

Growth, photosynthesis and ion balance of sesame (*Sesamum indicum* L.) genotypes in response to NaCl concentration in hydroponic solutions

A.H. BAZRAFSHAN and P. EHSANZADEH⁺

College of Agriculture, Department of Agronomy and Plant Breeding, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

A hydroponic, greenhouse experiment was conducted to assess the effects of NaCl on growth, gas-exchange parameters, chlorophyll (Chl) content, and ion distribution in seven sesame (*Sesamum indicum* L.) genotypes (Ardestan, Varamin, Naz-Takshakhe, Naz-Chandshakhe, Oltan, Yekta, Darab). The plants were grown in 4-L containers and subjected to varying levels of salinity (0, 30, and 60 mM NaCl). After 42 days, salt treatments induced decreases of plant fresh and dry mass, total leaf area, and plant height in all genotypes. Increasing NaCl concentration caused significant, genotype-dependent decrease in the net photosynthetic rate, stomatal conductance, Chl content, and maximum quantum efficiency of photosystem II, while it increased the intercellular CO₂ concentration. Based on the dry matter accumulation under salinity, the genotypes were categorized in two groups, *i.e.*, salt-tolerant and salt-sensitive. The impact of salt on plant ion concentrations differed significantly among the sesame genotypes and between both two groups. The plant Na⁺ concentrations were significantly lower in Ardestan, Darab, and Varamin genotypes than those found in the remaining genotypes. The highest plant K⁺ and Ca²⁺ concentrations together with the lowest Na⁺/K⁺ and Na⁺/Ca²⁺ ratios were observed in Ardestan, Varamin, and Darab genotypes. Our results indicated the presence of differences in salt response among seven sesame genotypes. It suggested that growth and photosynthesis could depend on ion concentrations and ratios in sesame.

Additional key words: chlorophyll fluorescence; gas exchange; potassium; salinity; sodium.

Introduction

Sesamum indicum (L.) is an ancient, oil seed crop, which origin is probably in East Africa and India (Bedigian 2003, Anilakumar *et al.* 2010). Sesame seed is widely used in food, pharmacy, and industry in many countries (Bedigian 2003), since it contains a considerable amount of oil (50–60%), proteins (18–25%), carbohydrates (13.5%), and fibre (11.8%) (Were *et al.* 2006, Anilakumar *et al.* 2010). Sesame oil, compared to polyunsaturated oils of other crops, has proven to be more stable due to the natural antioxidants, sesamin and sesamolin, preserving the integrity of double bonds of unsaturated fatty acids (Uzun *et al.* 2002, Anilakumar *et al.* 2010). The beneficial effects of sesame oil on human health have been documented (Sankar *et al.* 2006). The most recent data on sesame production (FAOSTAT 2010) indicate that the average grain yield per ha is less than 1,000 kg ha⁻¹, which is quite

low in comparison with most other oilseed crops. In addition to a dehiscent capsule and, therefore, seed loss through shattering, abiotic stresses are among the major factors contributing to the low grain yield.

Salt stress is one of the major environmental constraints for crop plants, particularly in arid and semiarid regions (Kaymakanova and Stoeva 2008, Turan *et al.* 2009). Salinization is quickly expanding on a global scale (Turkan and Demiral 2009) and currently more than 800 million ha of the cultivated lands are affected by salinity (FAOSTAT 2010). Salinity reduces the soil water potential which can lead to osmotic stress (Winicov 1998, Tejera *et al.* 2006). Osmotic effect exposes the plants to secondary stresses, such as drought stress and nutrient deficiency due to a decrease in the plant ability to obtain nutrients from root (Sairam *et al.* 2002). Furthermore,

Received 13 February 2013, accepted 18 October 2013.

⁺Corresponding author; phone: +98311 391 3459, fax: +98311 3913458, e-mail: ehsanzadehp@gmail.com

Abbreviations: Chl – chlorophyll; C_i – intercellular CO₂ concentration; DM – dry mass; FM – fresh mass; F_v/F_m – quantum efficiency of PSII; g_s – stomatal conductance; LNP – leaf number per plant; PH – plant height; P_N – net photosynthetic rate; PPFD – photosynthetic photon flux density; PS – photosystem; TLA – total leaf area per plant.

Acknowledgements: This research has been supported by the College of Agriculture, Isfahan University of Technology, Isfahan, Iran. Authors wish to thank Dr. Dinesh Yadav for his comments on the manuscript.

salinity can directly affect nutrient uptake. Increase in the accumulation of specific ions, such as Na^+ and Cl^- , can reduce the uptake of K^+ , Ca^{2+} , and Mg^{2+} ions. The latter impact is called ion-excess effect of salinity (Soussi *et al.* 2001, Desingh and Kanagaraj 2007). The continuing salt accumulation in the soils brings about alterations in many physiological processes of the plant, including increased respiration rate and ion toxicity, decreased growth and change in mineral distribution (Munns and Terman 1986, Genc *et al.* 2007). A depletion in Chl content along with reduction in the photosynthetic rate and efficiency have been also observed (Munns 2002, Sayed 2003).

In order to cope with the osmotic and ionic effects caused by salinity stress, some plant species have developed an array of up- and down-regulations (Delgado and Sánchez-Raya 1999, Sairam *et al.* 2002). They include osmotic adjustment by accumulation of compatible solutes, such as proline, polyols, amino acids, and proteins

and regulatory mechanisms for ion transport (Chen and Murata 2002, Ashraf and Harris 2004).

Sensitivity of *S. indicum* to salinity (Yahya 1998) and some varietal differences in its response to salinity were documented (Gehlot *et al.* 2005, Koca *et al.* 2007, Yahya 2010). Disturbances in K, Ca, and P nutrition of the sesame plants were proposed to be the main reason for the negative effects of NaCl on sesame (Yahya 1998). Differences in the response of sesame genotypes to NaCl were associated with the differences in their ability to inhibit Na^+ translocation and accumulation in the shoots and leaves (Yahya 1998, 2010).

Despite the high nutritional value, health benefits, and economic importance in many countries, data on the effect of biotic and abiotic stresses on sesame plant are scarce. The present study evaluates some growth characteristics, and photosynthetic and ion attributes of sesame genotypes in hydroponic solutions under NaCl treatment.

Materials and methods

Plants and growth conditions: Experiments were carried out in a greenhouse equipped with a partial canopy shading at the Isfahan University of Technology, Isfahan, Iran, in 2010. Seeds of seven *S. indicum* genotypes, namely Naz-Takshakhe, Naz-Chandshakhe, Ardestan, Varamin, Yekta, Darab, and Oltan were sown into $20 \times 30 \times 5$ cm plastic trays filled with washed sand and grown under controlled conditions (light/dark regime of 12/12 h at 25/20°C, relative humidity of 60–70%). Some characteristics of the genotypes are given in Table 1. After emergence, seedlings were watered every day with half-strength Hoagland's solution (Hoagland and Arnon 1950). Four healthy, 5-week-old seedlings from each genotype were selected and transferred to the containers filled with 4 L of aerated Hoagland's nutrient solution. In total, 63 containers were used in the experiment. Salt treatment started when the plants were 40 d old. In order to avoid osmotic shock, 3 d after transplantation, salt solutions were added in two equal portions of 30 mM on alternate days until the concentrations of 30 and 60 mM were achieved, while only the nutrient solution was used in the control treatment. Nutrient solutions were collected every 24 h from each container and electric conductivity (EC) and pH were measured with conductivity meter (*Cond7110*, *InoLab*,

Germany) and pH meter (*PHM3030*, *Jenway*, UK), respectively. The pH of the solutions was maintained at 6.0–6.5 throughout the experiment. The nutrient solution was renewed every 2 weeks and the amount of evaporated water was replenished with distilled water every day.

Leaf gas exchange, Chl fluorescence, and Chl content: Net photosynthetic rate (P_N), intercellular CO_2 concentration (C_i), and stomatal conductance to water vapour (g_s) were measured on 3 healthy leaves in each container with a calibrated portable gas-exchange system (*LCA4*, *ADC Bioscientific Ltd.*, UK) at 5 weeks after application of NaCl. All measurements were made at the leaf temperature of 26–33°C, CO_2 concentration of 370–390 mg kg^{-1} , and photosynthetic photon flux density (PPFD) of 350–500 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Chl fluorescence parameters, including maximum (F_m) and minimum (F_0) fluorescence along with the maximum efficiency of photosystem (PS) II ($F_m - F_0/F_m$, *i.e.*, F_v/F_m), were measured on 3 young, fully expanded, attached leaves per container (dark-adapted for 20 min). The fluorescence parameters were measured 6 weeks after the NaCl application, using a portable Chl fluorometer (*Opti-Sciences, Inc.*, Hudson, NH, USA). Each data set represented the mean of 3 measurements.

Table 1. Sesame genotypes and their agronomic properties.

Genotype	Local region	Branching status	Relative height	Seed color	Lodging status	Silique status	Maturity status
Naz-Takshakhe	Northern Iran	low	tall	white	intermediate	intermediate	early
Ardestan	Central Iran	high	tall	brown	sensitive	sensitive	late
Naz-Chandshakhe	Northern Iran	high	tall	white	intermediate	sensitive	early
Yekta	Central Iran	low	tall	white	resistant	intermediate	semi-early
Varamin	Central Iran	low	tall	brown	resistant	intermediate	semi-late
Darab	Southern Iran	high	intermediate	brown	intermediate	sensitive	semi-late
Oltan	North-east Iran	high	tall	brown	sensitive	intermediate	semi-early

The leaf Chl content of the sesame genotypes was determined 6 weeks after salt treatment using fully expanded, young leaves. A fresh leaf sample of 0.5 g was ground and extracted with 15 mL of 80% (v/v) acetone. The slurry was filtered and absorbance was determined at 645 and 663 nm for Chl *a* and Chl *b*, respectively, using the spectrophotometer (*PD-303S, APEL, Co., Ltd.*, Japan). Concentrations of Chl *a* and Chl *b* were calculated according to Arnon (1949).

