

Photorespiration and photoinhibition in the bracts of cotton under water stress

C. ZHANG, D.-X. ZHAN, H.-H. LUO, Y.-L. ZHANG, and W.-F. ZHANG⁺

Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Agricultural College, Shihezi University, Shihezi, Xinjiang 832003, China

Abstract

Gas exchange and chlorophyll fluorescence parameters of PSII were analyzed in the bracts and leaves of cotton plants after anthesis. Photosynthetic activity and photorespiration were measured in the leaves and bracts of cotton grown under either normal or reduced water-saving drip irrigation. The photosynthetic performance, amount of chlorophyll and Rubisco, and net photosynthesis were greater in the bracts than that in the leaves under water stress. The actual photochemical efficiency of PSII decreased in both the bracts and leaves after anthesis under reduced irrigation. However, the decrease was smaller in the bracts than in the leaves, indicating that the bracts experienced less severe photoinhibition compared to the leaves. The greater drought tolerance of bracts could be related to differences in relative water content, instantaneous water-use efficiency, and photorespiration rate. The ratio of photorespiration to net photosynthesis was much higher in the bracts than in leaves. Furthermore, water deficiency (due to the water-saving drip irrigation) had no significant effect on that ratio in the bracts. We hypothesized that photorespiration in the bracts alleviated photoinhibition and maintained photosynthetic activity.

Additional key words: electron flow; *Gossypium hirsutum*; photoprotection; PSII.

Introduction

Cotton (*Gossypium hirsutum* L.) is one of the most widely cultivated crops in the Xinjiang Uyghur Autonomous Region, China. Drought is the main abiotic stress limiting cotton production in this region (Bai *et al.* 2008). The arid continental climate is characterized by high temperatures, high radiation levels, and a progressive increase in water stress during the cotton growing season (Yi *et al.* 2011). An excess of photon energy causes photoinhibition of PSII in thylakoid membranes (Asada *et al.* 1999, Kato *et al.* 2003, Miyake *et al.* 2005). The degradation of thylakoid membranes in chloroplasts is characterized by loss of photosynthetic electron transport activity and leaf photosynthetic activity (Guamét 1996, Noodén 1997, Murata *et al.* 2007).

Photoinhibition and photorespiration are both considered inevitable in photosynthetic organisms under field conditions (Osmond *et al.* 1995). However, photosynthetic organisms are able to overcome the harmful effects of light

via rapid and efficient repair of PSII. The essential inefficiencies of photosynthetic organisms can help preserve their competence (Osmond and Björkman *et al.* 1994). For example, photorespiration can stimulate photon utilization in photosynthetic organisms (Russell *et al.* 1995). Photorespiration is believed to protect the photosynthetic apparatus against photoinhibition (Osmond *et al.* 1994, Wingler *et al.* 1999); the photoprotective function of photorespiration is particularly important under the conditions of high irradiance and high temperature occurring during moderate drought (Bai *et al.* 2008, Guan *et al.* 2009).

Photosynthesis in non-foliar green organs (the main-stem, bracts, and capsule walls) of cotton has been under discussion for years; however, most scientists previously believed that leaves were the main source of photosynthetic assimilates in cotton (Wullschleger *et al.* 1991,

Received 17 June 2014, accepted 22 January 2015, published as online-first 21 May 2015.

⁺Corresponding author; e-mail: Zhwf_agr@shzu.edu.cn

Abbreviations: g_s – stomatal conductance; J_C – electron flow to carboxylation; J_O – electron flow to oxygenation; J_T – electron transport rate; NDI – normal drip irrigation; P_N – net photosynthetic rate; P_R – photorespiration rate; R_D – respiration rate; RWC – relative water content; WSDI – water-saving drip irrigation; WUE – instantaneous water-use efficiency; Φ_{PSII} – actual photochemical efficiency of PSII.

Acknowledgements: This study was financially supported by the National Natural Science Foundation of China (No. U1203283, 31260295).

