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Chloroplast ultrastructure, photosynthesis and accumulation of secondary
metabolites in Glechoma longituba in response to irradiance
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Abstract

Glechoma longituba (Nakai) Kupr. is a perennial shade plant with pharmaceutical importance. The aim of this study was
to investigate the effects of light intensity on the growth, photosynthesis, and accumulation of secondary metabolites in
G. longituba grown under six different light environments. The high light intensity decreased the leaf size, specific leaf
area, and aboveground dry mass, the number of grana per chloroplast, the number of lamella per granum, the thickness
of the grana, the apparent quantum efficiency, the chlorophyll (Chl) content, the concentrations of ursolic and oleanolic
acid. The high light increased the stomatal density, the stoma size, the number of chloroplast per a cell, the chloroplast
size, the dark respiration rate, the light saturation point, the light compensation point, and the Chl a/b ratio. With the
reduction in the light intensity, the light-saturated net photosynthetic rate, the aerial dry mass per plant, and the yields of
ursolic and oleanolic acid decreased after an initial increase, peaking at 16 and 33% of sunlight levels. Overall, the 16
and 33% irradiance levels were the most efficient in improving the yields and qualities of the medicinal plant. The lower
light demand and growth characteristics suggest that G. longituba is an extremely shade-tolerant plant and that
appropriate light intensity management might be feasible to obtain higher yields of secondary metabolites in agricultural

management.

Additional key words: gas exchange; light adaptation; stomatal index; thylakoid; triterpene acids.

Introduction

Light is an important environmental factor, influencing
many physiological processes, such as plant growth,
metabolite production, and yields. In nature, light not
only provides energy for plants, but affects detrimentally
plants under excessive sunlight (Bilger ef al. 1995,
Wittmann et al. 2001). Excessive irradiance may inacti-
vate or impair the photosynthetic reaction centres of the
chloroplasts and cause photoinhibition (Gilmore 2004,
Zhou etal. 2010). However, lack of sunlight may
decrease the absorption of light energy and inhibit plant
growth and yield by affecting net photosynthetic rate (P)
(Wei et al. 2005, Gregoriou et al. 2007). Although excess
or lack of sunlight may be harmful for the photosynthetic
apparatus, plants have evolved some sophisticated mecha-
nisms to avoid these effects through the adjustment of
their morpho-anatomical, physiological, and biochemical
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status (Lichtenthaler and Burkart 1999, Kim et al. 2005,
Guo et al. 2006). The morpho-anatomical strategies
include greater leaf thickness and stomatal density, more
starch grains, and a reduced leaf area, specific leaf area
(SLA), number of grana and grana lamella in the
chloroplast, efc. (Meier and Lichtenthaler 1981, Niinemets
2001, Temesgen and Weiskittel 2006, Gregoriou et al.
2007). In addition, the physiological and biochemical
strategies reduce the Chl/protein ratio and apparent
quantum yields, increasing the Chl a/b ratio in sun leaves
(Sims and Pearcy 1989, Lichtenthaler et al. 2007, Dai et
al. 2009). These strategies could greatly enhance the
overall adaptation abilities of plants to particular environ-
mental conditions in their ecological niche (Guo et al
2006, Bussotti 2008).

Sunlight is an important environmental factor and
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Acknowledgements: This study was supported by the projects of National Facilities and Information Infrastructure for Science and
Technology (2005DKA21000) and National Natural Science Foundation of China (41471243).

