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Abstract 
 
This study investigated whether gas exchange and the present content of antioxidant compounds can contribute to the 
survival of Euterpe oleracea plants in environments of frequent waterlogging. A factorial randomised, experimental design 
included two distinct water conditions (waterlogging and control) and five evaluation times (0, 6, 12, 18, and 24 d). Gas-
exchange parameters, leaf temperature, electrolyte leakage, and contents of antioxidant compounds were measured. 
Waterlogging did not promote significant alterations in net photosynthetic rate and transpiration, and stomatal conductance 
was reduced only after 18 d.  Malondialdehyde and glutathione contents did not significantly change during waterlogging. 
Additionally, electrolyte leakage was significant only after 18 d of waterlogging. Thus, this study revealed that main-
tenance in gas exchange and antioxidant compounds might contribute to the survival of E. oleracea plants in environments 
exposed to waterlogging. 
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Introduction 

 
E. oleracea (Mart.), an Amazonian palm, is of economic 
importance due to the production of energy drinks, which 
are produced from its fruit and stem, respectively (Rogez 
2000, Bobbio et al. 2002). The fruits contain high amounts 
of lipids and minerals, such as K, Ca, and Mg (Menezes et 
al. 2008, Yuyama et al. 2011). Additionally, a study 
conducted by Bobbio et al. (2000) revealed that the fruit is 
the important source of anthocyanins. Brazil is the main 
producer of Euterpe oleracea and is also an important 
consumer and exporter of the products derived from this 
palm (Rogez 2000). 

Flooding promotes typical alterations in the bio-
chemistry, physiology, anatomy, and morphology of 
plants (Fante et al. 2010, Henriquel et al. 2010, Cortezi and 
Colli 2011, Alves et al. 2012). The main problem of soil 
flooding is the limited oxygen available to root systems. 
Water soil saturation eliminates the spaces previously 
occupied by air, which limits root respiration (Drew 1997, 
Bailey-Serres and Voesenek 2008). Other effects on root 

systems include increased porosity (Przywara and 
Stepniewski 1999) and biomass loss (Mielke et al. 2003).  

Stomata closure is frequently observed in waterlogged 
plants and is associated with decreased water conductivity 
in the roots (Davies and Flore 1986). Additionally, gas 
exchange declines (Dias-Filho 2002, Bertolde et al. 2012), 
thereby it affects negatively net photosynthesis (Liao and 
Lin 2001) and transpiration (Du et al. 2012). However, 
when exposed to waterlogging, species, such as Zea mays 
(de Souza et al. 2009) and Oryza sativa (Nishiuchi et al. 
2012), exhibit morpho-anatomic modifications that 
promote the survival of these plants under hypoxic or 
anoxic conditions (Armstrong et al. 1994). 

Plants exposed to waterlogging may be damaged at the 
cellular level, mainly when increased production of reac-
tive oxygen species (ROS) occurs. ROS at high concen-
trations can modify the structures and functions of orga-
nelles like chloroplasts, and cause irreversible metabolic 
dysfunctions leading to cell death (Pereira et al. 2010). 
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The antioxidant system of plants includes enzymes and 
nonenzymatic compounds, such as ascorbate and gluta-
thione, both of which contribute to ROS elimination. 

In the Amazonian forest, trees and other plants are 
exposed to partial or total submersion for up to seven 
months of each year (Junk 1989). The species that are able 
to survive there possess waterlogging tolerance mecha- 

nisms. A study of Menezes Neto et al. (1995) reported 
modifications to anaerobic metabolism, but the number of 
investigations on physiological responses and antioxidant 
systems remains limited. Our study aimed to investigate 
whether gas exchange and antioxidant compounds can 
contribute to the survival of E. oleracea in environments 
with frequent waterlogging. 

 
Materials and methods 

 
Location and growth conditions: The experiment was 
performed on the Campus of Paragominas of the Universi-
dade Federal Rural da Amazônia, Paragominas city, Brazil 
(2º55'S and 47º34'W) in a greenhouse without an environ-
ment control. The minimum, maximum, and median 
temperatures were 22, 37, and 26º C, respectively (Fig. 1). 
The relative humidity during the experimental period 
varied between 65 and 93%. During the measurement 
period (12:00 h), the photosynthetically active radiation 
varied between 451 and 1,453 µmol(photon) m–2 s–1. 