Bondada *et al.* 2003). It is now accepted that the bracts of cotton are also the important source of assimilated carbon (Du *et al.* 2009, Zhang *et al.* 2010, Hu *et al.* 2012, 2013), especially during late-season drought stress (Hu *et al.* 2013). Xeromorphic anatomy (Bondada *et al.* 2003) and osmotic adjustment (Serraj and Sinclair 2002) in cotton bracts may help the bracts to maintain a water status under conditions of high temperature, high irradiance, and water stress. Bracts are closer to cotton fruits than the leaves and

may be a better source of assimilates because their photosynthetic activity is greater than that of leaves under drought conditions (Kumar *et al.* 2001, Redondo-Gómez *et al.* 2010). As it is not clear how bracts can maintain relatively high photosynthetic activity under drought conditions, the objective of this field study was to compare the photosynthetic and photorespiration activity of cotton bracts and leaves.

Materials and methods

Experimental design: The experiment was conducted in field plots near the Shihezi University, Xinjiang Province, China (45.32°N, 86.05°E). Cotton (cv. Xinluzao 33) was sown on April 25, 2012, and April 23, 2013. The plots were 5.4 m × 8 m. The row spacing was 12 cm and the plant density was 27 plants m⁻². Pest and weed control was carried out according to local practices.

The plots were irrigated regularly until the plants achieved anthesis (*i.e.*, 11 weeks after planting). At this time, two irrigation treatments were initiated: normal drip irrigation (NDI; 5,230 m³ ha⁻¹) and water-saving drip irrigation (WSDI; 3,870 m³ ha⁻¹, a rate that was 60% of normal drip irrigation). The plots were irrigated once each week, and each treatment was replicated three times. The relative soil water content was measured using *Watermark* soil moisture sensors (200SS, *Irrrometer Co.*, Riverside, Calif., USA) every evening after anthesis (Fig. 1S, *supplementary material available online*). Maximum temperatures, minimum temperatures, and rainfall amounts were measured at a nearby weather station (Fig. 2S, *supplementary material available online*).

The cotton plants were tip-pruned on July 7, 2012 (67 days after sowing, DAS) and July 12, 2013 (72 DAS). Gas exchange, Chl fluorescence, and relative water content were measured using the penultimate main leaves and their associated bracts under the main-stem leaves. The measurements were made using the leaves and bracts of three plants after 85, 95, 105, 115, and 125 DAS. To minimize age-related variability in the parameters, approximately 400 cotton leaves and bracts were labeled on July 19, 2012, and July 21, 2013, for use in the study.

Gas exchange and chlorophyll (Chl) fluorescence: Gas exchange (LI6400; 6400-02B LED, LI-COR, Lincoln, NE, USA) and Chl fluorescence (PAM-2100 Chl fluorometer, WALZ, Effeltrich, Germany) were monitored on leaves and bracts, the penultimate main leaves, and their associated bracts under the main-stem leaves between 11:00 and 14:00 h. Response curves of the net photosynthetic rate (P_N) in relation to PAR were measured at 2,000; 1,800; 1,200; 600, 200, 50, and 0 $\mu\text{mol}(\text{photon}) \text{m}^{-2} \text{s}^{-1}$. Leaf temperature (33–38°C) and chamber CO₂ concentration (380–390 $\mu\text{mol m}^{-2} \text{s}^{-1}$ CO₂) were kept under atmospheric conditions. For measurements of P_N – C_i curves, leaves and bracts were measured at 0 $\mu\text{mol mol}^{-1}$

of chamber CO₂, and then CO₂ was increased stepwise up to 2,000 $\mu\text{mol mol}^{-1}$. Light intensity was kept at 2,000 $\mu\text{mol}(\text{photon}) \text{m}^{-2} \text{s}^{-1}$, and leaf temperature (33–38°C) was kept under atmospheric conditions. P_N at 5:00–6:00 h were used as mitochondrial respiration during the night (R_n). The actual photochemical efficiency (Φ_{PSII}) was measured at 1,800 $\mu\text{mol m}^{-2} \text{s}^{-1}$ PAR between 11:00 and 14:00 h, and the maximal photochemical efficiency (F_v/F_m) was measured at 5:00–6:00 h.