Growth parameters: All four plants from each experimental unit were subjected to the following measurements, and then harvested after 6 weeks of the salt treatment. Mean leaf area per plant was calculated after measuring total leaf area (TLA) of all plants in each container, using a portable area meter (*Li 3000A, LI-COR, Inc.*, Lincoln, Nebraska, USA). Plant heights (PH) were measured and fresh (FM) and dry mass (DM) of shoots and roots were determined. For DM determination, the samples were oven-dried at 70°C for 72 h and then weighed.

Ion determinations: For determination of inorganic ion concentrations, plant aerial parts (stem and leaves) were dried at 70°C for 72 h and pulverized. One gram of the powdered sample was kept at 560°C for 4 h during ash preparation. Then 10 mL of 2 N HCl was added and the mixture was heated at 90°C to remove HCl. The digested

Results

Growth: FM and DM were significantly affected by salt, genotype, tolerant *vs.* sensitive type, and the interaction effect of group \times salt (Table 2). PH was significantly affected by salt, genotype, salt sensitive group, and tolerant *vs.* sensitive. TLA was significantly affected by salt, genotype, salt sensitive group, tolerant *vs.* sensitive, and the interaction effect of group \times salt. The leaf number per plant (LNP) was significantly affected by salt, genotype, and tolerant *vs.* sensitive (Table 2).

FM and DM of the sesame genotypes decreased on average by 66.5 and 66.7%, respectively, in the plants subjected to the 60 mM NaCl in comparison with the control (Table 3). Averaged over genotypes, reductions of 29.8 and 73.5% in the means of TLA were observed in the plants grown under 30 and 60 mM of NaCl, respectively, compared with the control. Significant genotypic variation was observed in the growth parameters of the genotypes in response to NaCl (Table 2). This difference was mainly due to the difference between two groups of genotypes. The highest means for FM, DM, and TLA were observed in Varamin followed by Ardestan and Darab (Table 4), all representing the tolerant group. FM and DM were not different in both groups in the absence of any salt stress, but the tolerant group showed comparatively higher values of FM and DM under 30 and 60 mM NaCl (Fig. 1*A,B*). TLA in both groups differed under the control and saline

ash was dissolved in 100 mL of distilled water and then filtered. The filtrate was refrigerated until analysis. The K⁺ and Na⁺ concentrations were measured using a flame photometer (*Corning Flame Photometer 410, Corning Medical and Scientific*, Halstead Essex, UK). Concentrations of K⁺ and Na⁺ ions were estimated by referring to the standard working solution. The Ca²⁺ concentration was estimated by atomic absorption spectrometry (*Perkin-Elmer, Analyst 200*, Waltham, Massachusetts, USA) according to Chapman and Pratt (1961).

Experimental design and statistical analysis: A factorial experiment (salinity at 3 levels and genotype at 7 levels) was conducted using a randomized complete block design with three replications. All data were subjected to analysis of variance (ANOVA) using a *Statistical Analysis Software Version 9.1 (SAS Institute Inc.*, Cary, North Carolina, USA). Based on the data obtained from FM and DM accumulation, the genotypes were divided into two groups: *i.e.*, salt-tolerant (Ardestan, Varamin, and Darab) and salt-sensitive (Naz-Takshakhe, Naz-Chandshakhe, Yekta, and Oltan). Orthogonal independent comparisons were conducted for differences within and between the two groups and for their interaction with the salt treatment. The means were separated using *Fisher's* protected least significant differences (LSD). Differences were considered significant at $p \leq 0.05$.

conditions, but the extent of their difference increased with salinity, *i.e.*, 30 and 60 mM led to a more pronounced decrease in mean TLA in the sensitive group (Fig. 1*E*). Averaged over genotypes, 60 mM NaCl decreased mean PH and LNP by 47.8 and 41%, respectively, in comparison with the control (Table 3). The means with the highest PH and LNP values were recorded in the tolerant genotypes (Table 4, Fig. 1*C,D*).

Gas exchange, Chl fluorescence, and Chl content: Gas-exchange parameters were significantly affected by salt, genotype, tolerant *vs.* sensitive, and the interaction effects of salt \times genotype and salt \times group (Table 2). Averaged over the genotypes, P_N decreased by 64% as NaCl concentration raised from 0 to 60 mM in the nutrient solution (data not shown). The NaCl presence decreased the P_N of all seven genotypes. However, the magnitude of the reduction varied considerably among the genotypes in general (Fig. 2*A*) and between the two groups in particular (Fig. 3*A*). Among the genotypes studied in this experiment, P_N showed a greater decrease at 60 mM NaCl in the sensitive group of the genotypes (*i.e.*, Naz-Takshakhe, Naz-Chandshakhe, Yekta, and Oltan), compared with those in the tolerant group (Fig. 2*A*). The g_s response of sesame to NaCl seemed to be the genotype- and group-dependent (Table 2). Although the genotypes (Fig. 2*B*) and both two

Table 2. A synopsis of analysis of variance (ANOVA) for fresh mass (FM), dry mass (DM), plant height (PH), total leaf area per plant (TLA), leaf number per plant (LNP), net photosynthetic rate (P_N), stomatal conductance (g_s), intercellular CO_2 concentration (C_i), and quantum efficiency of PSII (F_v/F_m) of *7S. indicum* genotypes when 40-d-old seedlings were allowed to grow for 6 weeks under normal or saline conditions. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, ns – nonsignificant, df – degrees of freedom.

Source of variation	df	Mean square	FM	DM	PH	TLA	LNP	P_N	g_s	C_i	F_v/F_m
Replication	2	61.512 ^{ns}	0.632 ^{ns}	41.921 ^{ns}	11.977 ^{ns}	6.798 ^{ns}	1.56 ^{ns}	0.0001 ^{ns}	49.29 ^{ns}	0.0004 ^{ns}	
Salt treatment	2	7625.592 ^{***}	86.982 ^{***}	5208.192 ^{***}	2972.561 ^{***}	570.619 ^{***}	268.83 ^{***}	0.0133 ^{***}	10376.83 ^{***}	0.05 ^{***}	
Genotype	6	472.223 ^{***}	5.068 ^{***}	205.099 ^{***}	53.659 ^{***}	11.661 ^{***}	16.78 ^{***}	0.0008 ^{***}	1440.85 ^{***}	0.003 ^{***}	
Sensitive group	3	16.696 ^{ns}	0.333 ^{ns}	64.912 [*]	24.117 [*]	2.851 ^{ns}	4.96 [*]	0.0001 ^{ns}	573.37 [*]	0.003 [*]	
Tolerant group	2	242.526 ^{ns}	2.114 ^{ns}	22.980 ^{ns}	5.535 ^{ns}	4.314 ^{ns}	0.126 ^{ns}	0.00005 ^{ns}	42.40 ^{ns}	0.0008 ^{ns}	
Between group	1	2298.201 ^{***}	25.18 ^{***}	989.898 ^{***}	238.533 ^{***}	52.783 ^{***}	85.55 ^{***}	0.004 ^{***}	6840.18 ^{***}	0.100 ^{***}	
Genotype \times Salt treatment	12	101.973 ^{ns}	0.909 ^{ns}	44.599 ^{ns}	6.763 ^{ns}	1.844 ^{ns}	4.21 ^{**}	0.0002 [*]	356.85 [*]	0.0003 ^{ns}	
Sensitive \times Salt treatment	6	18.240 ^{ns}	0.408 ^{ns}	49.051 ^{ns}	5.252 ^{ns}	1.523 ^{ns}	2.692 ^{ns}	0.0001 [*]	171.60 ^{ns}	0.0004 ^{ns}	
Tolerant \times Salt treatment	4	66.369 ^{ns}	0.379 ^{ns}	33.523 ^{ns}	2.125 ^{ns}	1.211 ^{ns}	0.57 ^{ns}	0.00001 ^{ns}	14.45 ^{ns}	0.0001 ^{ns}	
Groups \times Salt treatment	2	424.382 ^{**}	3.473 [*]	53.393 ^{ns}	20.567 [*]	4.074 ^{ns}	16.07 ^{***}	0.0006 ^{***}	1597.41 ^{***}	0.0005 ^{ns}	
Error	40	65.697	0.925	23.488	4.932	3.259	1.35	0.00008	159.63	0.0006	

Table 4. Effect of *S. indicum* genotypes on fresh mass (FM), dry mass (DM), plant height (PH), total leaf area per plant (TLA), leaf number per plant (LNP), quantum efficiency of PSII (F_v/F_m), total Chl (Chl_{a/b}), and quantum efficiency of PSII (F_v/F_m). Data are means \pm SE ($n = 9$). Values followed by the same letter(s) within a row are not significantly different at $p \leq 0.05$ (LSD test).

