to salt resistance of *Aeluropus littoralis* (Willd) Parl. – *J. Plant Physiol.* **164**: 842-850, 2007.

Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. – *Anal. Biochem.* **72**: 248-254, 1976.

Castelli, S.L., Grunberg, K., Muñoz, N. *et al.*: Oxidative damage and antioxidant defenses as potential indicators of salt-tolerant *Cenchrus ciliaris* L. genotypes. – *Flora* **205**: 622-626, 2010.

Cope, T.A.: [Poaceae. – In: Nasir, E, Ali, SI, (ed.): Flora of Pakistan.] University of Karachi, Karachi 1982. [In French.]

de Azevedo Neto, A.D., Prisco, J.T., Enéas-Filho, J. *et al.*: Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. – *Environ. Exp. Bot.* **56**: 87-94, 2006.

Flowers, T.J., Colmer, T.D.: Salinity tolerance in halophytes. – *New Phytol.* **179**: 945-963, 2008.

Garratt, L.C., Janagoudar, B.S., Lowe, K.C. *et al.*: Salinity tolerance and antioxidant status in cotton cultures. – *Free Radical Bio. Med.* **33**: 502-511, 2002.

Gossett, D.R., Banks, S.W., Millhollon, E.P., Lucas, M.C.: Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. – *Plant Physiol.* **112**: 803-809, 1996.

Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. – *Calif. Agr. Exp. Stat. Cir.* **347**: 1-32, 1950.

Khan, M.A., Gul, B., Weber, D.J.: Effect of salinity on the growth and ion content of *Salicornia rubra*. – *Commun. Soil Sci. Plant* **32**: 2965-2977, 2001.

Khosravinejad, F., Heydari, R., Farboodnia, T.: Antioxidant responses of two barley varieties to saline stress. – *Pak. J. Bio. Sci.* **11**: 905-909, 2008.

Lee, G., Carrow, R.N., Duncan, R.R.: Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes. – *Sci. Hort.* **104**: 221-236, 2005.

Lichtenthaler, H.K., Buschmann, C.: Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. – In: Wrolstad, R. E. (ed.): *Current Protocols in Food Analytical Chemistry*. John Wiley & Sons, Corvallis 2001.

Lu, C., Qiu, N., Lu, Q. *et al.*: Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte *Suaeda salsa* grown outdoors? – *Plant Sci.* **163**: 1063-1068, 2002.

Mittler, R.: Oxidative stress, antioxidants and stress tolerance. – *Trends Plant Sci.* **7**: 405-410, 2002.

Modarresi, M., Nematzadeh, G.A., Moradian, F., Alavi, S.M.: Identification and Cloning of the Cu/Zn Superoxide Dismutase Gene from Halophyte Plant *Aeluropus littoralis*. – *Russ. J. Genet.* **48**: 130-134, 2012.

Modarresi, M., Nematzadeh, G.A., Zarein, M.: Glyceraldehyde-3-phosphate Dehydrogenase Gene from Halophyte *Aeluropus lagopoides*: Identification and Characterization. – *J. Crop Imp.* **27**: 281-290, 2013.

Mohsenzadeh, S., Malboobi, M.A., Razavi, K., Farrahi-Aschtiani, S.: Physiological and molecular responses of *Aeluropus lagopoides* (Poaceae) to water deficit. – *Environ. Exp. Bot.* **56**: 314-322, 2006.

Noreen, Z., Ashraf, M.: Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (*Raphanus sativus* L.). – *Environ. Exp. Bot.* **67**: 395-402, 2009.

Parida, A.K., Das, A.B.: Salt tolerance and salinity effects on plants: a review. – *Ecotox. Environ. Saf.* **60**: 324-349, 2005.

Pérez-López, U., Robredo, A., Lacuesta, M. *et al.*: Lipoic acid and redox status in barley plants subjected to salinity and elevated CO₂. – *Physiol. Plant.* **139**: 256-268, 2010.

Porra, R.J.: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls *a* and *b*. – *Photosynth. Res.* **73**: 149-156, 2002.

Purev, M., Kim, Y.J., Kim, M.K. *et al.*: Isolation of a novel catalase (Cat1) gene from *Panax ginseng* and analysis of the response of this gene to various stresses. – *Plant Physiol. Biochem.* **48**: 451-460, 2010.

Rao, G.G., Rao, G.R.: Pigment composition and chlorophyllase activity in pigeon pea (*Cajanus indicus* Spreng) and Gingelley (*Sesamum indicum* L.) under NaCl salinity. – *Ind. J. Exp. Biol.* **19**: 768-770, 1981.

Reilly, K., Han, Y., Tohme, J., Beeching, J.R.: Isolation and characterisation of a cassava catalase expressed during post-harvest physiological deterioration. – *Biochim. Biophys. Acta* **1518**: 317-323, 2001.

Rubio, M.C., Bustos-Sanmamed, P., Clemente, M.R., Becana, M.: Effects of salt stress on the expression of antioxidant genes and proteins in the model legume *Lotus japonicus*. – *New Phytol.* **181**: 851-859, 2009.

Sairam, R.K., Srivastava, G.C.: Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. – *Plant Sci.* **162**: 897-904, 2002.

Seckin, B., Turkan, I., Sekmen, A.H., Ozfidan, C.: The role of antioxidant defense systems at differential salt tolerance of

Hordeum marinum Huds. (sea barleygrass) and *Hordeum vulgare* L. (cultivated barley). – Environ. Exp. Bot. **69**: 76-85, 2010.

Shabala, S.N., Shabala, S.I., Martynenko, A.I. *et al.*: Salinity effect on bioelectric activity, growth, Na^+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. – Func. Plant Biol. **25**: 609-616, 1998.

Silveira, J.A.G., Araújo, S.A.M., Lima, J.P.M.S., Viégas, R.A.: Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in *Atriplex nummularia*. – Environ. Exp. Bot. **66**: 1-8, 2009.

Sobhanian, H., Motamed, N., Jazii, F., Razavi, K., Niknam, V., Komatsu, S.: Salt stress responses of a halophytic grass *Aeluropus lagopoides* and subsequent recovery. – Russ. J. Plant Physiol. **57**: 784-791, 2010.

Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., Thomas, G.: Scavenging of reactive oxygen species in NaCl-stressed rice (*Oryza sativa* L.) – differential response in salt-tolerant and sensitive varieties. – Plant Sci. **165**: 1411-1418, 2003.

Yang, F., Xiao, X., Zhang, S., Korpelainen, H., Li, C.: Salt stress responses in *Populus cathayana* Rehder. – Plant Sci. **176**: 669-677, 2009.

Zhang, J., Kirkham, M.B.: Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. – Plant Cell Physiol. **35**: 785-791, 1994.

Zouari, N., Saad, R.B., Legavre, T. *et al.*: Identification and sequencing of ESTs from the halophyte grass *Aeluropus littoralis*. – Gene **404**: 61-69, 2007.