

BRIEF COMMUNICATION

Fertilization regimes under hot conditions alter photosynthetic response of bean plants

I.A. HASSAN^{*,**,+}, H.M. ABOU ZEID^{**}, W. TAIA^{**}, N.S. HAIBA^{***}, A. ZAHRAN^{****}, R.H. BADR^{**}, R.A. EL DAKAK^{**}, and E.A. SHALABY[#]

*Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia**

*Department of Botany, Faculty of Science, Alexandria University, 21526 El Shatby, Alexandria, Egypt^{**}*

*Department of Chemistry and Physics, Faculty of Education, Alexandria University, Alexandria, Egypt^{***}*

*Department of Evaluation of Natural Sources, Institute of Environmental Studies and Research, University of Sadat City, Egypt^{****}*

Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt[#]

Abstract

We examined the effects of foliar application of various nitrogen (urea) concentrations on gas-exchange and chlorophyll (Chl) fluorescence characteristics in bean plants treated by heat stress (42/30°C, day/night temperatures). Heat stress caused reductions in contents of Chl *a*, Chl *b*, and in maximum photochemical efficiency of PSII by 13, 20, and 27%, respectively, regardless of the N treatment. However, N fertilization caused significant increases in these parameters, especially at higher N concentrations. The net photosynthetic rate and stomatal conductance were enhanced by 32, 60, and 69% and by 25, 88, and 100% due to addition of 5, 10, and 15 mM N, respectively. However, gas-exchange parameters were reduced by 24% due to heat stress. N fertilization alleviated adverse effects of heat stress.

Additional key words: heat stress, nitrogen fertilization, photosynthetic performance, *Phaseolus vulgaris* L.

Various physiological damages occur in plants upon exposure to heat stress (Hasanuzzaman *et al.* 2013). High temperatures (heat stress, HS) are known to inhibit enzyme activity, net photosynthetic rate (P_N), and other metabolic processes leading to physiological and biochemical alterations (Salvucci and Crafts-Brander 2004, Hassan, 2006, Zhao *et al.* 2008, ICPP 2014). HS uncouples enzymes and metabolic pathways leading to accumulation of harmful reactive oxygen species (ROS) which are responsible for oxidative stress (Sarieva *et al.* 2010). The reaction centers of PSI and PSII in chloroplasts are major sites of ROS generation (Chakraborty *et al.* 2011). Stomatal closure, reduction in root growth, and consequent inhibition of mineral uptake are common responses to HS (Huang and Xu 2000).

Nitrogen as an essential element (Sánchez *et al.* 2004, Cechin and De Terezinha 2004) promotes metabolic activities, such as photosynthesis, antioxidant activities, leading to enhancing in growth and yield (Zhao *et al.* 2008).

Due to their different physiological effects, HS and N fertilization might have interactive impacts on plants. HS reduces the rate of nutrient uptake; however, this effect

could be mitigated by excessive supply of N (Altenbach *et al.* 2003, Zhao *et al.* 2008, Demmig-Adams *et al.* 2014). Moreover, Zhang *et al.* (2014) reported that N nutrition control is an important way to enhance tolerance to abiotic stress. Thus, it is important to understand how the supply of N may mitigate HS.

The aim of the present experiment was to study the effects of N-fertilization on alleviation of the negative impact of HS on Chl fluorescence, P_N , and stomatal conductance (g_s) of French bean plants.

Seeds of French bean (*Phaseolus vulgaris* L.) were obtained from the Department of Agronomy, Alexandria University, Egypt. They were sown in plastic pots (20 cm²), five seeds in each pot with multipurpose compost in a heated glasshouse [temperature of 24/20°C day/night, air humidity 60–65%, 16-h photoperiod with additional irradiance of 450 µmol(photon) m⁻² s⁻¹, total irradiance was 975 µmol(photon) m⁻² s⁻¹]. After appearance of expanded trifoliate leaf, 12 days after sowing (DAS), plants were thinned to one seedling per pot. Pots were then transferred to eight closed climate controlled growth chambers. Two chambers were used for N fertilization as foliar spray (three concentrations of urea: 5, 10, 15 mM). Two other

Received 30 April 2014, accepted 12 September 2014.