Parameters	Genotypes	Naz-Chandshakhe	Ardestan	Naz-Takshakhe	Yekta	Varamin	Darab	Oltan
FM [g plant^{-1}]	30.90 ± 6.7^d	44.72 ± 4.69^{ab}	31.80 ± 7.284^{cd}	33.90 ± 6.34^{cd}	49.02 ± 4.88^a	38.68 ± 5.86^{bc}	31.15 ± 6.95^{cd}	
DM [g plant^{-1}]	3.29 ± 0.742^c	4.74 ± 0.53^{ab}	3.32 ± 0.781^c	3.64 ± 0.661^c	5.07 ± 0.543^a	4.11 ± 0.64^{bc}	3.20 ± 0.705^c	
PH [cm]	50.23 ± 3.784^c	57.16 ± 4.96^a	43.82 ± 3.62^d	48.23 ± 4.83^{cd}	54.56 ± 4.70^{ab}	54.25 ± 6.15^{ab}	46.94 ± 5.55^{cd}	
TLA [$\text{cm}^2 \text{ plant}^{-1}$]	18.64 ± 3.553^{de}	23.17 ± 3.27^a	20.48 ± 3.58^{cd}	21.02 ± 3.71^{bc}	24.19 ± 3.56^a	22.65 ± 3.74^{ab}	17.48 ± 3.45^e	
LNP	20.02 ± 1.688^c	21.83 ± 1.48^a	19.13 ± 1.63^c	19.92 ± 1.68^c	20.55 ± 1.68^{abc}	21.65 ± 1.59^{ab}	18.90 ± 1.48^c	
Chl <i>a</i> [$\text{mg g}^{-1}(\text{FM})$]	0.40 ± 0.014^c	0.45 ± 0.027^{ab}	0.41 ± 0.016^{bc}	0.44 ± 0.021^{abc}	0.46 ± 0.022^{a}	0.41 ± 0.020^{bc}	0.40 ± 0.026^c	
Chl <i>b</i> [$\text{mg g}^{-1}(\text{FM})$]	0.26 ± 0.027^{ab}	0.27 ± 0.035^a	0.21 ± 0.0170^c	0.26 ± 0.024^{ab}	0.25 ± 0.017^{ab}	0.26 ± 0.029^{ab}	0.23 ± 0.026^{bc}	
Ch _{tot} [$\text{mg g}^{-1}(\text{FM})$]	0.66 ± 0.038^{bcd}	0.72 ± 0.057^a	0.63 ± 0.031^d	0.70 ± 0.041^{ab}	0.71 ± 0.038^{ab}	0.68 ± 0.046^{abc}	0.64 ± 0.045^{cd}	
Chl <i>a/b</i>	1.66 ± 0.176	1.83 ± 0.210	2.02 ± 0.108	1.76 ± 0.145	1.83 ± 0.079	1.69 ± 0.180	1.86 ± 0.173	
F_v/F_m	0.75 ± 0.016^c	0.79 ± 0.011^a	0.76 ± 0.16^{bc}	0.79 ± 0.015^a	0.78 ± 0.015^{ab}	0.80 ± 0.017^a	0.76 ± 0.020^{bc}	

Table 3. Effect of different salt concentrations on fresh mass (FM), dry mass (DM), plant height (PH), total leaf area per plant (TLA), leaf number per plant (LNP), chlorophyll (Chl) *a*, Chl *b*, total Chl (Chl_{tot}), Chl *a/b*, and quantum efficiency of PSII (F_v/F_m), of *S. indicum* genotypes. Data are means \pm SE ($n = 21$). Values followed by the same letter(s) within a row are not significantly different $p \leq 0.05$ (LSD test).

Parameters	NaCl [mM]		
	0	30	60
FM [g plant ⁻¹]	57.09 \pm 1.84 ^a	35.30 \pm 2.94 ^b	19.12 \pm 2.03 ^c
DM [g plant ⁻¹]	6.07 \pm 0.22 ^a	3.64 \pm 0.30 ^b	2.02 \pm 0.21 ^c
PH [cm]	65.42 \pm 1.55 ^a	52.71 \pm 1.60 ^b	34.11 \pm 1.28 ^c
TLA [cm ² plant ⁻¹]	32.17 \pm 0.61 ^a	22.58 \pm 0.93 ^b	8.52 \pm 0.47 ^c
LNP	24.55 \pm 0.51 ^a	21.83 \pm 0.37 ^b	14.48 \pm 0.39 ^c
Chl <i>a</i> [mg g ⁻¹ (FM)]	0.46 \pm 0.011 ^a	0.46 \pm 0.011 ^a	0.36 \pm 0.005 ^b
Chl <i>b</i> [mg g ⁻¹ (FM)]	0.29 \pm 0.011 ^a	0.30 \pm 0.010 ^a	0.16 \pm 0.005 ^b
Chl _{tot} [mg g ⁻¹ (FM)]	0.75 \pm 0.012 ^a	0.77 \pm 0.019 ^a	0.52 \pm 0.008 ^b
Chl <i>a/b</i>	1.65 \pm 0.091 ^b	1.52 \pm 0.052 ^b	2.25 \pm 0.077 ^a
F _v /F _m	0.82 \pm 0.006 ^a	0.78 \pm 0.006 ^b	0.72 \pm 0.007 ^c

groups (Fig. 3B) did not vary significantly in their g_s under the control conditions, the sensitive group indicated a greater decrease in the g_s at 60 mM NaCl concentration compared with the control. On the other hand, the tolerant group (*i.e.*, Ardestan, Varamin, and Darab) showed a smaller decrease in the g_s under the 30 mM NaCl compared with the sensitive group. C_i was significantly affected by the salt concentration of the nutrient solution in the genotype and group-dependent manner (Table 2). Although the increase in salt concentration led to a raise in C_i of all genotypes (Fig. 2C) and both groups (Fig. 3C), the magnitude of the increase was remarkably greater in the sensitive group compared with the tolerant group.

F_v/F_m was significantly affected by salt, genotype, and tolerant *vs.* sensitive (Table 2). At 60 mM NaCl, 11.8% decrease was observed in mean F_v/F_m, relative to the control (Table 3). The highest and lowest mean values of F_v/F_m were found in Darab (0.80) and Naz-Chandshakhe (0.75), respectively (Table 4). Both groups did not differ in their F_v/F_m under the control conditions, but the tolerant group indicated greater F_v/F_m under 30 and 60 mM NaCl concentrations (Fig. 3D).

Leaf Chl *a*, Chl *b*, and total Chl contents were significantly affected by the effects of salt, genotype, and tolerant *vs.* sensitive (Table 5). Chl *a* was significantly affected by the interaction effect of salt \times group. Chl *a/b* was significantly affected by salt. The means of Chl *a*, Chl *b*, and total Chl content appeared to be greater in the plants grown under 30 mM NaCl than those grown under the control conditions (Table 6). The plants growing under the 60 mM NaCl showed means of Chl *a*, Chl *b*, and total Chl lowered by 21.7, 44.8, and 30.6%, respectively, compared with the control (Table 3). Varamin, Ardestan, and Yekta genotypes indicated the greatest means of Chl *a*, Chl *b*, and total Chl (Table 4). The tolerant group of genotypes exceeded the sensitive group in Chl concentrations under 30 mM NaCl (Table 6).

Overall, increasing salinity level up to 60 mM raised the Chl *a/b* ratio by 36.3%, compared with the control (Table 3).

Plant ion concentrations: Shoot Na⁺ and K⁺ concentrations and the Na⁺/K⁺ and Na⁺/Ca²⁺ ratios of sesame were significantly affected by salt, genotype, tolerant *vs.* sensitive, and the interaction effects of salt \times genotype and salt \times group (Table 5). The shoot Ca²⁺ concentration was affected by the salt, genotype, salt sensitive group, and group effects. The shoot Na⁺ concentrations did not differ significantly under the control conditions in sesame genotypes and both two groups. Under both 30 and 60 mM NaCl, the shoot Na⁺ concentrations increased appreciably in all genotypes, though, the extent of the enhancement was significantly different among the genotypes in general (Fig. 4A) and between both two groups in particular (Table 6). The greatest increases were observed in the Na⁺ concentrations of 60 mM NaCl in the genotypes of Oltan, Naz-Chandshakhe, Naz-Takshakhe, and Yekta, which represented the sensitive group (Fig. 4A).

The shoot K⁺ concentrations of sesame decreased significantly in response to the increasing salt concentration. Averaged over the genotypes, the shoot K⁺ concentrations decreased by 34 and 54% in the plants subjected to 30 and 60 mM NaCl, respectively, relative to the control condition (data not shown). The shoot K⁺ concentrations of the Naz-Chandshakhe, Naz-Takshakhe, Oltan and Yekta genotypes, all belonging to the sensitive group, decreased significantly at 30 mM NaCl, whereas, in the tolerant group of the genotypes, it remained unaffected and decreased significantly when the salt concentration increased to 60 mM (Fig. 4B). The shoot K⁺ concentrations also decreased remarkably in all genotypes under 60 mM NaCl.

The shoot Ca²⁺ concentrations decreased significantly with the increasing salt content in the nutrient solution in both sensitive and tolerant groups (Table 6). Averaged over the genotypes and groups, the shoot Ca²⁺ concentrations decreased by 44% in the plants grown under the 60 mM NaCl, compared with those grown under the control condition (data not shown). The greatest means of shoot Ca²⁺ concentrations were observed under both 30 and 60 mM NaCl in the genotypes of Darab and Ardestan from

the tolerant group, compared with the rest of the genotypes (Fig. 4C).

Averaged over the genotypes and groups, the means of the Na^+/K^+ and $\text{Na}^+/\text{Ca}^{2+}$ ratios under the 60 mM NaCl were nearly 15.3 and 12.3 fold of those of the control, respectively (data not shown). Both ratios of $\text{Na}^+/\text{Ca}^{2+}$ and Na^+/K^+ increased in all genotypes and in both groups with

increasing salt concentration, though the magnitude of the increase differed with the genotype (Fig. 5A,B) and group (Table 6). The greatest increases in the $\text{Na}^+/\text{Ca}^{2+}$ and Na^+/K^+ ratios were observed with those in the sensitive group, *i.e.*, Naz-Chandshakhe, Naz-Chandshakhe, Oltan, and Yekta treated with 60 mM NaCl.