 
Plants: Seeds of E. oleracea (Mart.) were germinated in  
8-L pots (0.25 m high, 0.20 m in a diameter) equipped with 
holes for water drainage. The pots were filled with 
Plantmax® substrate (Buschle & Lepper, Brazil), and the 
plants were irrigated daily with 1 L of distilled water. After 
100 d, seedlings of similar appearance and size were 
selected. Subsequently, 120-d-old seedlings received 0.2 L 
of nutrient solution (Hoagland and Arnon 1950), with this 
solution being applied at regular intervals (every 30 d) 
until the plant age of 12 months.  
 
Experimental design: The experiment employed a facto-
rial randomised design with two distinct water conditions 
(waterlogging and control, being described as WT and CT, 
respectively) and five evaluation times (0, 6, 12, 18, and 
24 d), making a total of 10 measurements. The experiment 
was assembled with 5 replicates in a total of 50 experi-
mental units, with one plant in each unit. 

 
Waterlogging treatment and harvest: All plants were 
grown until the age of 12 months as described above. 
Subsequently, the plants were submerged in water for 24 
consecutive days during WT. The water level was main-
tained at 5 cm above the root collar and it was adjusted as 
necessary. To implement WT, large 25-L pots were used 
(0.30 m height and diameter) without drainage holes. The 
young plants were repotted into the larger pots and then 
WT was initiated. Plants subjected to CT were watered 
daily with distilled water. Parameters associated with gas 
exchange were measured during each evaluation period. 
Additionally, the leaves in the middle of the plant were 
harvested and frozen in liquid nitrogen, being stored at  
–20°C for subsequent biochemical determinations. 

 

 
 
Fig. 1. Maximum, mean, and minimum temperatures during the 
experimental period. 
 
Leaf gas exchange: Stomatal conductance (gs), inter-
cellular CO2 concentration (Ci), net photosynthetic rate 
(PN), transpiration rate (E), and leaf temperature (TL) were 
evaluated using an infrared gas analyser (ADC Bio-
scientific, model LCPro+, England). These parameters 
were measured at the adaxial surface of fully expanded 
leaves, localised in the middle region of the plant. The 
water-use efficiency (WUE) was estimated according to 
Ma et al. (2004), and the instantaneous carboxylation 
efficiency (PN/Ci) was calculated using the formula 
described by Aragão et al. (2012). Gas exchange was 
evaluated in all plants between 9:00 and 12:00 h. The 
irradiance was maintained at 800 μmol m–2 s–1 during the 
measurements. 

 
Electrolyte leakage (EL) was measured using the method 
described by Gong et al. (1998) with minor modifications. 
Fresh leaves (200 mg) were cut into 1-cm-long pieces and 
placed in containers containing 8 mL of distilled deionised 
water. The containers were incubated in a water bath at 
40°C for 30 min, and the initial electrical conductivity of 
the medium (EC1) was measured using a conductivity 
meter (QUIMIS, model Q795A, Brazil). The samples were 
boiled at 95°C for 20 min to release all electrolytes. After the 

samples were cooled, the final electrical conductivity (EC2) 

was measured (Gong et al. 1998). The percentage of EL was 

calculated using the formula EL (%) = EC1/EC2 × 100. 
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Sample preparation: Samples for analysis of malon-
dialdehyde (MDA), ascorbate (ASC), and glutathione 
(GSH) were extracted as described by Wu et al. (2006). 
The extraction mixture was prepared by homogenising 
500 mg of fresh leaf matter in 5 mL of 5% (w/v) trichloro-
acetic acid. Subsequently, the samples were centrifuged at 
15,000 × g for 15 min at 3°C, and the supernatants were 
collected.   

 

MDA content was determined by mixing 0.5 mL of 
supernatant and 1 mL of the reaction mixture containing 
0.5% (w/v) thiobarbituric acid (TBA) in 20% trichloro-
acetic acid. This mixture was incubated in boiling water at 
95°C for 20 min, and the reaction was stopped by placing 
the reaction containers in an ice bath. The samples were 
then centrifuged (Marconi, model MA1805, Brazil) at 
10,000 × g for 10 min prior to measurement of the absor-
bance at 532 nm. The value for nonspecific absorption at 
600 nm was subtracted using a spectrophotometer (Femto, 
model 700 plus, Brazil). The amount of MDA–TBA 
complex (red pigment) was calculated using an extinction 
coefficient of 155 mM–1 cm–1, as reported by Cakmak and 
Horst (1991)  

 

ASC: The assay mixture for ASC detection contained  
0.2 mL of supernatant and 1.8 mL of reaction mixture 
described by Cakmak and Marschner (1992) with minor 
changes. The reaction mixture was prepared in 100 mM 
phosphate buffer (pH 7.6) and it was composed of 0.4 mL 
of 10% trichloroacetic acid, 0.4 mL of 44% orthophos-
phoric acid, 0.4 mL of 4% 2,2'-dipyridyl in 70% ethyl 
alcohol, and 0.2 mL of 3% FeCl3. This mixture was 
incubated at 40°C for 40 min, and the resulting color 
intensity was measured at 525 nm.  