*Corresponding author: ihassan_eg@yahoo.com

Abbreviations: Chl – chlorophyll; FM – fresh mass; HS – heat stress; P_N – net photosynthetic rate; g_s – stomatal conductance to water vapour; q_p – photochemical quenching coefficient; NPQ – nonphotochemical quenching; F_v/F_m – maximum photochemical efficiency of PSII; ROS – reactive oxygen species; Φ_{II} – effective quantum yield of PSII photochemistry.

Acknowledgements: The authors thank anonymous reviewers for their valuable comments. We would like to thank Ms. Laila Alawi (CEES), for her technical assistance and Prof. Samir Khalil, Faculty of Science, Alexandria University for revising the manuscript.

chambers were used only for HT treatment (40–42°C), and plants were sprayed with distilled water. Two others were assigned to interaction between N-fertilization and HT, while the last two chambers were assigned as control plants (plants sprayed with distilled water and temperature of 25°C).

Treatment	Abbreviation
5 mM urea	N5
10 mM urea	N10
15 mM urea	N15
5 mM urea + heat stress	HT
Heat stress	N5HT
Control	CT

Temperatures were maintained in both treatments automatically through a controlled system. Plants were sprayed with either urea or distilled water twice a week. There were 15 pots in each chamber. Soil moisture was checked regularly, at a depth of 0.10 m, using digital psychrometer (*Check-It 0622, Check-It Electronics, USA*) to prevent drought stress beyond –0.5 MPa; lost water was replenished by bringing the pots to their original mass according to Deng *et al.* (2000). The watering regime continued until the end of the experiment (Basahi *et al.* 2014).

P_N and g_s were measured with a portable infrared gas analyser (*LICOR-6400, LICOR, Lincoln, NE, USA*). Measurements were taken between 10:00–14:00 h for 55 days after appearance of expanded trifoliate leaf at 5-d intervals at 975 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ PPFD. Automatic, accurate, and stable temperature control was standard and integral with all leaf cuvettes. Peltier elements were mounted to the head along with a heat sink and fans for precise control of temperature over a wide range. Chl fluorescence was measured with a portable photosynthetic efficiency analyser (*PEA, Hansatech Instrumental, Hardwick, Norfolk, UK*) on the same leaves where the gas exchange was evaluated. Leaves were dark adapted for 30 min in leaf-clips before measurements. The ground (F_0), maximum (F_m), and variable (F_v) fluorescence were measured and used for calculations of variable to maximum fluorescence ratio (F_v/F_m). The effective quantum yield of PSII photochemistry (Φ_{PSII}) was calculated when leaf

was completely adapted to light as calculated as $\Delta F/F_m' = (F_m' - F_s)/F_m'$, where F_m' and F_s represent the maximum and steady state fluorescence levels in the light-adapted state, respectively (Bencze *et al.* 2014, Thwe *et al.* 2014). Calculation of quenching due to photochemical (q_p), and nonphotochemical (NPQ) dissipation of absorbed light energy were determined according to the equation: $q_p = (F_m' - F_s)/(F_m' - F_0')$ and $\text{NPQ} = (F_m' - F_n)/(F_m')$ (Yordanov *et al.* 1997, 1999, Calatayud *et al.* 2004, Hassan 2006).

Chl was extracted in cold acetone from all leaves on the main stems of three plants per chamber; six plants per treatment were used. The Chl concentration was determined according to Khan and Khan (1994). Extraction was carried out in a dark room (Ismail *et al.* 2014).

Two-way analysis of variance (*ANOVA*) was applied to log-transformed data. PPFD was used as a covariate for P_N and g_s . Significant differences between means were tested by LSD (*Statgraphics Statistical Package, Plus 5.1, Informer Technologies, Inc., USA*).

Heat stress decreased contents of Chl *a*, Chl *b*, and the F_v/F_m ratio by 13, 20, and 27%, respectively, regardless of the N treatment (Table 1). However, N fertilization had no significant effect at N5 and N10 on Chl *a* and *b* values of CT plants, while they increased by 26 and 52%, respectively, at N15. On the other hand, F_v/F_m was elevated by 10, 19, and 36% at N5, N10, and N15, respectively. HS caused an overall reduction in Φ_{PSII} and q_p by 29% and 43%, respectively, while it caused an increase of 56% in NPQ (Table 1).

Nevertheless, N treatments ameliorated negative effects of HS on Chl *a*, Chl *b*, and all Chl fluorescence parameters. Moreover, effects of N fertilization were more pronounced in HS plants than in CT ones.