Relative water content (RWC) and Chl content: RWC was measured on discs (5 mm in diameter) from paired leaves and bracts. The samples were weighed (w_i), floated on distilled water at 4°C overnight, weighed again (w_f), dried at 80°C for 48 h, and then weighed a third time (w_d). RWC was calculated as:

$$\text{RWC} [\%] = 100 (w_i - w_d)/(w_f - w_d).$$

The Chl content was determined by extracting leaf and bract samples with 80% (v/v) acetone for 3 d at room temperature in the dark. The absorbance of each extract was measured with a spectrophotometer at 663 and 645 nm (U-3900, *Hitachi*, Tokyo, Japan). The Chl content was calculated according to Lichtenthaler (1987).

Calculations: Mitochondrial respiration during the day (R_D) was extrapolated at different temperatures using a Q_{10} relation as follows:

$$R_D = R_n Q_{10}^{(T_d - T_n)/10} (Q_{10} = 2.2) \text{ (Bai } \text{et al. 2008)} \quad (1)$$

where R_D and R_n are the respiration in dark and before dawn, respectively, and T_n and T_d are leaf temperatures during the day and during the night, respectively.

$$J_T = \Phi_{\text{PSII}} \text{ PAR } \alpha f \text{ (Galmés } \text{et al. 2007)} \quad (2)$$

where J_T is the total electron flow; α is the ratio of radiation absorbed by the leaf as compared to incidence radiation (generally 84%), and f is 0.5 in C₃ plants.

$$J_c = 1/3[J_T + 8(P_N + R_D)] \text{ (Valentini } \text{et al. 1995)} \quad (3)$$

$$J_o = 2/3[J_T - 4(P_N + R_D)] \text{ (Valentini } \text{et al. 1995)} \quad (4)$$

$$P_R = 1/12[J_T - 4(P_N + R_D)] \text{ (Valentini } \text{et al. 1995)} \quad (5)$$

where J_c is electron flow to carboxylation, J_o is electron flow to oxygenation, and P_R is photorespiration.

$$V_{\text{cmax}} = C_i \times [A_c + R_D - K_c(1 + O/K_o)]/(C_i - \Gamma^*) \quad (6)$$

(Farquhar *et al.* 1980)

where V_{cmax} is the maximum velocity of ribulose-1,5-bisphosphate (RuBP) carboxylation; A_c is the CO_2 assimilation rate limited by Rubisco activity; C_i and O are the partial pressures of CO_2 and O_2 in the intracellular space, K_c and K_o are the Michaelis constants of Rubisco activity for CO_2 and O_2 , respectively; and Γ^* is the CO_2 compensation point in the absence of mitochondrial respiration.

Results

Plant water status: The RWC of both leaves and bracts decreased as the cotton plants matured, regardless of the irrigation system (Fig. 1A,B). The RWC decreased more in the leaves (29–40%) than in the bracts (17–19%) between 85 and 125 DAS. There were significant differences in RWC of the leaves between the NDI and WSDI treatments. In contrast, there were no significant differences in RWC of the bracts between the two treatments.

The bracts showed significantly greater WUE than the leaves between 85 and 125 DAS (Fig. 2). The WSDI treatment had no significant effect on WUE of the bracts.

Photochemical efficiency of leaves and bracts: Chl fluorescence measurements showed a sharp decay in the photochemical efficiency (Φ_{PSII}) of the cotton leaves between 85 and 125 DAS (Fig. 3A). In contrast, the Φ_{PSII} of the bracts peaked around 95 DAS and then decreased for the rest of the period (Fig. 3B). The Φ_{PSII} of the bracts

$$\text{Rubisco } [\text{mol} \cdot \text{m}^{-2}] = (V_{\text{cmax}}/10^6)/8 k_{\text{cat}} \quad (7)$$

(Hymus *et al.* 2002) ($k_{\text{cat}} = 3.3$)

Instantaneous water-use efficiency (WUE) was calculated as: $\text{WUE} = P_N/E$ (8)

Statistical analysis: Analysis of variance was performed with SPSS version 11.5 software. Differences between treatments were considered significant at $P < 0.05$ according to least significant difference (LSD) tests. The figures were plotted using SigmaPlot version 10.0 software. The data are presented as the mean \pm SD.

showed lower values than that in the leaves between 95 and 125 DAS. Overall, Φ_{PSII} decreased by 59–69% in the leaves and by 33–38% in the bracts. The Φ_{PSII} of the leaves was significantly lower under the WSDI treatment than that of NDI treatment.