 

GSH: 0.2 mL of supernatant, 1.8 mL of reaction mixture 
containing 100 mM phosphate buffer (pH 7.6), and 
0.6 mM 2-nitrobenzoic acid were combined, and the 
absorbance was measured at 412 nm (Wu et al. 2006). 

 

Statistics: The data were subjected to variance analysis, 
and significant differences between means were deter-
mined using the F test at the 5% error probability level 
(Steel et al. 2006). The standard deviations were calculated 
for each treatment at all evaluation points. A correlation 
analysis was performed using the Pearson’s parametric 
method. The statistical analyses were performed using 
SAS software. 

Results 
 

gs, E, and TL: gs was reduced due to WT, although a 
significant effect was observed only after 18 and 24 days 
after waterlogging (DWT) (Fig. 2A). Compared with CT, 
the greatest decrease of approximately 31% was observed 
on 18 DWT. Although the differences in the gs were 
significant, WT induced only insignificant decrease in E, 
and the difference was more intense on 12 DWT (Fig. 2B). 
WT promoted a significant increase in the TL from 6 to 24 

DWT (Fig. 2C). The greatest difference in this parameter 

was observed after 18 DWT, being 4%, compared with CT. 
 

PN, Ci, WUE, and PN/Ci: WT did not promote any 
significant alteration in PN. However, WT reduced PN by 
approximately 16–19% starting 6 to 24 DWT, respecti-
vely, compared with CT (Fig. 3A). Ci in plants was not 
significantly different under WT compared with CT. The 
reductions observed on all days were approximately 4% 
(Fig. 3B). WT resulted in variable WUE; the insignificant 
increase was observed after 6 DWT, and the insignificant 
decrease was observed on 12 until 24 DWT (Fig. 3C) 
relative to the CT plants. The difference was approxi-
mately 8%, being observed on 12 DWT. In contrast, the 
PN/Ci was not affected by WT. Additionally, decrease of 
about 18% appeared on 18 DWT compared with the CT 
(Fig. 3D). 

 

EL and MDA, GSH and ASC contents: EL increased 
significantly during 18 and 24 DWT. The greatest increase 
(9%) relative to the CT was observed on 18 DWT (Fig. 4A). 
The MDA content was not affected by WT (Fig. 4B). The 
greatest increase was observed on the 24 DWT (approxi-
mately 15% greater than that of the CT). The content 

 
 
Fig. 2. A: Stomatal conductance (gs), B: transpiration rate (E), and 
C: leaf temperature (TL) in young Euterpe oleracea plants 
subjected to waterlogging. The same letters show insignificant 
differences at F-test (P<0.05) to each time. Means ± SD, n = 5. 
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of ASC decreased by WT and this decrease was significant 
from the 6 DWT; the greatest difference (18%) compared 

with the CT was observed after 12 DWT (Fig. 4C). 

WT did not affect the GSH contents (Fig. 4D). The most 
intense decrease (8%) relative to the CT plants was 
observed after 24 DWT. 

 
Discussion 

 
A decrease in gs induced by WT is associated with 
decreased water absorption and also due to a reduction in 
the length of the contact surfaces of the root system. In 
other words, WT decreases root aeration. Consequently, 
the tissue suffers fermentation and reduced water transport 
into the root (Kozlowski 1997). Additionally, a decrease in 
gs is one of the first responses of plants to WT (Dat et al. 
2006). Decreased gs in WT plants was also reported in 
Cecropia pachystachya by Batista et al. (2008). 

The observed decline in E of WT plants could be 
attributed to a decreased assimilation of water into the 
plants, as WT reduces the oxygen availability (Wegner 
2010) and hydraulic conductivity in root systems (Islam 
and McDonald 2004). The decrease in E is also related to 
stomata closure, which is observed after WT (Reis et al. 
2007). Our results were consistent with those of 
Martinazzo et al. (2013), who studied Prunus salicina 
subjected to WT. 

The increase in TL could be explained by the decrease 
in E, as WT decreases water absorption via the roots and it 
consequently affects negatively plant thermoregulation 
(Jones 1998). Martínez-Alcántara et al. (2012) reported a 

decrease in the amount of root matter in waterlogged 
Citrus.  