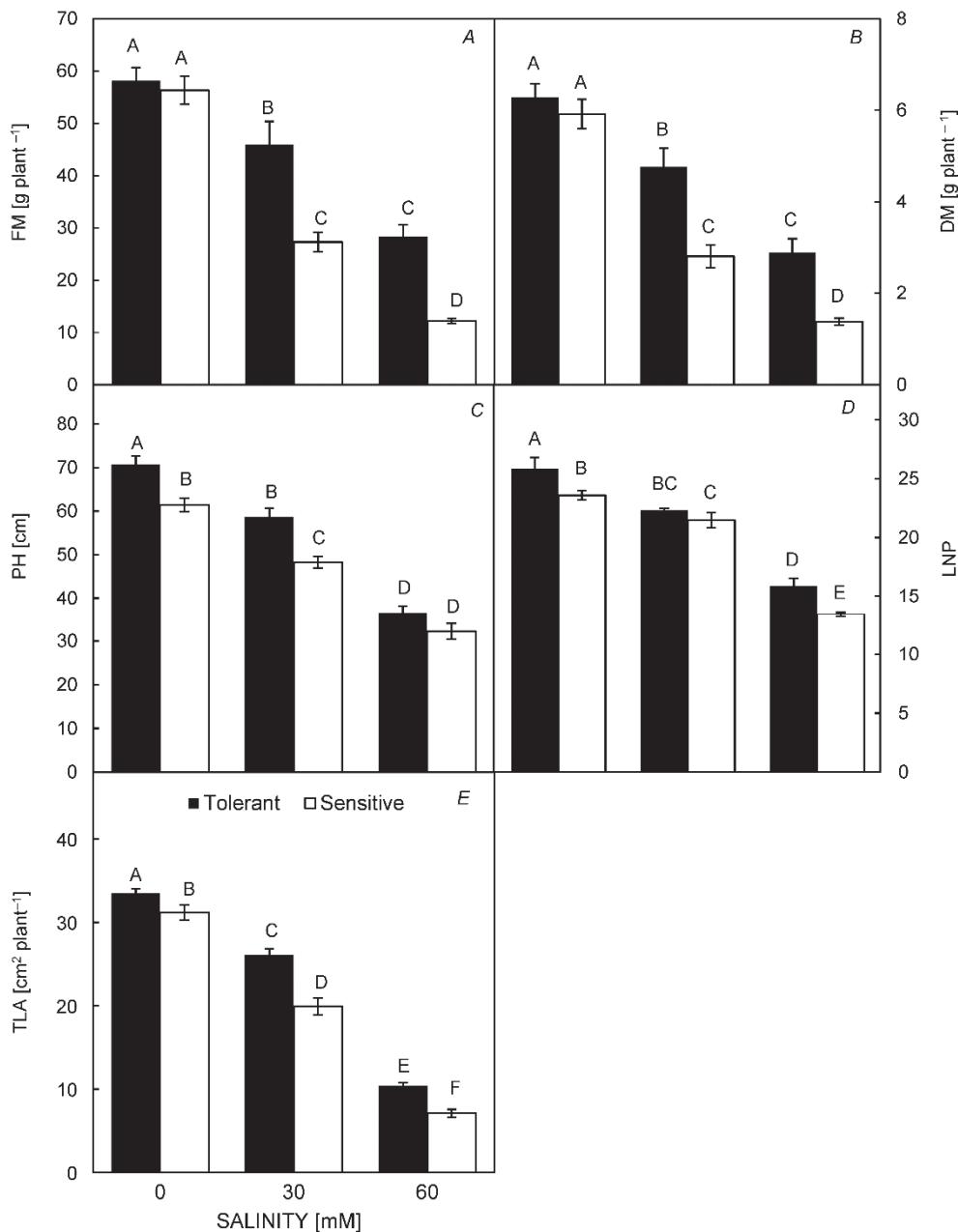


Fig. 1. Fresh mass (FM) (A), dry mass (DM) (B), plant height (PH) (C), leaf number per plant (LNP) (D), and total leaf area per plant (TLA) (E) of sensitive (Naz-Takshakhe, Naz-Chandshakhe, Oltan, Yekta) and tolerant (Varamin, Darab, Ardestan) genotypes of *Sesamum indicum* when grown for 6 weeks under different level of salinity (0, 30, and 60 mM). Data are the mean \pm SE ($n = 9$ for tolerant; $n = 12$ for sensitive). Means with the same letter(s) are not significantly different from each other (according to pairwise comparison based on *t*-test; $p \leq 0.05$).

Discussion

Salt stress is a complex phenomenon with 3 components: osmotic, specific ion, and nutrient deficiency effects (Blum 1988, Munns and Tester 2008). Different plant species have evolved various mechanisms to cope with these effects (Munns 2002, Ashraf and Harris 2004, Genc *et al.* 2007). Then, genetic variations among the various crop species and genotypes are useful in providing a

valuable tool for the selection of genotypes with favourable salt stress-related characteristics (Misra and Dwivedi 2004). We demonstrated that some salt-induced, differential responses existed among sesame genotypes in terms of biomass production, mineral ions accumulation, and photosynthetic-related traits.

Our results revealed that increasing salinity in the

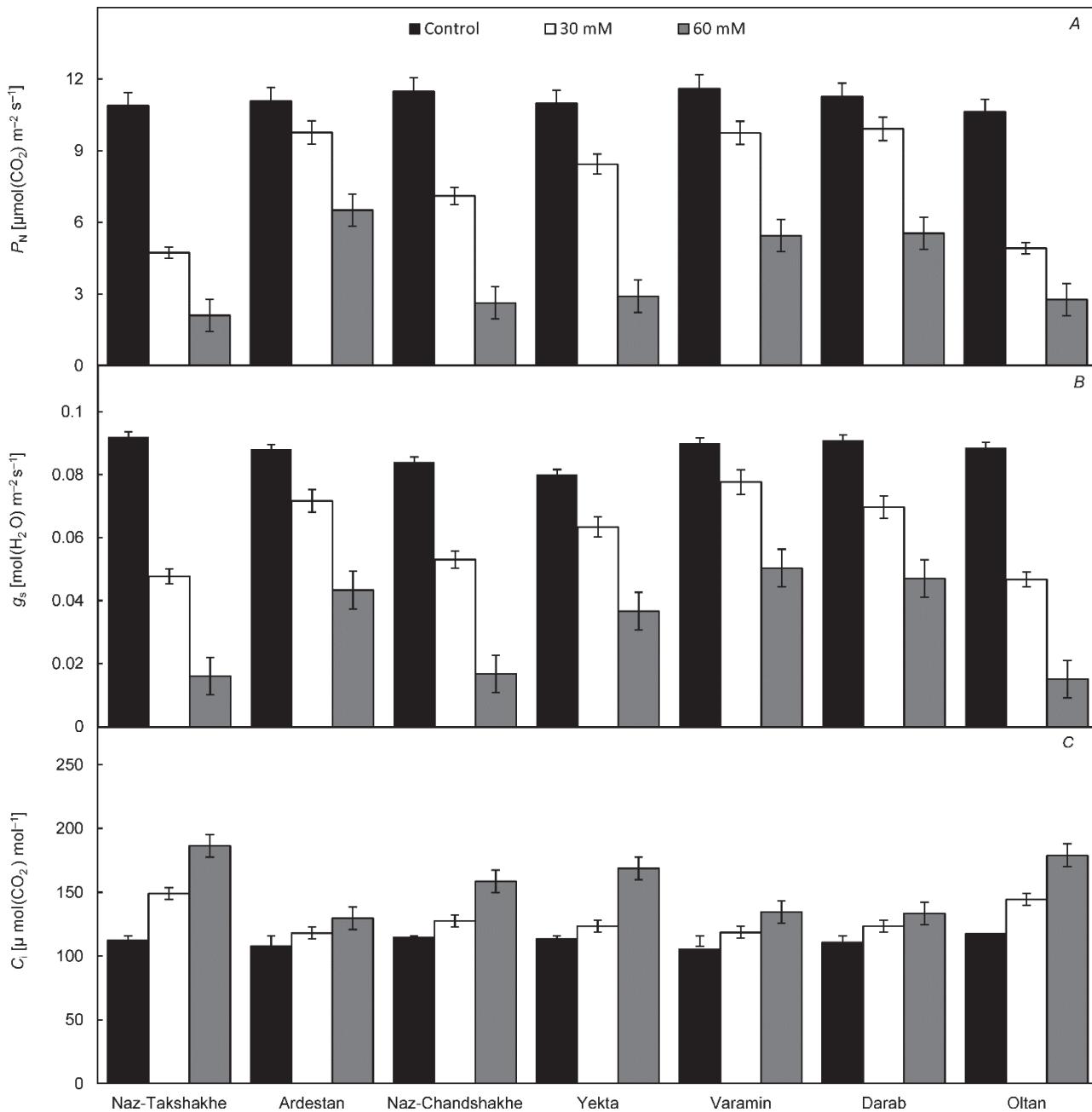


Fig. 2. Net photosynthetic rate (P_N) (A), stomatal conductance (g_s) (B), and intercellular CO_2 concentration (C_i) (C) of 7 genotypes of *Sesamum indicum* when grown for 6 weeks under 0, 30, and 60 mM NaCl . Data are the mean \pm SE ($n = 3$). LSDs (0.05) for P_N , g_s , and C_i are 1.92, 0.015, and 20.47, respectively.