144



plays a key role in secondary metabolite accumulation
and morphological structure changes in plants (Theis and
Lerdau 2003). Secondary metabolites are usually consid-
ered to protect plants against herbivores and microbial
infection (Mooney et al. 1983, Coley and Barone 1996,
Theis and Lerdau 2003) and are used as therapeutic agents
in traditional medicine. The carbon/nitrogen balance
theory proposes that the photosynthetic rates might affect
the biosynthesis of carbohydrates and C-based defense
compounds (such as terpenoids or phenols, etc.) if light
became a limiting factor in nutrient-rich environments
(Bryant et al. 1983). In general, N-containing secondary
metabolites in plants would increase with decreasing light
intensity (Coelho et al. 2007). However, the extensive
accumulation of N-based secondary metabolites in weak
light was observed in shade-tolerant plants, such as
Tabernaemontana pachysiphon (Hoft et al. 1998), but not
in high-light demanding species, such as Rauvolfia vomi-
toria (Cai et al. 2009) when photosynthesis decreased
under low light intensity. At present, it is still unknown
whether plant growth and photosynthesis would be
affected by secondary metabolites (Herms and Mattson
1992, Almeida-Cortez et al. 1999). Therefore, under-
standing the relationship between growth, photosynthetic
characteristics, and the production of secondary
metabolites under different light environments is signifi-
cant in managing medicinal plants and optimizing field
growth conditions to acquire the maximal yield of
phytomedicinal compounds. Much attention has been
paid to increasing secondary metabolite production
through some special techniques, such as plant tissue
culture technologies, efc. However, the contents and
accumulation rate of secondary metabolites are relatively
low in general (Aoyagi et al. 2001). Therefore, unravelling
the physiological mechanism of secondary metabolite
biosynthesis in response to environmental stress is
indispensable for their field production. In the recent
decades, physiological changes have been intensively
investigated in plants grown under different light
intensities, while little research has been performed on
medicinal plants (Guo et al. 2006, Dai et al. 2009).

G. longituba belongs to the Labiatae family, and wild
plants usually grow in shady and humid environments,
such as forests, roadsides, or nearby creeks (Wu et al.
1977). The dried aboveground parts have a long history
as a widely used traditional Chinese medicine (TCM).
This species is recorded as “Liangiancao” in Chinese
traditional medicinal recipes. G. longituba possesses a

Materials and methods

Plants and experimental conditions: G. longituba was
collected from the Chinese Traditional Medicine Germ-
plasm Resource Centre, Nanjing Agricultural University,
China. In May 2010, G. longituba clonal fragments with
two oppositifolious leaves were planted in fertile sandy
soil and were maintained for approximately one month in
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wide range of effective applications as an antipyretic,
diuretic, and choleretic agent for jaundice disease, as well
as for the treatment of febrile symptoms, cholagogue,
diuretic, swelling, detoxification, traumatic injury,
eliminating concretion, and anti-diarrhoea (Xiao et al.
2010, Ni et al. 2010). Moreover, two major bioactive
components of G. longituba, ursolic acid (UA) and
oleanolic acid (OA), have recently attracted considerable
interest because of their various pharmacological acti-
vities, including antioxidant activities in leukemic cells
(Ovesna et al. 2006), effective anti-AIDS (Kashiwada et
al. 2000, Ma et al. 2000), anti-inflammation (Ryu et al.
2000, Giner-Larza et al 2001), and anti-tumour
(Ohigashi et al. 1986, Li et al. 2002, lIkeda et al. 2006)
activities. In addition to its pharmaceutical uses, this plant
has been also used as an ornamental plant for garden
landscaping (Li et al. 1999, Liu et al. 2008).

Because wild resources of G. longituba cannot meet
the increasing commercial demands in China, promoting
its agricultural cultivation has been considered an alter-
native strategy to satisfy market demands. However,
knowledge of the growth, photosynthesis, and ecological
adaptability of G. longituba is missing. Because agro-
forestry has been successfully used as an integrated
approach in the cultivation and management of some
medicinal plants (Cai et al. 2009, Hou et al. 2010),
it could be effective in ameliorating the quality and trait
of interest for other crops, such as G. longituba (Eibl
et al. 2000).

G. longituba cannot grow normally in either full
sunlight or overshade conditions in practical production.
Full sunlight irradiance leads always to leaf yellowing
and early senescence. Under overshade conditions,
G. longituba grows poorly and cannot bloom normally.
At present, the effects of different irradiance intensities
on the morphological, biochemical, and photosynthetic
properties of G. longituba have not been investigated. In
this paper, we studied the growth, chloroplast ultrastruc-
ture, stomatal indexes, gas exchange, and contents of
secondary metabolites of G. longituba in response to
different light environments using a range of light
regimes, including high and low light intensities. The aim
was to provide an in-depth understanding of the photo-
acclimation mechanisms of G. longituba under different
light environments. These results might be used to deter-
mine whether appropriate light control can improve the
yield and medicinal quality of G. longituba in agricultural
management and conservation of cultivated G. longituba.

a growth chamber (25/18°C day/night temperature, maxi-
mum irradiance of 1,000-1,200 pmol(photon) m? s/,
and relative humidity of approximately 70%). After their
recovery from transplantation, uniform and healthy seed-
lings were selected and subjected to different irradiance

treatments. Twenty seedlings were randomly sampled in
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each treatment (n = 20).