P_N increased by 32, 60, and 69% and by 25, 88 and 100% due to addition of N5, N10, and N15, respectively (Fig. 1). However, these parameters decreased by 24% each due to HS (Fig. 1).

HS-induced reduction in Chl content indicated adverse effects on light-harvesting complex II as most of Chl *b* is localized there (Reynolds *et al.* 2000, Hassan 2006). Moreover, HS could damage chloroplast membranes resulting in reductions in gas-exchange parameters (Berry and Björkman 1980, Xu and Huang 2000, Zhao *et al.* 2008). Recently, Pelligrini *et al.* (2011) associated the

Table 1. Effects of heat stress (HS), different concentration of N (urea in mM) and their combination on Chl content [$\text{mg g}^{-1}(\text{FM})$], the ratio of variable to maximum chlorophyll fluorescence (F_v/F_m), the quantum efficiency of PSII (Φ_{PSII}), photochemical (q_p), and nonphotochemical Chl fluorescence (NPQ). Means in each row not followed by the same letter are significantly different from each other at $p < 0.05$.

Parameter	Treatment	Control			+HS				
		N [mM]			N [mM]				
		0	5	10	15	0	5	10	15
Chl <i>a</i>	0.863 ^a	0.892 ^b	0.937 ^c	1.094 ^d	0.603 ^a	0.794 ^b	0.903 ^c	0.941 ^d	
Chl <i>b</i>	0.503 ^a	0.561 ^b	0.647 ^c	0.783 ^d	0.402 ^a	0.473 ^b	0.543 ^c	0.578 ^c	
Chl <i>a/b</i>	1.716 ^d	1.591 ^c	1.448 ^b	1.397 ^a	1.501 ^a	1.564 ^a	1.663 ^b	1.628 ^c	
F_v/F_m	0.703 ^a	0.772 ^b	0.836 ^c	0.852 ^d	0.461 ^a	0.498 ^a	0.687 ^b	0.732 ^b	
Φ_{PSII}	0.562 ^a	0.611 ^b	0.695 ^c	0.745 ^d	0.302 ^a	0.341 ^{ab}	0.358 ^b	0.468 ^c	
q_p	0.813 ^a	0.825 ^a	0.854 ^b	0.903 ^c	0.502 ^a	0.525 ^a	0.601 ^b	0.783 ^c	
NPQ	0.409 ^b	0.401 ^b	0.376 ^a	0.348 ^a	0.603 ^c	0.589 ^c	0.508 ^b	0.447 ^a	

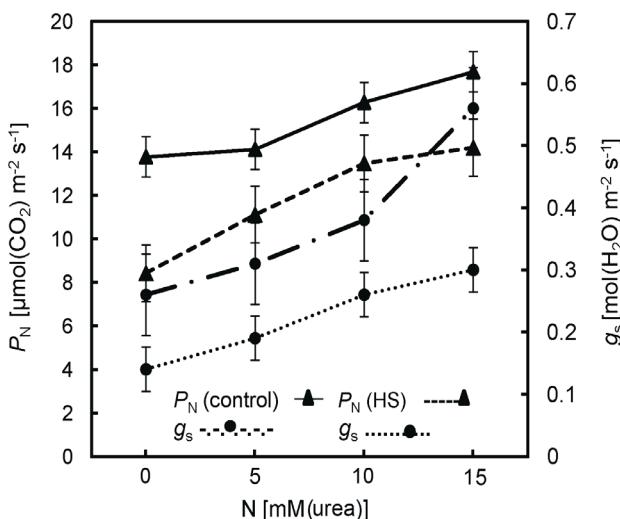


Fig. 1. Effects of different nitrogen (urea) concentrations on net photosynthetic rate (P_N) and stomatal conductance (g_s) under HS (means ± 1 SE).

reduction in Chl contents in stressed plants to inhibition in Chl binding proteins. HS could initiate Chl breakdown directly or indirectly. Such reduction in plant pigment content may represent a possible mechanism to protect the PSII from photoinhibition through a reduction of the number of light-harvesting antennae. However, despite the decrease of the total Chl content, the Chl *a/b* ratio remained unchanged. HS induced a decline of the number of functioning photosynthetic units rather than a reduction of the Chl antenna size.

In the present study, N fertilization induced an increase in gas-exchange parameters. This is in agreement with results of Sugiharto *et al.* (1990), who found positive correlation between the photosynthetic capacity of leaves and their N nutrition, suggesting that most of the N is used for the synthesis of components of photosynthetic apparatus (Zhao *et al.* 2008). The reduction in P_N was alleviated by N treatment in HS plants as indicated by significant increases in P_N and g_s .