We found no significant effects on the Φ_{PSII} in the cotton bracts under the two irrigation treatments. The irrigation treatments had no significant effects on the F_v/F_m ratio in either leaves or bracts (Fig. 3S).

Photosynthetic performance: On a surface area basis, the amount of Chl was significantly lower in the bracts than that in the leaves (Fig. 4A,B). Leaf Chl steadily declined between 85 and 125 DAS. It decreased faster in the plants that received the WSDI treatment than in those under NDI, especially between 110 and 125 DAS. By comparison, the amount of Chl in the bracts peaked around 95 DAS and then declined. There was no significant difference in the amount of Chl in the bracts between the two irrigation treatments.

The P_N of the leaves decreased sharply between 85 and 125 DAS (Fig. 5A). The leaf P_N decreased faster in the plants under WSDI treatment than in those under NDI. The P_N of the bracts peaked around 95 DAS and then

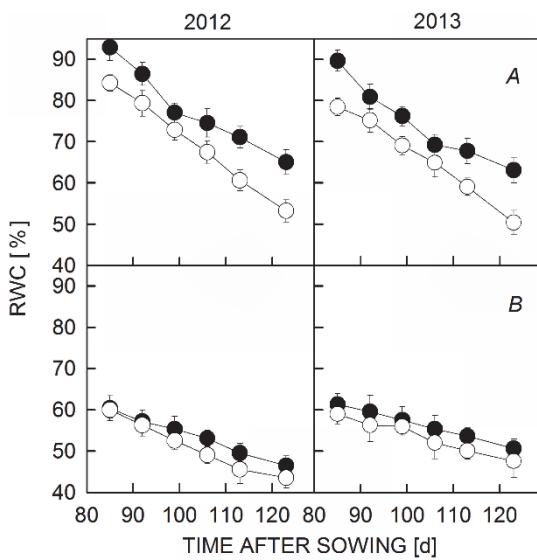


Fig. 1. Relative water content (RWC) of leaves (A) and bracts (B) of cotton plants grown with normal drip irrigation (black circles) or water-saving drip irrigation (white circles) during 2012 and 2013. Values are means \pm SD.

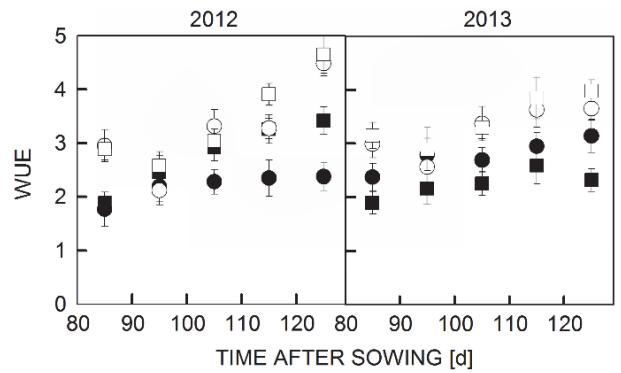


Fig. 2. The instantaneous water-use efficiency (WUE) of leaves (black symbols) and bracts (white symbols) of cotton plants during 2012 and 2013. Values are means \pm SD. Circles assign normal drip irrigation and squares water-saving drip irrigation.