The plants were sheltered with shade nets (1.6 m
above the ground) and grew at different irradiance levels:
100% (the control without the shade net, L1), 75% (L2),
58% (L3), 33% (L4), 16% (L5), and 9% (L6) of full
sunlight. The diurnal light intensity changes of all shade
levels were determined in July and September using a
light meter (ORTI, Hansatech, Norfolk, UK), and the
mean values are shown in Fig. 14. The diurnal changes in
the leaf temperature were measured on fully expanded
leaves with a portable Li-6400XT photosynthesis system
(LI-COR, Lincoln, NE, USA), and the results are shown
in Fig. 1B. The plants were irrigated daily to saturation at
18:00; they were irrigated twice a week with full strength
Hoagland’s solution during the growth period. The plant
growth was evaluated by the indexes that are related to
growth, ultrastructure, photosynthesis, and secondary
metabolism after five months of growth under different
irradiance.

Analysis of plant growth indexes and morphology: The
morphology change and growth indexes [leaf size, SLA,
leaf number, and aboveground dry mass (DM) per plant]
were determined at the end of the experiment on the
October 31,2010. The fully expanded leaves were sampled
from the medial part of the stem. The leaf size was
measured with a LI-3000 portable area meter (L/-COR,
Lincoln, NE, USA). The leaf DM was determined after
incubating the leaves at 110°C for 10 min and drying at
60°C until the constant mass. Finally, the leaf arca was
calculated and expressed as the ratio of leaf area to leaf DM.
Each treatment contained five individual plants (n =5).

Chloroplast ultrastructure: Small pieces (approx. 4 mm?)
of healthy tissue were excised from the middle part of the
leaf, excluding the midrib to ensure uniformity of the
sample material. The leaf samples were fixed in
2.5% (w/v) glutaraldehyde with 0.1 mol L' of phosphate
buffer (pH 7.4) for 6 h at 4°C. After being washed, the
samples were post-fixed with 1% osmium tetroxide for
4 h at 4°C, dehydrated in an ethanol series, and embedded
in the Epon-812 resin. Ultrathin sections of the embedded
samples were cut on a Reichert Ultratome (Leica,
Reichert, Germany) and then post-stained with uranyl
acetate and lead citrate following the method of Reinolds
(1963). The parameters of the transmission electron
microscopy (H-7650, Hitachi, Tokyo, Japan) were set as
75 kV according to the procedure of Kutik (1998). The
leaf cross sections in the leaf cells were analyzed using an
Axio Imager Alm optical microscope (Zeiss, Jena,
Germany). Ten replicates were used for each experiment
(n=10).

Determination of the stomatal indexes: The lower
epidermal stomata were counted on fully expanded leaves.
The dry imprints of the abaxial epidermis were obtained
from the leaves by smearing with colourless
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Fig. 1. Diurnal changes in the photosynthetic photon flux
density (PPFD) (4) and leaf temperature (B) under 100, 75, 58,
33, 16, and 9% of sunlight irradiance. Each value of PPFD is
the mean of twenty replicates and that of leaf temperature is the
mean of ten replicates.

adhesive nail polish according to Chen et al. (2001),
photographed with an Axio Imager Alm optical micro-
scope (Zeiss, Jena, Germany), and measured with Motic
Images Plus software. The imprints of five individual
leaves were used to count the lower epidermal stomata in
each treatment (n = 5). Four areas of 0.1555 mm? were
selected and analyzed on each leaf sample. The stomatal
density was measured according to the method of
Ceulemans ef al. (1995).

The Chl concentrations were determined according to
Lichtenthaler (1987). A sample of fresh leaf was extracted
in 80% (v/v) acetone in the dark for 48 h at room tem-
perature (approximately 25°C). The absorbance of the
extract was measured at 645 and 663 nm using a
UV/visible spectrophotometer (Lambda 25, Perkin Elmer,
CT, USA).