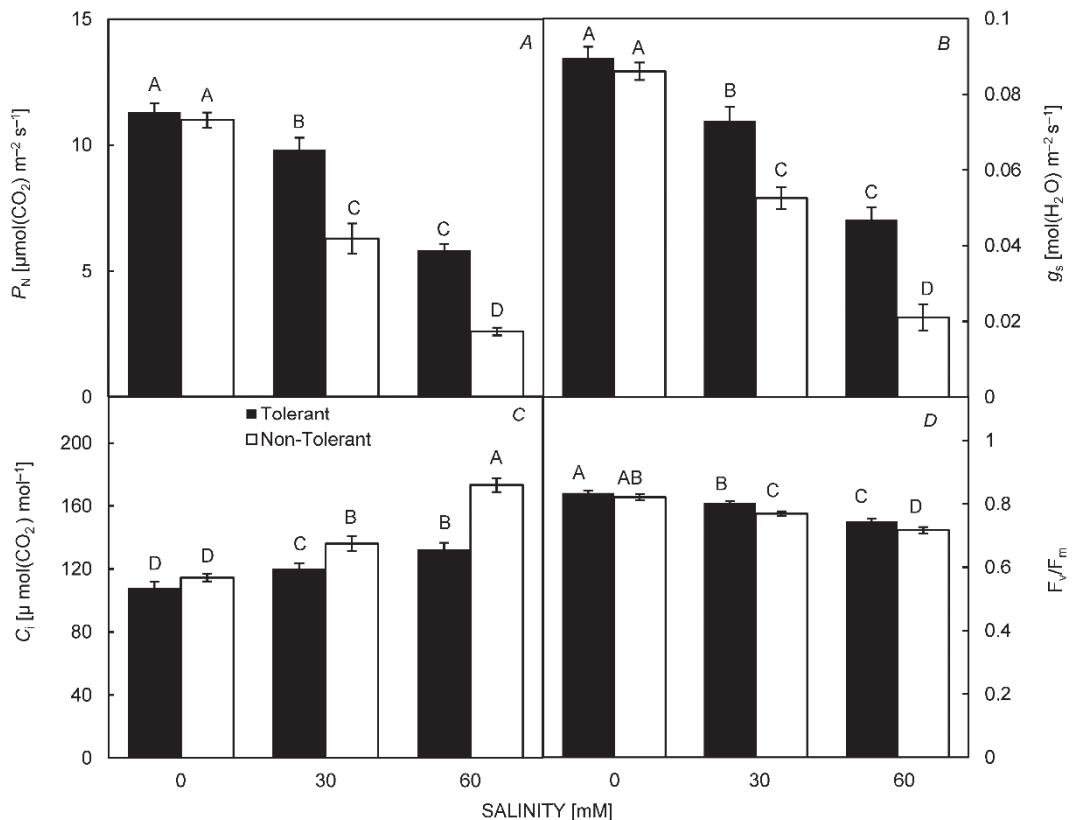


Fig. 3. Net photosynthetic rate (P_N) (A), stomatal conductance (g_s) (B), intercellular CO_2 concentration (C_i) (C), and quantum efficiency of PS-II (F_v/F_m) (D) of sensitive (Naz-Takshakhe, Naz-Chandshakhe, Oltan, Yekta) and tolerant (Varamin, Darab, Ardestan) genotypes of *S. indicum* when grown for 6 weeks under different level of salinity (0, 30, and 60 mM). Data are the mean \pm SE ($n = 9$ for tolerant; $n = 12$ for sensitive). Means with the same letter(s) are not significantly different from each other (according to pairwise comparison based on *t*-test; $p \leq 0.05$).

nutrient solution led to the decrease in plant growth characteristics, such as FM, DM, PH, TLA, and LNP, but the declines were the genotype- (Table 4) and group-dependent (Fig. 1). The observed reduction in FM and DM might be due to the reduced photosynthetic activity per unit of leaf area (Netondo *et al.* 2004), additional cost to exclude or compartmentalize salts within the cells, and also the salt-induced damage to the tissues (Munns 2005). In the present study, 6 weeks after the salt treatment, the injury was visible as yellowing and death of older leaves in different sesame genotypes, more notably in the sensitive group. When a species is less tolerant to salt, *i.e.*, it has the high rate of salt uptake or it is unable to compartmentalize salt once it has built up in the leaves, the effects of salinity may become obvious for weeks (Munns 2002). Leaf area appears to be one of the first plant characteristics affected by salinity. Plants with lesser tolerance to salinity have often fewer and smaller leaves, because salt may lead to the leaf death or, more frequently, to haltered leaf expansion (Munns and Termaat 1986). Furthermore, the reduction in leaf area due to salt stress has been considered an avoidance mechanism to reduce water loss through transpiration (Blum 1988). In the salt-sensitive species,

where salt is not considerably excluded from the transpiration stream, salt builds up to toxic concentrations, particularly in the leaves that have been transpiring for a longer time (Munns 2002). This leads to the death of the older leaves eventually. If new leaves are produced faster than old leaves die, there is a sufficient leaf area for photosynthesis. In the present study, the salt-tolerant genotypes were able to minimize an adverse effect of NaCl on their growth.

In contrast to C_i , which significantly increased with increasing salinity, P_N and g_s of all sesame genotypes significantly decreased. Thus, the extent of the decrease in P_N (Fig. 2A) and g_s (Fig. 2B) and the magnitude of the increase in C_i (Fig. 2C) were strongly genotype- and group-dependent. Salt effects on photosynthetic processes may be classified as: (1) the response of stomata to salt, and (2) the diffusion-independent effects of salt on the photosynthetic capacity of the plant. Stomata closure in response to salt is commonly seen in salt-sensitive species. The data presented here for sesame indicated that stomata opening and, hence conductance, decreased due to the presence of NaCl in the nutrient solution. However, the extent, to which stomata closure affects photosynthetic

Table 5. A synopsis of analysis of variance ($AVOVA$) for chlorophyll (Chl) *a*, Chl *b*, total Chl (Chl_{tot}), Chl *a/b*, Na⁺, K⁺, Ca²⁺, Na⁺/K⁺, and Na⁺/Ca²⁺ of 75 *S. indicum* genotypes when 40-d-old seedlings were allowed to grow for 6-weeks under normal or saline conditions. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, ns – nonsignificant, df – degrees of freedom.

Source of variation	df	Mean square	Chl <i>a</i>	Chl <i>b</i>	Chl _{tot}	Chl <i>a/b</i>	Na ⁺	K ⁺	Ca ²⁺	Na ⁺ /K ⁺	Na ⁺ /Ca ²⁺
Replication	2	0.0004 ^{ns}	0.0002 ^{ns}	0.0006 ^{ns}	0.04 ^{ns}	1.87 ^{ns}	10.97 ^{ns}	10.26 ^{ns}	0.003 ^{ns}	0.03 ^{ns}	
Salt treatment	2	0.068 ^{**}	0.12 ^{***}	0.38 ^{***}	3.19 ^{***}	787.87 ^{***}	4683.08 ^{***}	312.12 ^{***}	0.99 ^{**}	11.36 ^{***}	
Genotype	6	0.004 [*]	0.004 [*]	0.012 ^{**}	0.12 ^{ns}	19.14 ^{**}	123.91 ^{**}	16.17 [*]	0.03 ^{**}	0.53 ^{***}	
Sensitive group	3	0.002 ^{ns}	0.005 ^{**}	0.009 [*]	0.203 ^{ns}	0.92 ^{ns}	100.31 ^{ns}	16.21 [*]	0.006 ^{ns}	0.294 ^{***}	
Tolerant group	2	0.004 ^{ns}	0.001 ^{ns}	0.004 ^{ns}	0.058 ^{ns}	8.91 ^{ns}	83.82 ^{ns}	2.83 ^{ns}	0.006 [*]	0.06 ^{ns}	
Between group	1	0.105 [*]	0.007 [*]	0.036 [*]	0.023 ^{ns}	94.24 ^{**}	274.90 ^{***}	42.73 ^{***}	0.205 ^{**}	2.17 ^{***}	
Genotype \times salt treatment	12	0.003 ^{ns}	0.002 ^{ns}	0.004 ^{ns}	0.12 ^{ns}	11.34 [*]	96.47 ^{**}	0.97 ^{ns}	5.41 ^{**}	0.211 ^{**}	
Sensitive \times salt treatment	6	0.0006 ^{ns}	0.001 ^{ns}	0.001 ^{ns}	0.097 ^{ns}	3.03 ^{ns}	19.23 ^{ns}	1.54 ^{ns}	0.003 ^{ns}	0.106 ^{ns}	
Tolerant \times salt treatment	4	0.001 ^{ns}	0.003 ^{ns}	0.006 ^{ns}	0.189 ^{ns}	2.95 ^{ns}	21.47 ^{ns}	2.43 ^{ns}	0.001 ^{ns}	0.01 ^{ns}	
Groups \times salt treatment	2	0.007 [*]	0.0005 ^{ns}	0.010 ^{ns}	0.051 ^{ns}	53.04 ^{**}	478.19 ^{***}	1.401 ^{ns}	0.087 ^{**}	0.918 ^{***}	
Error	40	0.001	0.002	0.001	0.12	3.80	35.63	5.50	0.003	0.05	

Table 6. Effect of different salinity on chlorophyll (Chl) *a*, Chl *b*, total Chl (Chl_{tot}), Na⁺, K⁺, Ca²⁺, Na⁺/K⁺, and Na⁺/Ca²⁺ in sensitive (Naz-Takshakhe, Naz-Chandshakhe, Oltan, Yekta) and tolerant (Varamin, Darab, Ardestan) genotypes of *S. indicum* when grown for 6 weeks under 0, 30, and 60 mM NaCl. Data are means \pm SE ($n = 9$ for tolerant; $n = 12$ for sensitive). Values followed by the same letter(s) within a row are not significantly different at $p \leq 0.05$ (according to pairwise comparison based on *t*-test). FM – fresh mass, DM – dry mass.