Maximum photochemical efficiency of PSII (F_v/F_m) is a good indicator of environmental effects on photosynthetic apparatus (Murchie and Lawson 2013). The significant reduction was in agreement with earlier studies (Gesch *et al.* 2003, Hassan 2004). However, the increase in F_v/F_m under N supply could be interpreted as a result of an increase in Chl synthesis (Ciompi *et al.* 1996).

The reduction in q_p , and hence an increase of $(1 - q_p)$, indicated that HS increased excitation pressure on PSII and contributed to the closure of PSII reaction centres, which determined a lower possibility of electron transport from PSII to PSI. In confirmation of that, Φ_{PSII} , closely related to the quantum yield of noncyclic electron transport, decreased in HS-treated plants. Another important finding was the higher value of NPQ in HS-treated plants; they were able to counteract the negative HS effects at chloroplast level because of their capacity to dissipate the excess of excitation energy. HS increases energy dissipation and NPQ, which could lead to a significant reduction in photosynthetic efficiency of PSII (Hassan 2006). Karim *et al.* (2003) reported that mungbean plants grown at low temperature had the highest q_p as well as NPQ compared to the plants developed at high temperature; they concluded that the reduction in NPQ is an indication of loosing photons as heat instead of being used to enhance and promote photosynthesis. This is in agreement with our results. Therefore, N supply helped in maintaining photosynthetic performance relatively high and stable in HS plants, due to increase in Chl content and enhancement in photosynthetic efficiency of PSII in N-supplied beans.

In conclusion, bean plants showed a regulatory adjustment of PSII efficiency, as indicated by its capacity to dissipate the excess of excitation energy (higher NPQ). N fertilization ameliorated negative effects of HS on photosynthesis of bean plants. Moreover, plants became more tolerant to HS. Alleviation of adverse effects of HS by foliar spray of N fertilizer could be used to protect and increase crop production to feed rapidly growing populations in developing countries which have prolonged hot seasons.

References

Altenbach S.B., Dupont F.M., Kothari, K.M. *et al.*: Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. – *J. Cereal Sci.* **37**: 9-20, 2003.

Basah J.M., Ismail I.M., Hassan I.A.: Effects of enhanced UV-B radiation and drought stress on photosynthetic performance of lettuce (*Lactuca sativa* L. Romaine) plants. – *Annu. Rev. Res. Biol.* **4**: 1739-1756, 2014.

Bencze S., Bamberger Z., Janda T. *et al.* : Physiological response of wheat varieties to elevated atmospheric CO₂ and low water supply levels. – *Photosynthetica* **52**: 71-82, 2014.

Berry J., Björkman O.: Photosynthetic response and adaption to temperature in higher plants. – *Annu. Rev. Plant Phys.* **31**: 491-543, 1980.

Calatayud A., Iglesias D., Talón M. *et al.*: Response of spinach leaves (*Spinacia oleracea* L.) to O₃ measured by gas exchange, chlorophyll *a* fluorescence, antioxidant systems, and lipid peroxidation. – *Photosynthetica* **42**: 23-29, 2004.

Cechin I., De Terezinha F.F.: Effect of N supply on growth and physiology of sunflower plants grown in the greenhouse. – *Plant Sci.* **166**: 1379-1385, 2004.

Ciompi S., Gentili E., Guidi L., Soldatini G.G.: The effects of N deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. – *Plant Sci.* **118**: 177-184, 1996.

Chakraborty U., Pradhan D.: High temperature-induced oxidative stress in *Lens culinaris*, role of antioxidants and amelioration of stress by chemical pre-treatments. – *J. Plant Interact.* **6**: 43-52, 2011.

Demmig-Adams A., Stewart J.J., Adams, W.W.: Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment. – *Philos. T. Roy. Soc. B.* **369**: 20130244, 2014.

Deng X., Shan L., Ma Y., Inanaga S.: Diurnal oscillation in the intercellular CO₂ concentration of spring wheat under the

semiarid conditions. – *Photosynthetica* **38**: 187-192, 2000.

ICPP: *Mitigation of climate change*. IPCC Fifth Assessment Working Group II Report. Pp. 32. WHO/UNEP, Yokohama 2014.