Gas-exchange measurements: The gas exchange was
measured with a portable Li-6400XT photosynthesis
system (LI-COR, Lincoln, NE, USA) using an open
system mode in the morning between 09:00 and 11:00 on
clear days in October 2010. The relative humidity, leaf



temperature, and vapour pressure deficit (VPD) were
70 £ 0.5%, 25 £ 0.3°C, and less than 1 kPa, respectively.
The seedlings were watered to avoid drought stress
before all of the leaves were marked and measured. Three
replicates from different plants were used for photo-
synthetic measurements in each treatment (n = 3). The
leaf light-response curves (Pn/PPFD) were determined at
irradiances between 1,500 and 0 pmol(photon) m2 s™! by
a LED-B built-in light source and were fitted according to
the model of Ye (2007). Based on the given environmental
conditions (CO, concentration, humidity, temperature,
and oxygen concentration), the leaf light-response curves
were expressed as follows (Ye 2007, 2008):

Pv)=ax (1 =B x{-I)(1+vyI), where Ic is
a light compensation point (LCP), which can be directly
obtained from this equation, and a, B, and y are coeffi-
cients which are independent of the light intensity (/).

The light saturation point (LSP) was calculated as:

= [\/(B+Y)><(1+YIC)/B— 11/y; the light-saturated

photosynthetic rate (Pnmax) Was calculated as: Pn(Im) =
o X (1 =B Iv) % (Im — Ic)/(1 + v Iv); the dark respiration
rate (Rp) was calculated as: Rp = —a Ic; and the apparent
quantum efficiency (AQE) was calculated as: Px(Ic) =
ax [1+(y—P)xIc—ByIP)(1 + vy Ic)* The measure-
ments were carried out under areference CO, concentration
0f 380 umol(CO,) mol™'. At each PAR level, the minimum
waiting time for reading stabilization was set at 120 s and
the maximum at 150 s during the measurements.

Determination of UA and OA concentrations: The
samples for HPLC quantification were prepared by the

Results

Significant changes were observed in the leaf number and
leaf size of the plants grown under shade conditions
compared with those of the L1 treatment (Table 1). With
the decreasing light intensity, the leaf number in the L2,
L3, L4, L5, and L6 treatments increased by 1.31-, 1.34-,
1.51-, 1.68-, and 1.04-fold, respectively, compared with
L1. The changes in the leaf size (leaf length, leaf width,
and leaf area) displayed similar patterns as those in the
leaf number. The aboveground DM increased continuously
with the decreasing sunlight before reaching the maximum
mass in the L4 treatment, after which the masses
decreased. These data indicated that shade showed a
positive effect on the accumulation of the aboveground
DM (Fig. 2).

Stomatal density is closely positively correlated with
plant photochemical efficiency. Under different shade
treatments, the stomatal density of G. longituba leaves
declined significantly with the decreasing irradiance
(Table 1). Compared to the L1 treatment, the stomatal
density was significantly reduced by 16.7, 30.3, 37.2,
41.4, and 49.0% in the L2, L3, L4, L5, and L6 treatments,
respectively. The shade treatments reduced significantly
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method of Fang et al. (2010). Briefly, the plant tissues
were ground in a commercial blender, and the powder
(0.100 g) was ultrasonically extracted for 30 min after
a 30-min immersion in 20 mL of 75% ethanol solution
containing 1% formic acid. After centrifugation at
10,000 x g for 10 min, the supernatant was filtered
through a 0.45-um water solute nylon membrane (Waters,
Massachusetts, USA). HPLC analyses for the UA and OA
were conducted at 30°C using an HPLC system consisting
of an LC-20AT Liquid Chromatograph (Shimadzu, Kyoto,
Japan). The samples (10 uL) were separated by an Agilent
ZORBAX SB-Aq C18 (250 x 4.6 mm, particle size 5 pm)
reverse-phase column at a 0.6 mL min™' flow rate with
methanol-0.5% ammonium acetate (88:12, v/v) as the
mobile phase. Two bioactive component concentrations
were determined by a UV detector at wavelength of
210 nm. The UA and OA concentrations in the above-
ground parts were calculated by their regression equations
with reference to the external standard (Wang et al. 2008).