Parameters	Tolerant [mM NaCl]			Sensitive [mM NaCl]		
	0	30	60	0	30	60
Chl <i>a</i> [mg g ⁻¹ (FM)]	0.45 \pm 0.015 ^b	0.50 \pm 0.017 ^a	0.37 \pm 0.009 ^c	0.46 \pm 0.017 ^b	0.43 \pm 0.009 ^b	0.35 \pm 0.006 ^c
Chl <i>b</i> [mg g ⁻¹ (FM)]	0.30 \pm 0.018 ^{ab}	0.32 \pm 0.015 ^a	0.17 \pm 0.010 ^c	0.27 \pm 0.014 ^b	0.29 \pm 0.013 ^b	0.15 \pm 0.006 ^c
Chl _{tot} [mg g ⁻¹ (FM)]	0.76 \pm 0.012 ^b	0.82 \pm 0.015 ^a	0.54 \pm 0.010 ^c	0.74 \pm 0.020 ^b	0.72 \pm 0.016 ^b	0.51 \pm 0.010 ^c
Na ⁺ [mg g ⁻¹ (DM)]	2.40 \pm 0.359 ^d	7.84 \pm 0.808 ^c	10.98 \pm 0.689 ^b	1.92 \pm 0.221 ^d	9.84 \pm 0.563 ^b	16.87 \pm 0.714 ^a
K ⁺ [mg g ⁻¹ (DM)]	58.12 \pm 3.270 ^b	53.82 \pm 1.512 ^b	33.84 \pm 0.496 ^d	63.58 \pm 2.282 ^a	40.00 \pm 1.788 ^c	29.53 \pm 0.626 ^d
Ca ²⁺ [mg g ⁻¹ (DM)]	18.11 \pm 0.939 ^a	12.25 \pm 0.770 ^c	10.08 \pm 0.653 ^{cd}	15.86 \pm 0.751 ^b	10.73 \pm 0.732 ^c	8.84 \pm 0.488 ^d
Na ⁺ /K ⁺	0.04 \pm 0.004 ^e	0.14 \pm 0.016 ^d	0.32 \pm 0.019 ^b	0.03 \pm 0.003 ^e	0.25 \pm 0.020 ^c	0.57 \pm 0.026 ^a
Na ⁺ /Ca ²⁺	0.13 \pm 0.023 ^d	0.65 \pm 0.070 ^c	1.12 \pm 0.111 ^b	0.12 \pm 0.018 ^d	0.96 \pm 0.084 ^b	1.95 \pm 0.113 ^a

capacity, can be conferred by the magnitude of the alteration in C_i (Seemann and Critchley 1985). Our results indicated that the reduction in g_s did not lead to the depletion of the intercellular CO₂ (due to photoassimilation) of sesame genotypes studied in this experiment. The decline of P_N associated with the increase in C_i has been frequently interpreted as the direct effect of the stress factor on the photosynthetic capacity. Such changes in the apparent photosynthetic capacity that are not proportional to diffusional limitations could be attributed to either a change in the concentration of photosynthetic machinery and/or an alteration in the efficiency of operation of this machinery (Seemann and Critchley 1985). Our results, therefore, indicated that the declined photosynthetic rate in sesame genotypes in response to the salinity could only be partly explained by the decreased g_s . It seems that a decreased mesophyll conductance, which is suggestive of inhibition of photosynthetic activity at the biochemical level, contributed to the lowered photosynthetic performance of the sesame genotypes. In addition to the decrease in g_s , the increase in C_i of the salt-tolerant genotypes was as severe as that of the salt-sensitive group. Both stomatal and nonstomatal components of photosynthesis were less affected by the salt concentration in the salt-tolerant genotypes. Decrease in photosynthesis associated with stomatal and/or nonstomatal inhibition of photosynthesis by salt stress have been reported in a number of other salt-sensitive species (Downton 1977, Seemann and Critchley 1985, Lloyd *et al.* 1990, García-Legaz *et al.* 1993, Gucci and Tattini 2010).

Chl *a*, Chl *b*, and total Chl of all sesame genotypes were reduced, while the Chl *a/b* ratio increased with the salinity, albeit at the 60 mM concentration (Table 3). The decrease in leaf Chl concentration could be due to changes in the lipid protein ratio of pigment-protein complexes (Rao and Rao 1981), increased chlorophyllase activity and degradation (Singh and Dubey 1995) and an inhibition in the synthesis of photosynthetic pigments (García-Sánchez *et al.* 2002). The decrease in Chl *a* and Chl *b* in wheat (Ehsanzadeh *et al.* 2009, Li *et al.* 2010) and increase in the

ratio of Chl *a/b* in wheat (Azizpour *et al.* 2010) and sunflower (Santos 2004) were reported under saline conditions. During the process of Chl degradation, Chl *b* is converted into Chl *a* (Azizpour *et al.* 2010) and this might explain the increase of Chl *a/b* ratio under 60 mM NaCl. The decrease in the leaf Chl concentration of the sesame genotypes could be an important factor contributing to the previously discussed alterations in their P_N . Moreover, since the decreased Chl concentration was accompanied by a concomitant decrease in F_v/F_m (Table 3), this could be considered as a further evidence of the fact that g_s was not the sole factor responsible for the decrease in the P_N of the sesame genotypes studied. Consistent with our results, Masojídek and Hall (1992) reported that Cl⁻ ions at toxic concentrations can affect reaction centers of PSII either directly or *via* accelerated leaf senescence. Increases in Chl *a* and total Chl could be attributed in the salt-tolerant group treated with 30 mM NaCl to the fact that a cell size decreases in some species and genotypes under moderate levels of salinity and it leads to an increase in chloroplast concentration per leaf area (Li *et al.* 2010, Rivelli *et al.* 2010).

In the present study, the concentration of Na⁺ in the shoots increased with genotype- and group-dependent manners. The salt-sensitive group of genotypes indicated the greatest increases in their Na⁺ concentrations (Fig. 4A). In contrast, the concentration of K⁺ decreased in sesame genotypes, the extent of the decrease being the function of the genotype and the group. The salt-tolerant group maintained the higher concentration of Ca²⁺ (Fig. 4C) and K⁺ (Fig. 4B) under the saline conditions. It is believed that with high NaCl concentrations in the rhizosphere, root capacity for Na⁺ accumulation is saturated and, consequently, excess Na⁺ is translocated to the aerial tissues. This may lead to decline in the uptake of K⁺ and Ca²⁺ in different plant species (Desingh and Kanagaraj 2007, Turan *et al.* 2009). Salt injury develops due to inability of the cells to compartmentalize an excess of Na⁺ or Cl⁻ in the vacuole. Consequently, ions may build up in the cytoplasm and inhibit enzyme activities or they may accumulate in