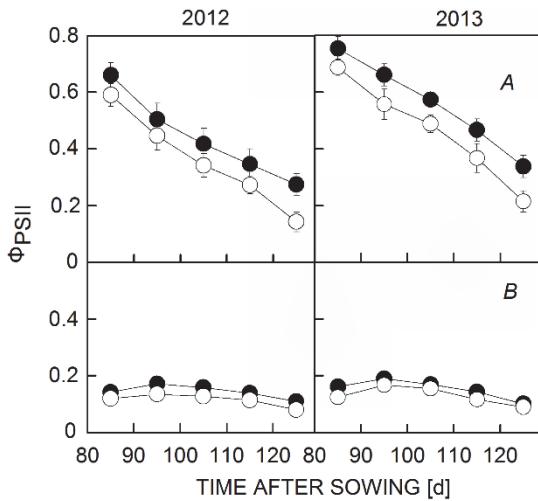


Fig. 3. The actual photochemical efficiency (Φ_{PSII}) of leaves (A) and bracts (B) of cotton plants grown under normal drip irrigation (black circles) or water-saving drip irrigation (white circles) during 2012 and 2013. PAR = 1,800 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Values are means \pm SD.

decreased (Fig. 5B). The P_N of the bracts was nearly the same at 85 d as at 125 DAS. There was no significant difference in the P_N of bracts under both irrigation treatments.

The Rubisco content of the leaves decreased significantly by 69–75% between 85 and 125 DAS (Fig. 6A). In comparison, the Rubisco content of the bracts reached a peak at about 95 DAS and then decreased during the rest of the growing season (Fig. 6B). The Rubisco content of the bracts was 45–48% lower at 125 DAS than that at 85 DAS. The WSDI treatment significantly reduced the Rubisco content of the leaves but not of the bracts.

Photorespiration: The P_R of some shrub vegetation in dry environments can be estimated by combining measurements of gas exchange and Chl fluorescence (Galmés *et al.* 2007). The P_R of the leaves decreased significantly by 46–64% between 85 and 125 DAS (Fig. 7A) (PAR = 1,800 $\mu\text{mol m}^{-2} \text{s}^{-1}$). In comparison, P_R in the bracts rose by 21–27% between 85 and 95 DAS and then decreased during the rest of the growing season. The P_R of the bracts was 28–35% lower at 125 DAS than that at 85 DAS (Fig. 7B). There was no significant difference in the P_R of the bracts under both two irrigation treatments.

P_R/P_N and J_C/J_O : The combined measurements of gas exchange and Chl fluorescence may be used to measure J_C and J_O , as well as P_N . We used both the P_R/P_N and J_C/J_O ratios to express the partitioning of electron flow.

The P_R/P_N ratio was much lower in the leaves than that in the bracts (Fig. 8A). Furthermore, water stress had no effect on the P_R/P_N ratio of the bracts. The J_C/J_O ratio in the bracts, but not in the leaves, remained stable between 85 and 125 DAS (Fig. 8B).

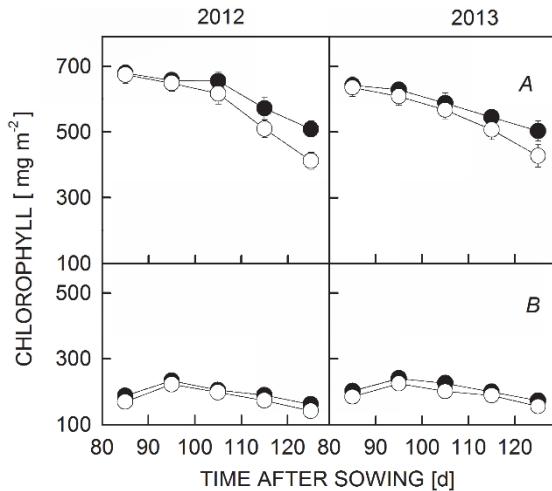


Fig. 4. Total amount of chlorophyll (expressed on a surface area basis) of leaves (A) and bracts (B) of cotton plants grown with normal drip irrigation (black circles) or water-saving drip irrigation (white circles) during 2012 and 2013. Values are means \pm SD.