Statistical analyses: The statistical analyses were per-
formed by a one-way analysis of variance (ANOVA), and
the least significant difference (LSD) test was used to
assess the differences among the treatments. To meet the
assumptions of normality and homoscedasticity, the data
were transformed by common logarithm or square root.
The confidence level was set at 95% (P<0.05), and the
data were displayed as the means + standard errors (SE).
Pearson’s correlation analyses and statistical analyses
were performed using SPSS 16.0 software (SPSS, Chicago,
IL, USA).

AERIAL DRY MASS [g per plant]

100 75 58 33 18 9
TREATMENT [%]

Fig. 2. Effects of different sunlight levels on the aerial dry mass
of Glechoma longituba (n = 5). The different small letters
indicate significance at P<0.05. The bars above the means
indicate standard error (SE). The x-axis indicates the sunlight
irradiance in percentage.
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Table 1. The growth indexes, stomatal density, and size of Glechoma longituba leaves under different sunlight irradiance. Mean + SE,
n = 15. Different small letters indicate significant differences for the same index at P<0.05 by the least significant difference (LSD)
test. L1, L2, L3, L4, L5, and L6 mean 100, 75, 58, 33, 16, and 9% of sunlight irradiance, respectively.

Parameters L1 L2 L3 L4 L5 L6

Leaf length [cm] 251+0.03¢  2.53+£0.060  322+£0.12°  3.66£0.18°  4.07£0.20°  3.33%0.14%
Leaf width [cm] 2.88 +0.06° 3.11 £0.14¢ 3.58+0.16° 4.33+0.20? 4.55+0.192 3.84+0.16°
Leaf area [cm?] 4.86+0.17¢ 5.68 £0.44%  7.82+0.66% 11.31£1.19% 13.48+1.36* 8.87+0.94%¢
Specific leaf area [cm? mg ] 0.27+0.01°¢ 0.28 £ 0.02°¢ 0.29 + 0.00° 0.35+0.03" 0.37£0.03° 0.69 = 0.05*
Leaf number per plant 67.00+1.859 87.80+£2.64° 90.11+1.62° 101.11+£3.72> 112.83 £4.81* 69.90 + 1.424

Stomatal density [number mm 2] 333.06 £ 5.91* 277.44 £5.81° 232,11 £4.35¢ 209.29 +£4.00¢ 195.14+3.91° 169.74 +2.93f
Stomatal length [um] 27.270 £ 0.272% 25.599 £ 0.269" 25.442 + 0.326° 24.537 + 0.288° 23.436 + 0.352¢ 17.992 £ 0.261°
Stomatal width [um] 13.518 £0.250% 11.899 £ 0.237° 12.134 +£0.217° 11.632 +0.165* 10.927 + 0.302¢ 9.286 +0.157¢
Stomatal length-to-width ratio  2.042 +0.020° 2.169 +0.018* 2.109 £0.011° 2.114£0.006" 2.180+0.031* 1.944 +0.010¢

the stomatal density, length, and width.

Moreover, the different irradiance treatments also
affected significantly the stomatal length-to-width ratio
(Table 1), which was 2.042, 2.169, 2.109, 2.114, 2.180,
and 1.944 in L1, L2, L3, L4, LS5, and L6, respectively.

The leaves of the control, L1 treatment possessed the
representative sun-type chloroplasts, which were charac-
terized by few lamellae in the stroma part of the chloro-
plast section, by less appressed thylakoid membranes,
less lamellae per granum, and large starch grains (Fig. 3).
With the increasing light intensity, an increasing trend
was observed for the number of chloroplasts per cell
(Table 2). Compared with the control, the shade-treated
leaves displayed the smaller chloroplast size (length and
width) and lower portion of starch per chloroplast (Fig. 3,
Table 2). Furthermore, the shaded leaves contained smaller
starch grains, but more grana per chloroplast and lamellae
per granum than that of the control chloroplasts (Table 2,
Fig. 3). As a result, the thickness of the grana was
obviously greater in the shade-type chloroplasts than that
in the control chloroplasts (Table 2).