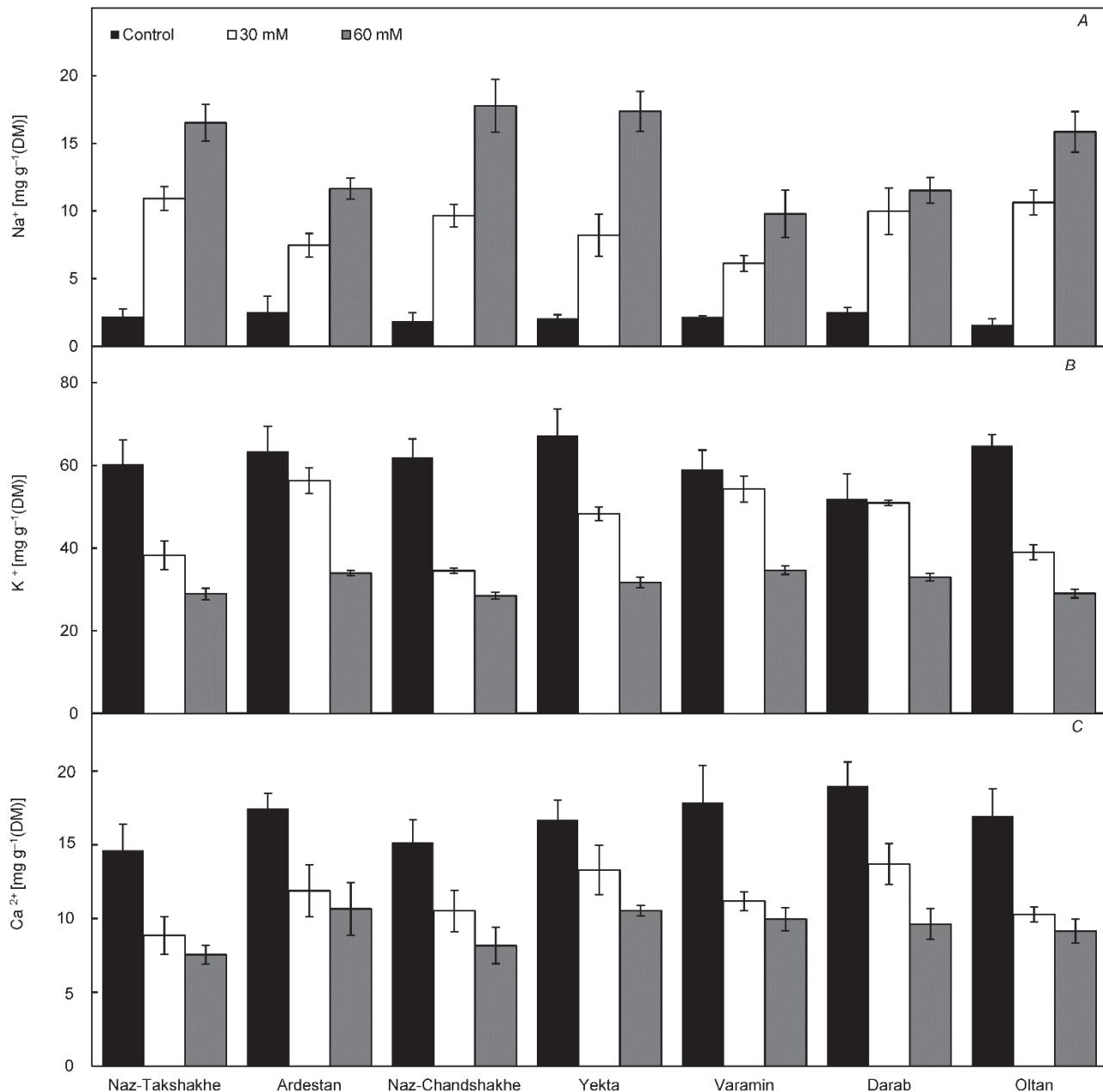


Fig. 4. Na^+ (A), K^+ (B), and Ca^{2+} (C) concentrations of 7 genotypes of *S. indicum* when grown for 6 weeks under 0, 30, and 60 mM NaCl. Data are the mean \pm SE ($n=3$). LSDs (0.05) for Na^+ , K^+ , and Ca^{2+} concentrations are 3.17, 9.67, and 3.94, respectively.

the cell walls and facilitate the cellular dehydration (Munns 2002). Osmotically driven removal of water from cells may happen as the result of high Na^+ concentrations in the leaf apoplast, since Na^+ enters leaves by the transpiration stream and is left behind as water evaporates (Parvaiz and Satyawati 2008). However, appropriate amounts of both K^+ and Ca^{2+} are needed to maintain the integrity of cell membranes and normal functioning of all metabolic processes (Debez *et al.* 2004). Small Na^+/K^+ and $\text{Na}^+/\text{Ca}^{2+}$ ratios are essential for normal cellular functions under saline conditions, and these ratios have been

repeatedly shown as reliable parameters for salt tolerance estimation (Soussi *et al.* 2001, Chen and Murata 2002, Sairam *et al.* 2002). The high Na^+ concentration or Na^+/K^+ ratio may interfere with a number of enzymatic processes in the cytoplasm. The maintenance of Ca^{2+} acquisition and transport under salt stress is also the important component of salinity tolerance (Debez *et al.* 2004). The maintenance of enough K^+ in plant tissue under salinity seems to be related to the selective K^+ uptake, the appropriate cellular K^+ and Na^+ compartmentation and distribution in the shoots (Munns 2002). To maintain desirable Na^+/K^+

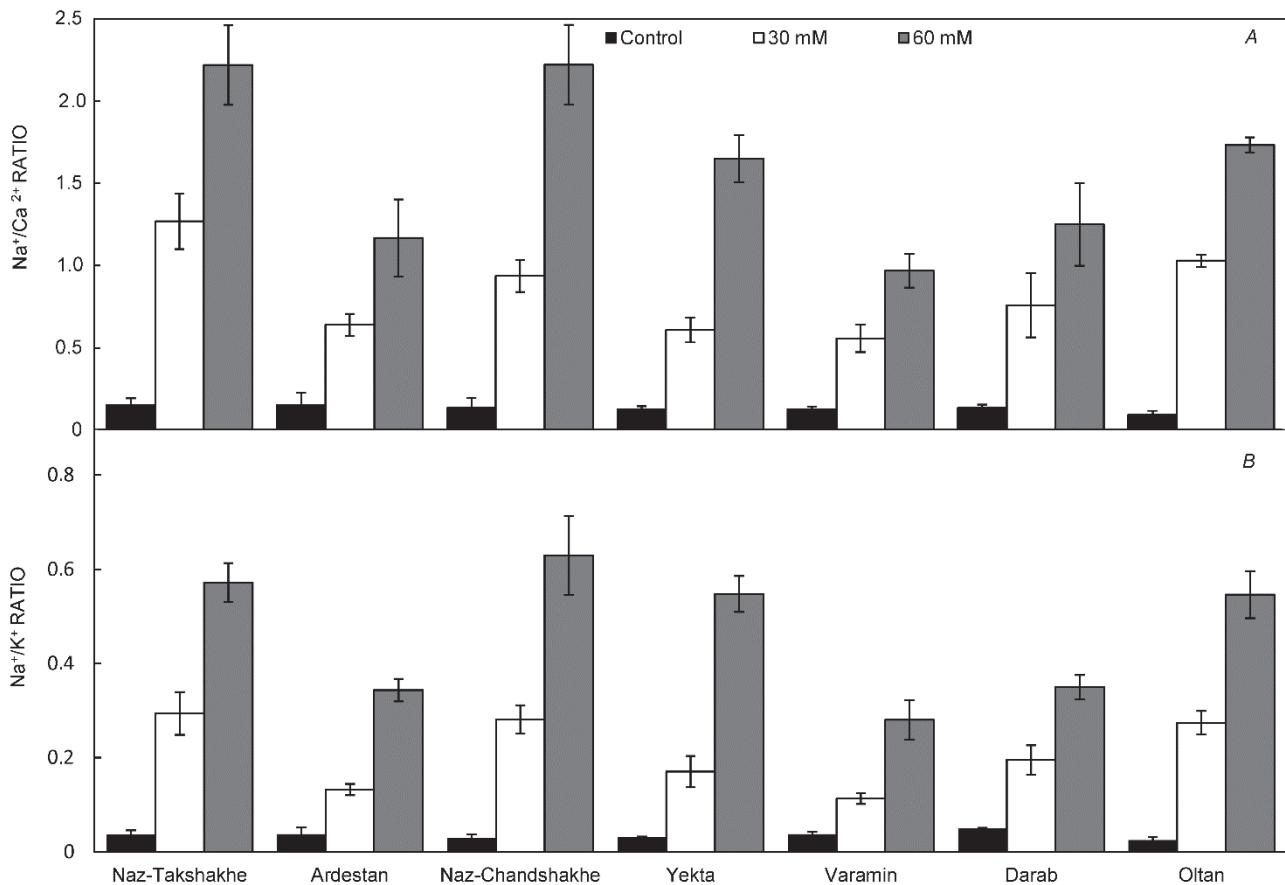


Fig. 5. $\text{Na}^+/\text{Ca}^{2+}$ (A) and Na^+/K^+ (B) ratios of 7 genotypes of *S. indicum* when grown for 6 weeks under 0, 30, and 60 mM NaCl. Data are the mean \pm SE ($n=3$). LSDs (0.05) for $\text{Na}^+/\text{Ca}^{2+}$ and Na^+/K^+ ratios are 0.38 and 0.09, respectively.

ratios in the cytosol, plants commonly regulate K^+ and Ca^{2+} uptake, prevent Na^+ influx, enhance its efflux from the cell and utilize Na^+ for osmotic adjustment. Some species and genotypes can maintain higher growth rates under saline conditions by accumulating fewer toxic ions and maintaining high tissue Ca^{2+} and K^+ concentrations (Chen and Murata 2002). We found smaller $\text{Na}^+/\text{Ca}^{2+}$ and Na^+/K^+ ratios under salinity in the salt-tolerant group of sesame genotypes (Fig. 5A,B), which indicated their ability to maintain a more appropriate ionic balance and normal physiological functioning.

The increase in Na^+ along with the decrease in K^+ and Ca^{2+} in cells and tissues was reported previously, *e.g.*, in chickpea (Soussi *et al.* 2001), wheat (Sairam *et al.* 2002, Genc *et al.* 2007), cotton (Desingh and Kanagaraj 2007), and rice (García-Morales *et al.* 2012). Other authors have confirmed that the deleterious effects of salinity on plant growth may occur through a ion imbalance, specific ion effects, and nutrient deficiency (Munns and Termaat 1986, Winicov 1998, Soussi *et al.* 2001). Greenway and Munns (1980) proposed that salt tolerance in plants is associated with the ability to prevent entry and/or translocation of saline ions (mainly Na^+ and Cl^-) from the root zone to the

aerial parts. Therefore, salt-tolerant genotypes and/or species may have a more efficient mechanism for regulating salt translocation from the roots to the shoots. Since we did not measure ion distribution and/or translocation, we were unable to determine the dominant component of tolerance in the salt-tolerant genotypes. Furthermore, despite a great number of studies on the mechanisms of salinity tolerance of plants, neither the metabolic sites at which salt stress damages plants nor the adaptive components of salt tolerance are fully understood (Ashraf and Harris 2004). In fact, salt-stress physiology is so complex that in addition to variation among species it could vary also among genotypes within a single species and even with physiological age.

Conclusion: The differences in response to NaCl seemed to stem from different capabilities of the genotypes in terms of ion (*i.e.*, Na^+ , K^+ , and Ca^{2+}) concentrations and ion ratios. Associated with the smaller increases of Na^+/K^+ and $\text{Na}^+/\text{Ca}^{2+}$ in some sesame genotypes, there was the smaller decrease in the photosynthetic parameters and, hence, growth parameters. These findings provided new perspectives on the salt responses of sesame, as no such

previous reports on this oilseed crop were published before (at least from a physiological stand-point). A fair degree of consistency was observed between different traits, such as gas-exchange parameters, ion concentrations and ratios, and growth attributes. Thus, responses at the other growth phases (e.g., reproduction and grain filling) could be different from those observed in the vegetative phase.