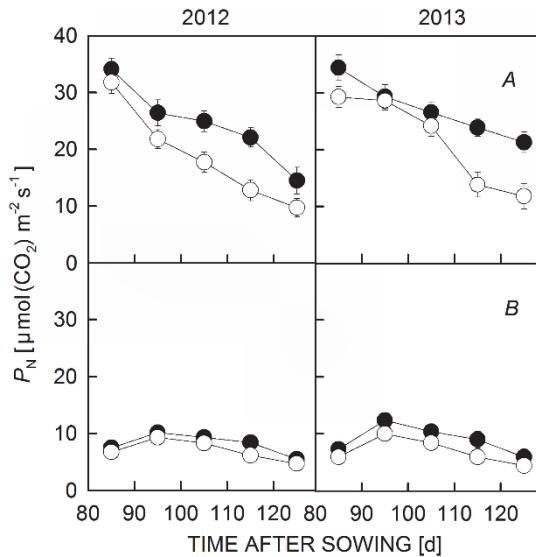


Fig. 5. Net CO₂ assimilation rates in leaves (A) and bracts (B) of cotton plants grown with normal drip irrigation (black circles) or water-saving drip irrigation (white circles) during 2012 and 2013. PAR = 1,800 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Values are means \pm SD.

Discussion

Drought tolerance of bracts vs. leaves: Some previous studies have examined the photosynthetic performance of non-foliar green organs, compared to leaves, under water-saving drip irrigation conditions (Kumar *et al.* 2001, Redondo *et al.* 2010). Several studies indicated that the photosynthetic performance of cotton bracts was better than that of leaves when cotton was under water stress late in the growing season (Zhang *et al.* 2008, Du *et al.* 2009, Zhang *et al.* 2010, Hu *et al.* 2012, 2013).

In our study, we observed that the amounts of Chl and Rubisco and the P_N were significantly less affected by water stress in the bracts than in the leaves (Figs. 4-6). The decline in the P_N was much smaller in the bracts than that in the leaves under WSDI conditions between 85 and 125 DAS (Figs. 4-6). The WUE of the bracts was significantly higher than that of the leaves in both the NDI and WSDI treatments (Fig. 2). Therefore, the accompanying increase of WUE may be considered to be an indicator of better photosynthetic performance of the bract.

The greater drought tolerance of non-foliar green organs could be associated either with their xerophytic structure (Hu *et al.* 2013) or with C₄ or CAM metabolism (Sage *et al.* 2002). The RWC was less affected in the bracts than in the leaves under WSDI conditions during the late growth stages (Fig. 1). Xu and Ishii (1990) reported that under water stress, non-foliar green organs of wheat maintained more stable RWC than that in leaves; they concluded that the drought resistance of non-foliar green organs is greater than that of leaves. Serraj and Sinclair (2002) reported that greater capacity for osmotic adjustment in non-foliar

green organs than that in leaves might contribute to the more stable RWC and the better photosynthetic performance of non-foliar green organs. Several studies have discussed C₄ or CAM metabolism in non-foliar green organs, including wheat bracts and awns (Xu *et al.* 1990, Araus *et al.* 1993b, Chollet *et al.* 1996), cotton bracts

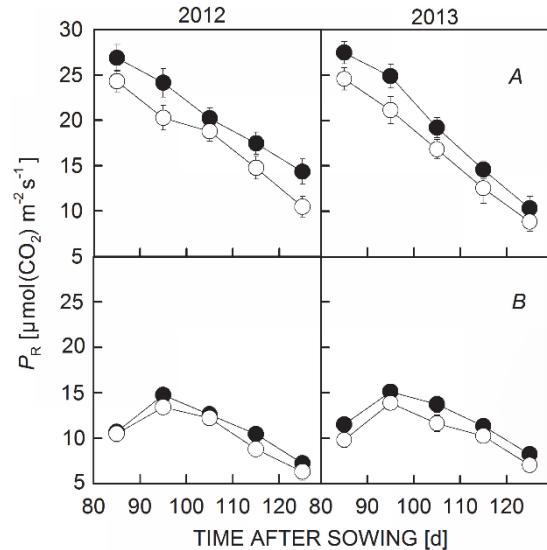


Fig. 7. Photorespiration rates in leaves (A) and bracts (B) of cotton plants grown with normal drip irrigation (black circles) or water-saving drip irrigation (white circles) during 2012 and 2013. PAR = 1,800 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Values are means \pm SD.