The Pn/PPED curves of the six irradiance treatments
are shown in Fig. 4. In all the treatments, the Pn values
increased sharply with the PPFD from 0 to 200
umol(photon) m2 s, and then increased slowly with the
PPFD until the maximum value. However, the values
declined significantly as the light intensity reached 1,500
pumol(photon) m2 s!. The maximum Pnmax Was observed
in the L4 and LS5 treatments (Fig. 4, Table 3); it was 1.47-
and 1.42-fold higher than in the control, respectively. The
Pn/PPED curves of the L4 and L5 treatments were almost

coincident, and both decreased after peaking. All of the
AQE were significantly higher in L3-L6 treatments than
those in the L1 and L2 treatments (Table 3). Therefore, a
decrease in the sunlight irradiance led to a lower Rp, LSP,
and LCP in G. longituba (Table 3).

The data in Table 3 indicate that G. longituba
responded to the decrease in irradiance by enhancing the
concentrations of Chl; the Chl a, Chl b, and total Chl
concentrations were significantly higher under low sun-
light levels than those under full sunlight. The plant
leaves that were grown under shade treatments showed
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Fig. 3. Transmission electron micrograph images of the chloro-
plasts of Glechoma longituba leaves under different sunlight
irradiance. Leaf chloroplasts of plants grown at 100% (A4),
75% (B), 58% (C), 33% (D), 16% (E), and 9% (F) of full sun-
light. Bar 0.5 pm. G — granum; P — plastoglobuli; SG — starch
grain.

alower Chl a/b ratio compared to the leaves in full
sunlight. Moreover, the ratio gradually decreased as the
irradiance decreased.

In response to the decrease in the irradiance, the
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Table 2. Effects of different sunlight irradiance on the chloroplast ultrastructure in Glechoma longituba leaves. Mean + SE. The
different small letters indicate significant differences for the same index at P<0.05 by the least significant difference (LSD) test. The
chloroplast ultrastructure data were calculated from 10 replicate sections from five plants. L1, L2, L3, L4, L5, and L6 indicate 100,

75, 58, 33, 16, and 9% sunlight irradiance, respectively.

Treatment Number of Chloroplast Chloroplast Portion of starch per Number of grana Number of Thickness of
chloroplasts length [pm] width [pm]  area of chloroplast  per chloroplast ~ lamellae per  grana [um)]
per cell section [%] granum

L1 5.60 £ 0.242 7.79+0.32* 3.54+0.16* 58.75+2.71* 18.40 + 0.844 4.77+0.35> 0.082 + 0.006°
L2 5.40 £ 0.24? 7.15+ 037 3.42£0.15® 47.61 + 6.64® 19.80 + 1.45¢ 7.14 +£0.87° 0.125 +0.009°
L3 5.00+0.22% 6,93 +0.51% 3.17+£0.22% 38.11 + 7.35% 23.00 + 0.58% 14.30 £ 0.95* 0.213 +£0.027°
L4 4.50£029%  6.96%0.23% 2.93+0.13% 2562+ 6.79¢ 25.67+0.85®°  14.83+1.30* 0.325=0.031°
L5 425+£0.25°  6.70+£0.31°> 2.61+£0.189¢ 25.61+1.72° 27.25+1.62? 1544 £1.71* 0376 £0.0412
L6 4.00 + 0.32¢ 551+0.17° 220+0.064 24.93 +2.59° 26.50 £ 0.99? 16.63 £1.55* 0.381 +0.029*
concentrations of UA and OA increased dramatically in
the aboveground parts of G. longituba (Fig. 54). Com-
pared to those in the control (L1), the concentrations of = !‘:___—\‘Q}‘*—;j\\_
UA increased by 10.5, 10.3, and 18.0% in the L4, L5, and T %%‘5—:—5:”\\_5
L6 treatments, respectively, and no significant differences = \5\5\5
were detected among the L1, L2, and L3 treatments. The 8 T e 3
change in the OA concentration showed a similar pattern; E —*-100%
the contents increased by 9.1, 9.6, and 14.4% in the L4, = :;:Egoﬁ
L5, and L6 treatments compared to those of the control, & —v—33%

. .. . —0-16%
respectively. No significant differences were detected —9— 0%
among the L1, L2, and L3 treatments. oF . ‘ |

With the sunlight levels decreased, the aboveground ‘ 400 800 1200

DM first increased to 1.94-fold in the L4 treatment
compared with L1, and then decreased (Fig. 5B). The
aboveground DM showed a significantly positive correla-
tion with Pxmax (72 = 0.81, P<0.05). The yields of UA and
OA displayed similar trends; their contents increased by
1.53- and 1.50-fold in the L2 treatment, 1.85- and
1.81-fold in the L3 treatment, 2.15- and 2.11-fold in the
L4 treatment compared to the L1, respectively, and then
decreased drastically (Fig. 5B).