Ismail I.M., Basahi J.M., Hassan I.A.: Gas exchange and chlorophyll fluorescence of pea (*Pisum sativum* L.) plants in response to ambient O₃ at a rural site in Egypt. – *Sci. Total. Environ.* **497-498**: 585-593, 2014.

Gesch R.W., Kang I.H., Meagher M.G. *et al.*: Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated CO₂ and temperature. – *Plant Cell Environ.* **26**: 1941-1950, 2003.

Hasanuzzaman M., Nahar K., Alam M.M. *et al.*: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. – *Int. J. Mol. Sci.* **14**: 9643-9684, 2103.

Hassan I.A.: Interactive effects of salinity and ozone on photosynthesis, growth and yield of wheat (*Triticum aestivum* L.). – *Photosynthetica* **42**: 111-116, 2004.

Hassan I.A.: Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in *Triticum aestivum* L. – *Photosynthetica* **44**: 134-137, 2006.

Huang B.R., Xu Q.: Root growth and nutrient status of creeping bentgrass cultivars differing in heat tolerances influenced by supraoptimal shoot and root temperatures. – *J. Plant Nutr.* **23**: 979-990, 2000.

Karim A., Fukamachi H., Hidaka T.: Photosynthetic performance of *Vigna radiata* L. leaves developed at different temperatures and irradiance levels. – *Plant Sci.* **164**: 451-458, 2003.

Khan M.R., Khan M.W.: Single and interactive effects of O₃ and SO₂ on tomato. – *Environ. Exp. Bot.* **34**: 461- 469, 1994.

Murchie E.H., Lawson, T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. – *J. Exp. Bot.* **64**: 3983-3998, 2013.

Pelligrini N., Chiavaro E., Gardana C. *et al.*: Phytochemical concentrations and antioxidants capacity of raw and frozen *Brassica* vegetables. – *J. Agric. Food Chem.* **58**: 4310 – 4321, 2011

Reynolds M.P., Delgado M.I.B. Rodríguez, M.G., Saavedra, A.: Photosynthesis of wheat in a warm, irrigated environment. I: genetic diversity and crop productivity. – *Field Crop. Res.* **66**: 37-50, 2000.

Salvucci M.E., Crafts-Brandner S.J.: Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. – *Physiol. Plantarum* **120**: 179-186, 2004.

Sánchez E., Rivero R.M., Ruiz J.M., Romero L.: Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (*Phaseolus vulgaris* L. cv. Strike) under high NH₄NO₃ application rates. – *Sci. Hortic. Amsterdam* **99**: 237-248, 2004.

Sarieva G.E., Kenzhebaeva S.S., Lichtenhaller H.K.: Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions. – *Russ. J. Plant Physiol.+* **57**: 28-36, 2010.

Sugiharto B., Miyata K., Nakamoto H. *et al.*: Regulation of expression of carbon assimilating enzymes by nitrogen in maize leaf. – *Plant Physiol.* **92**: 963-969, 1999.

Thwe A.A., Vercambre G., Gautier H. *et al.*: Response of photosynthesis and chlorophyll fluorescence to acute ozone stress in tomato (*Solanum lycopersicum* Mill.). – *Photosynthetica* **52**: 105-116, 2014.

Xu Q., Huang B.: Growth and physiological response of creeping bentgrass to changes in air and soil temperatures. – *Crop Sci.* **40**: 1363-1368, 2000.

Yordanov I., Tsonev T., Goltsev V. *et al.*: Interactive effect of water deficit and high temperature on photosynthesis in sunflower and maize plants. 1. Changes in parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching. – *Photosynthetica* **33**: 391-402, 1997.

Yordanov I., Velikova V., Tsonev T.: Influence of drought, high temperature and carbamide cytokinin 4-PU-30 on photosynthetic activity of bean plants. 1. Changes in chlorophyll fluorescence quenching. – *Photosynthetica* **37**: 447-457, 1999.

Zhang, J.H., Guo, S.J., Guo, P.Y., Wang, X.: The interacting effect of urea and fenoxaprop-P-ethyl on photosynthesis and chlorophyll fluorescence in *Perilla frutescens*. – *Photosynthetica* **52**: 456-463, 2014.

Zhao W.Y., Xu S., Li J.L. *et al.*: Effects of foliar application of nitrogen on photosynthetic performance and growth of two fescue cultivars under heat stress. – *Biol. Plantarum* **52**: 113-166, 2008.