The only insignificant decline in PN suggested that  
E. oleracea is tolerant to WT and that the observed 
decrease was associated with reduced gs; consequently, the 
supply of CO2 for PN was limited. Medri et al. (2012) 
suggest the decrease in PN as a response to oxygen 
deficiency in flooded soil. Similar results consistent with 
those of the present study were reported by Calbo et al. 
(1998) in Mauritia vinifera. 

In the present study, Ci decreased by WT in  
E. oleracea, although the change was not significant. This 
effect was probably linked to the lower gs and conse-
quently limited CO2 availability. Naeem et al. (2010) 
reported similar results for this parameter in Brassica 
napus exposed to salt stress. 

An increase in WUE is observed in plants subjected to 
mild or moderate stress, which indicates a strong decrease 
in E. Conversely, a decrease in this parameter was 
associated with decreased PN, because the efficiency of 
water use is proportional to PN. Similar results have been 
presented by Leiblein and Lösch (2011) in Ambrosia 
artemisiifolia subjected to WT. 

 

 
 
Fig. 3. A: Net photosynthetic rate (PN), B: intercellular CO2 concentration (Ci), C: water-use efficiency (WUE), and D: carboxylation 
instantaneous efficiency (PN/Ci) in young Euterpe oleracea plants subjected to waterlogging. The same letters show insignificant 
differences in F-test (P<0.05) at each time. Means ± SD, n = 5. 
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Fig. 4. Electrolyte leakage (A), malondialdehyde (B), ascorbate (C), and glutathione (D) in young Euterpe oleracea plants subjected to 
waterlogging. The same letters show insignificant differences in F-test (P<0.05) at each time. Means ± SD, n = 5. 
 

The slight reduction in PN/Ci might be associated with 
the finding that plants subjected to WT show low gas 
exchange (Liao and Lin 2001), resulting in decreased CO2 
availability and probably decreased enzyme activity, 
including ribulose-1,5-bisphosphate carboxylase/oxyge-
nase (Rubisco) and phosphoenolpyruvate carboxylase 
(PEPC) activity. These enzymes are responsible for the 
assimilation of CO2, due to reaction with ribulose-1,5-
bisphosphate (RuBP), which forms various carbon 
skeletons. Consistently with the present study, Grisi (2010) 
reported a decrease in PN/Ci of Schinus terebinthifolius 
under water-saturated conditions. 

Plants subjected to WT enhanced significantly EL only 
during 18 and 24 DWT, suggesting that this species is 
tolerant to WT. Increased EL occurs due to the rupture or 
increased permeability of membranes. Similar results have 
been reported by Leul and Zhou (1999) in B. napus 
subjected to WT. 

The increase in MDA contents was observed in the WT 
plants. Generally, they produce free radicals and ROS, 
which react with unsaturated fatty acids resulting in the 
degradation of membrane structures and cellular damage 
(Lopes et al. 2005) with a consequent increase of lipid 
peroxidation. Similar results were reported by Jamei et al. 
(2009), who investigated the effects of WT in Zea mays 
plants. 

WT decreased the content of ASC. It could be 
attributed to a low activity of L-galactono-1,4-lactone 

dehydrogenase, which catalyses the last step of ASC 
biosynthesis via the L-galactose pathway (Davey et al. 
1999). ASC is the most abundant, nonenzymatic, water-
soluble antioxidant, capable of removing ROS produced 
by oxidative stress during WT (Alhagdow et al. 2007). 
Similar reductions in ASC contents were also observed in 
Citrus roots (Arbona et al. 2008). 

WT promoted insignificant variations in GSH contents, 
indicating that E. oleracea was tolerant to WT. The 
increase evident until the 12 DWT was associated with 
stress induced by flooding (May et al. 1998, Potters et al. 
2002). However, the decrease observed after the 12 DWT 
suggested that the effects of stress decreased, and the 
survival capacity of this species increased during WT. 
GSH biosynthesis is a frequent response of plants exposed 
to abiotic stresses (Kocsy et al. 2001, Sofo et al. 2005). 
Hossain et al. (2009) described fluctuations in GSH 
contents in Citrus plants subjected to WT. 

 
Conclusion: WT did not promote significant changes in 
the rates of net PN and E, and gs was reduced only after 18 
days. No significant differences in the contents of the 
antioxidant compounds malondialdehyde and glutathione 
were observed during WT. In addition, EL was significant 
after 18 DWT. Therefore, this study revealed that 
maintenance in gas exchange and the action of antioxidant 
compounds contributed to the survival of Euterpe oleracea 
plants in environments exposed to waterlogging.
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