Discussion

The leaf area, leaf size, and SLA of plants are closely
related to the light conditions under which plants grow
(Rosati et al. 2001). An increase in the leaf area and SLA
is a typical morphological characteristic to adapt to weak
light environments (Niinemets et al. 1998). In this study,
the light was limited; therefore, G. longituba adopted
strategies by allocating additional biomass to leaves and
increasing SLA to acclimatize to weak light environments.
These adaption strategies could enhance its capacity of
capturing light energy and increase the relative proportion
of assimilation tissue in the leaf tissue, improving the net
accumulation of carbon (Wang and Feng 2005). The
results agree with those of a previous study in which the
leaves of Rauwolfia vomitoria Afzel exposed to low sun-
light treatments showed higher SLA compared to those
exposed to full sunlight (Cai et al. 2009). The aerial dry
mass of G. longituba was mostly composed of leaf dry

PPFD [pmol(photon) m? s7']

Fig. 4. Photosynthetic light-response (Pn/PPFD) curves from
the leaves of Glechoma longituba grown under 100, 75, 58, 33,
16, and 9% of sunlight irradiance. The values represent the
means = SE (n = 3).

matter production (Tao and Zhong 2000). The plants
grew poorly with fewer and smaller leaves at the full
sunlight. As a result, the aerial dry mass was lower than
that under the shade treatments.

Chl a is directly involved in determining the photo-
synthetic activity (Sestak 1966). The decreases in the Chl b
concentrations have been considered an indication of Chl
disorganisation by excess sunlight irradiance (Griffin
et al. 2004). Compared to the control, the significant
increases in the total Chl concentrations in shading
treatments confirmed the ability of plants to maximize the
light-harvesting capacity in low-light environments (Lei
et al. 1996). In our experiments, the shade treatments
greatly increased the photosynthetic rates in G. longituba.
The higher Chl a concentrations that were observed under
shade conditions might in part explain the higher rates
of photosynthesis. However, the differences in the
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Table 3. Photosynthetic parameters and leaf chlorophyll (Chl) concentrations in Glechoma longituba seedlings growing under
different sunlight irradiance. Mean + SE, n = 3. Different small letters indicate significant differences for the same index at P<0.05 by
the least significant difference (LSD) test. L1, L2, L3, L4, LS5 and L6 indicate 100, 75, 58, 33, 16, and 9% of sunlight irradiance,
respectively. AQE — apparent quantum efficiency; LCP — light compensation point; LSP — light saturation point; Pnmax — light-

saturated net photosynthetic rate; Rp — respiration rate.

Parameters L1 L2 L3 L4 L5 L6
Prmax [umol(CO2) m2 s7'] 5.58 + 0.26¢ 6.63 £ 0.16% 7.05 +0.06" 7.95+0.10* 8.23+0.122 6.42 +0.08¢
AQE 0.0454 £ 0.0011¢0.0513 £ 0.0025" 0.0552 + 0.0013" 0.0637 + 0.0045 0.0702 £ 0.0001* 0.0718 + 0.00242
Rp [umol m™2s71] 0.942 +£0.015* 0.861+=0.001> 0.788 +0.024° 0.703 £ 0.038¢  0.656 = 0.003% 0.615 + 0.009°
LSP [umol m™2 s7!] 874.63 £25.72% 836.48 £ 6.06™ 812.89£3.98> 761.05+12.33° 685.32+2.99¢ 579.31 £8.10°
LCP [umol m2s7!] 23.10 £ 0.02? 18.26 + 0.89% 1533 £0.13¢ 11.70 £0.134 9.82 +0.04¢ 9.13 £ 0.16°
Chla [mg g™ 0.562+0.045¢ 0.663+0.017° 0.674+0.013° 0.851+£0.036> 1.032+0.015* 0.978 +0.010?
Chl b [mg g™ 0.160 +0.006¢ 0.192£0.004°  0.204 £0.002° 0.260 =0.009° 0.344 +0.006* 0.328 + 0.006°
Chl a/b ratio 3.505+0.042* 3.460 £0.064* 3.303+£0.077° 3.267£0.048> 2.995+0.009° 2.977 + 0.024¢
Total Chl [mg g '] 0.722+0.031¢  0.855+0.020° 0.878 £0.012° 1.111£0.044* 1.376+0.021*° 1.306 +0.016°
a light have much smaller and fewer stomata than those
W UA under stronger light (Wilson and Cooper 1969, Cai et al.
o750 - H OA b b 2004). This phenomenon is consistent with our study; the
leaves showed reduced stomatal density and size when
5 they were treated with lower irradiance. Concomitantly, a
8 0700 . large stomatal density and size would have high
5 © C transpiration, which is a typical characteristic when the
E 0650 . . . leaves are exposed to full sunlight. The strong irradiance
; T and evapotranspiration in turn make plants sensitive to
ot drought under natural conditions. It is generally accepted