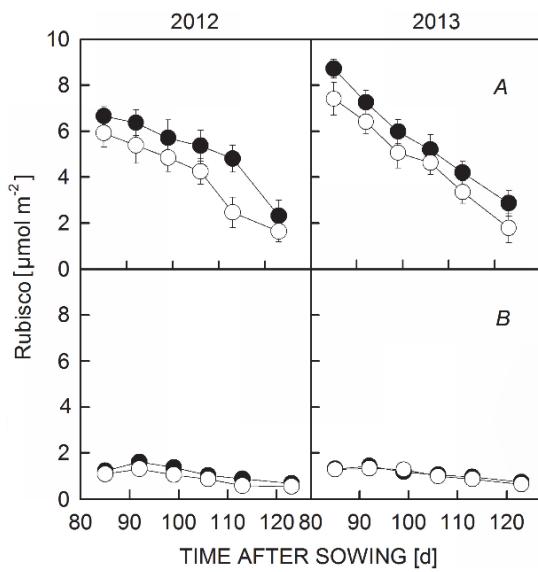


Fig. 6. Rubisco content in leaves (A) and bracts (B) of cotton plants grown with normal drip irrigation (black circles) or water-saving drip irrigation (white circles) during 2012 and 2013. PAR = 1,800 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Values are means \pm SD.

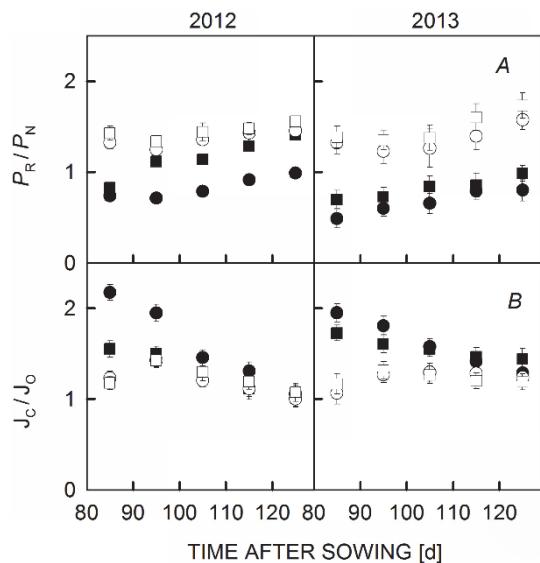


Fig. 8. The P_R/P_N (A) and J_c/J_o (B) ratios in leaves (black symbols) and bracts (white symbols) of cotton plants grown with normal drip irrigation (circles) or water-saving drip irrigation (squares) during 2012 and 2013. PAR = 1,800 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Values are means \pm SD. J_o – electron flow to oxygenation; J_c – electron flow to carboxylation; P_N – net photosynthetic rate; P_R – photorespiration rate.

(Li *et al.* 2002), and rice spikelets (Imaizumi *et al.* 1990). The greater tolerance of non-foliar green organs may be supported by measurements of C₄ or CAM photosynthesis under water-saving conditions (Eduardo *et al.* 2005).

The relationship between photorespiration and photosynthesis of PSII under water stress: Photoinhibition, which occurs when photon energy exceeds the amount of energy used by photosynthesis, is characterized by a decline in Φ_{PSII} (Schreiber 2004, Bai *et al.* 2008, Takahashi and Murata 2008). The extent of photoinhibition depends on the amount of excessive photon energy. High irradiance and high temperature often occur simultaneously with water stress, potentially increasing the amount of excess photon energy.

The decline of Φ_{PSII} in our study implies that drought led to photoinhibition of the photosynthetic apparatus. In the WSDI treatment, Φ_{PSII} decreased by 59 to 69% in the leaves and by 33 to 38% in the bracts between 85 and 125 DAS. These results indicated that photoinhibition affected less the photosynthetic performance of the bracts than that of the leaves under both irrigation treatments (Fig. 3). However, the decrease in Φ_{PSII} was lesser in the bracts than that in the leaves.