Therefore, this consistency did not rule out the necessity for further testing by using larger populations and the entire growth cycle. Further research should focus on identifying mechanisms of differential ion distributions and dissecting Na^+ exclusion and tissue salt tolerance in sesame genotypes.

References

Anilakumar, K.R., Pal, A., Khanum, F., Bawas, A.S.: Nutritional, medicinal and industrial uses of sesame (*Sesamum indicum* L.) seeds. – *Agric. Conspec. Sci.* **75**: 159-168, 2010.

Arnon, D.I.: Copper enzymes in isolated chloroplast polyphenoloxidase in *Beta vulgaris*. – *Plant Physiol.* **24**: 1-15, 1949.

Ashraf, M., Harris, P.J.C.: Potential biochemical indicators of salinity tolerance in plants. – *Plant Sci.* **166**: 3-16, 2004.

Azizpour, K., Shakiba, M.R., Khos Kholgh, S.N.A. *et al.*: Physiological response of spring durum wheat genotypes to salinity. – *J. Plant Nutr.* **33**: 859-873, 2010.

Bedigian, D.: Evolution of sesame revisited: domestication, diversity and prospects. – *Genet. Resour. Crop Ev.* **50**: 779-787, 2003.

Blum, A.: Plant Breeding for Stress Environments. 223 pp. CRC Press, Boca Raton, Fla, 1988.

Chapman, H.D., Pratt, P.F.: Methods of Analysis for Soils, Plants, and Water. 309 pp. Chapman Press, Riverside, CA, USA, 1961.

Chen, T.H., Murata, N.: Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. – *Curr. Opin. Plant Biol.* **5**: 250-257, 2002.

Debez, A., Ben Hamed, K., Grignon, C., Abdelly, C.: Salinity effects on germination, growth, and seed production of the halophyte *Cakile maritima*. – *Plant Soil* **262**: 179-189, 2004.

Delgado, I.C., Sánchez-Raya, A.J.: Physiological response of sunflower seedlings to salinity and potassium supply. – *Commun. Soil Sci. Plan.* **30**: 773-783, 1999.

Desingh, R., Kanagaraj, G.: Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. – *Gen. Appl. Plant Physiol.* **33**: 221-234, 2007.

Downton, W.J.S.: Photosynthesis in salt-stressed grapevines. – *Aus. J. Plant Physiol.* **4**: 183-192, 1977.

Ehsanzadeh, P., Nekoonam, M.S., Noori-Azhar, J. N., Pourhadian, H., Shaydaee, S.: Growth, chlorophyll, and cation concentration of tetraploid wheat on a solution high in sodium chloride salt: Hulled versus free-threshing genotypes. – *J. Plant Nutr.* **32**: 58-70, 2009.

FAOSTAT.: Major food and agricultural commodities and producers. United Nation's Food and Agriculture Organization, Statistical Information. Available at <http://www.fao.org/es/ess/top/country.html>, 2010.

García-Legaz, M.F., Ortiz, J.M., García-Lidón, A., Cerdá, A.: Effect of salinity on growth, ion content and CO_2 assimilation rate in lemon varieties on different rootstocks. – *Physiol. Plantarum* **89**: 427-432, 1993.

García-Sánchez, F., Jifon, J.L., Carvajal, M., Syvertsen, J.P.: Gas exchange, chlorophyll and nutrient contents in relation to Na^+ and Cl^- accumulation in 'Sunburst' mandarin grafted on different rootstocks. – *Plant Sci.* **162**: 705-712, 2002.

Gehlot, H. S., Purohit, A., Shekhawat, N. S.: Metabolic changes and protein patterns associated with adaptation to salinity in *Sesamum indicum* cultivars. – *J. Cell. Mol. Biol.* **4**: 31-39, 2005.

Genc, Y., McDonald, G.K., Tester, M.: Reassessment of tissue Na^+ concentration as a criterion for salinity tolerance in bread wheat. – *Plant Cell Environ.* **30**: 1486-1498, 2007.

Greenway, H., Munns, R.: Mechanisms of salt tolerance in nonhalophytes. – *Annu. Rev. Plant Phys.* **31**: 149-190, 1980.

Gucci, R., Tattini, M.: Salinity tolerance in olive. – *Hortic. Rev.* **21**: 177-214, 2010.

Hoagland, D.R., Arnon, D.S.: The water culture method for growing plants without soil. – *Calif. Agric. Exp. Stat. Circ.* **347**: 1-32, 1950.

Kaymakanova, M., Stoeva, N.: Physiological reaction of bean plants (*Phaseolus vulgaris* L.) to salt stress. – *Gen. Appl. Plant Physiol.* **34**: 3-4, 2008.

Koca, H., Bor, M., Ozdemir, F., Turkan, I.: The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. – *Env. Exp. Bot.* **60**: 344-351, 2007.

Li, G., Wan, S., Zhou, J., Yang, Z., Qin, P.: Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (*Ricinus communis* L.) seedlings to salt stress levels. – *Ind. Crop Prod.* **31**: 13-19, 2010.

Lloyd, J., Kriedemann, P.E., Aspinall, D.: Contrasts between citrus species in response to salinisation: An analysis of photosynthesis and water relations for different rootstock-scion combinations. – *Physiol. Plantarum* **78**: 236-246, 1990.

Masojidek, J., Hall, D.O.: Salinity and drought stresses are amplified by high irradiance in sorghum. – *Photosynthetica* **27**: 159-171, 1992.

Misra, N., Dwivedi, U.N.: Genotypic difference in salinity tolerance of green gram cultivars. – *Plant Sci.* **166**: 1135-1142, 2004.

Morales, S.G., Trejo-Téllez, L.I., Gómez Merino, F. C., Caldana, C., Espinosa-Victoria, D., Herrera Cabrera, B. E.: Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. – *Acta Sci-Agron.* **34**: 317-324, 2012.

Munns, R.: Comparative physiology of salt and water stress. – *Plant Cell Environ.* **25**: 239-250, 2002.

Munns, R.: Genes and salt tolerance: bringing them together. – *New Phytol.* **167**: 645-663, 2005.

Munns, R., Termaat, A.: Whole-plant responses to salinity. – *Aust. J. Plant Physiol.* **13**: 143-160, 1986.

Munns, R., Tester, M.: Mechanisms of salinity tolerance. – *Annu. Rev. Plant Biol.* **59**: 651-681, 2008.

Netondo, G.W., Onyango, J.C., Beck, E.: Sorghum and salinity. – *Crop Sci.* **44**: 797-805, 2004.

Parvaiz, A., Satyawati, S.: Salt stress and phyto-biochemical responses of plants – a review. – *Plant Soil Environ.* **54**: 89-99, 2008.

Rao, G.G., Rao, G.R.: Pigment composition and chlorophyllase activity in pigeon pea (*Cajanus indicus* Spreng) and Gingelley

(*Sesamum indicum* L.) under NaCl salinity. – Indian J. Exp. Biol. **19**: 768-770, 1981.

Rivelli, A.R., De Maria, S., Pizza, S., Gherbin, P.: Growth and physiological response of hydroponically-grown sunflower as affected by salinity and magnesium levels. – J. Plant Nutr. **33**: 1307-1323, 2010.

Sairam, R.K., Rao, K.V., Srivastava, G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. – Plant Sci. **163**: 1037-1046, 2002.

Sankar, D., Rao, M.R., Sambandam, G., Pugalendi, K. V.: Effect of sesame oil on diuretics or beta-blockers in the modulation of blood pressure, anthropometry, lipid profile, and redox status. – Yale J. Biol. Med. **79**: 19-26, 2006.

Santos, C.V.: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. – Sci. Hortic. **103**: 93-99, 2004.

Sayed, O.H.: Chlorophyll fluorescence as a tool in cereal crop research. – Photosynthetica **41**: 321-330, 2003.

Seemann, J. R., Critchley, C.: Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, *Phaseolus vulgaris* L. – Planta **164**: 151-162, 1985.

Singh, A.K., Dubey, R.S.: Changes in chlorophyll a and b contents and activities of photosystems I and II in rice seedlings induced by NaCl. – Photosynthetica **31**: 489-499, 1995.

Soussi, M., Ocana, A., Lluch, C.: Growth, nitrogen fixation and ion accumulation in two chickpea cultivars under salt stress. – Agricolt. Mediterr. **130**: 1-8, 2001.

Tejera, N.A., Soussi, M., Lluch, C.: Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. – Environ. Exp. Bot. **58**: 17-24, 2006.

Turan, M.A., Elkrim, A.H.A., Taban, N., Taban, S.: Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. – Afr. J. Agr. Res. **4**: 893-897, 2009.

Turkan, I., Demiral, T.: Recent developments in understanding salinity tolerance. – Env. Exp. Bot. **67**: 2-9, 2009.

Uzun, B., Ulger, S., Cagirgan, M.I.: Comparison of determinate and indeterminate types of sesame for oil content and fatty acid composition. – Turk. J. Agric. For. **26**: 269-274, 2002.

Were, B.A., Gudu, S., Onkware, A.O., Carlsson, A.S., Welander, M.: *In vitro* regeneration of sesame (*Sesamum indicum* L.) from seedling cotyledon and hypocotyl explants. – Plant Cell Tiss. Org. **85**: 235-239, 2006.

Winicov, I.: New molecular approaches to improving salt tolerance in crop plants. – Ann. Bot. **82**: 703-710, 1998.

Yahya, A.: Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. – J. Plant Nutr. **21**: 1439-1451, 1998.

Yahya, A.: Selectivity and partitioning of potassium and sodium in sesame. – J. Plant Nutr. **33**: 670-683, 2010.