YIELD [g per plant]

100% 75% 58% 33% 18% 9%
TREATMENT [%]

Fig. 5. Ursolic acid (UA) and oleanolic acid (OA) concentra-
tions (4) and yields (B) in the aboveground parts of Glechoma
longituba under different sunlight irradiance (n = 4). The
different small letters indicate significance at P<0.05. The bars
above the means indicate standard error (SE). The x-axis
indicates the sunlight irradiance in percentage.

photosynthetic rates between full sunlight and under

shading nets may be attributable to evapotranspiration and
transpiration (Li et al. 2009). Plants grown under weaker
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that the performance of plants grown in full sunlight may
be ameliorated by moderate shade under drought
conditions (Rousset and Lepart 2000). Thus, shade is a
suitable treatment to improve shade-tolerant plant yields.

Different sunlight intensities affected significantly
G. longituba photosynthesis. More specifically, high irra-
diances determine a decline of Pnmax, likely ascribed to
the occurrence of photoinhibition (Griffin et al. 2004
Galmés et al. 2007). The plants were not able to
acclimate and elevate Pnmax, although they had higher
LSP under high irradiance levels. The results suggest that
plants might experience supraoptimal irradiances, and the
energy dissipation mechanism could be somewhat
damaged. The higher AQE indicated that G. longituba
leaves utilized light energy better in the shade
environments (Xu 2002, Park et al. 2010). A lower LCP
in the shade environments suggests that G. longituba
possesses the capacity to adapt to weak light
environments and that it is a shade-tolerant species; this is
related to the maximum value of Pnmax under the shade
environments.

Typically, chloroplasts show high plasticity in response
to light and adjust their structure to help the leaf adapt to
different light environments (Zhang and Gao 2001). The
integrated chloroplast structure under shade treatments,
especially at 16 and 33% sunlight, ensured the process of
photosynthesis and facilitates the synthesis and
accumulation of carbohydrates, including starch (Fig. 3).
The chloroplast number per cell decreased with the
decline of light intensity, which may be equal to that in



meristem cells (Butterfass 1995). The chloroplast number
per cell is closely correlated with the size of the meristem
cell and determined by the size of the cell (Pyke and
Leech 1987). In our study, it was observed that the size of
the cell became gradually smaller with the decline of light
intensity (unpublished).

UA and OA are secondary metabolites with various
pharmacological activities. In particular, OA has been
marketed as an oral drug for human liver disorders in
China (Liu 1995, Sohn et al. 1995). These metabolites are
major active components in G. longituba, and their
contents are used as bench markers to judge the quality of
this medicinal plant (Liu et al. 2012). Our results
demonstrated that the concentrations as well as the yields
of these substances increased with the decreasing irra-
diance (except for the L6 treatment) (Fig. 5). The low
light boosted the syntheses and accumulation of UA and
OA, which was consistent with the previous studies,
where reduced light availability increased the concentra-
tions of specific secondary metabolic substances in some
medicinal plants, such as glycyrrhizic acid and liquiritin
in Glycyrrhiza uralensis (Hou et al. 2010), methyl-
xanthines in llex paraguariensis (Coelho et al. 2007), and
aloin (barbaloin) in Aloe mutabilis (Chauser-Volfson and
Gutterman 1998). However, the yields of UA and OA
were positively correlated with the changes in the
aboveground dry mass, and they were correlated with the
maximum photosynthetic rates across all sunlight levels.
These results indicated that the appropriate shade
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