The Mehler reaction is ignored when photorespiration is estimated by the combined measurement of gas exchange and Chl fluorescence. Bondada *et al.* (2003) reported that cotton leaves contain both palisade and spongy tissues. In contrast, cotton bracts are composed of loosely arranged spongy tissue. Moreover, bracts contain less Chl than leaves and are physically thinner than the leaves (Hu *et al.* 2013). As a result, the photoprotective function of photorespiration in cotton bracts is overestimated by using the value of energy absorption rate (0.84). However, the degree of thylakoid grana stacking in bracts is significantly higher than that in leaves and the bracts can increase the PSII capacity to capture more light (Bondada *et al.* 2003). Therefore, the estimated values of

photorespiration in bracts and leaves are reasonable. At the same time, there is the usual problem of comparing whole-tissue photosynthetic performance as measured by gas exchange and Chl fluorescence with that (e.g., J_T from which, among other parameters, P_R is calculated) of chloroplasts localized at a particular tissue depth from which the Chl fluorescence signal is detected. There is no convenient solution to this problem at present, thus the estimated values are errors within the permissible range.

P_R is closely related to P_N , Φ_{PSII} , and R_D . We observed that the change in P_R after anthesis was similar to the changes in P_N and Φ_{PSII} . The P_R of the bracts appeared to be less affected than that of the leaves under WSDI conditions (Fig. 7). The J_C/J_O ratio, which is a good indicator of the relative rates of carboxylation *vs.* oxygenation, may be directly controlled by the kinetic properties of Rubisco (Valentini *et al.* 1995). The decline of J_C/J_O after sowing suggests that photorespiration may consume excessive electrons and stimulate photon utilization in photosynthetic organisms. The P_R/P_N ratio indicates the relative rates of photorespiration and photosynthesis (Ogren 1984, Valentini *et al.* 1995, Bai *et al.* 2008). The average P_R/P_N ratios in leaves were 0.94 under the NDI treatment and 1.07 in the WSDI treatment. By comparison, the average P_R/P_N ratios in the bracts were much higher, 1.31 in the NDI treatment and 1.38 in the WSDI treatment (Fig. 8). The low J_C/J_O ratio and the higher P_R/P_N ratio in cotton bracts emphasize the importance of photorespiration under WSDI conditions.

Conclusion: Our experiment indicated that under water stress, the photosynthetic performance of bracts was superior to that of leaves, due to the higher drought tolerance of the bracts. Our measurements of Φ_{PSII} , P_R , and electron partitioning indicated that photorespiration played an important role in protecting the photosynthetic apparatus in bracts against photoinhibition.

References

Araus J.L., Bort J., Brown H.R. *et al.*: Immunocytochemical localization of phosphoenolpyruvate carboxylase and photosynthetic gas exchange characteristics in ears of *Triticum durum* Desf. – *Planta* **191**: 507-514, 1993.

Asada K. : The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. – *Annu. Rev. Plant. Phys.* **50**: 601-639, 1999.

Bai J., Xu D.H., Kang H.M., *et al.*: Photoprotective function of photorespiration in *Reaumuria soongorica* during different levels of drought stress in natural high irradiance. – *Photosynthetica* **46**: 232-237, 2008.

Bai L., Wang J., Jiang G.Y. *et al.*: Study on hyperspectral remote sensing date of cotton in estimating yield of arid region in China – *Sci. Agric. Sin.* **41**: 2499-2505, 2008.

Bondada B.R., Oosterhuis D.M.: Morphometric analysis of chloroplasts of cotton leaf and fruiting organs. – *Biol. Plantarum* **47**: 281-284, 2003.

Du M.W., Feng G.Y., Yao Y.D. *et al.*: Canopy characteristics and its correlation with photosynthesis of super high-yielding hybrid cotton Biaoza A1 and Shiza 2. – *Acta Agron. Sin.* **35**: 1068-1077, 2009.

Farquhar C.D., von Caemmerer, Berry J.A.: A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. – *Planta* **149**: 78-90, 1980.

Galmés J., Medrano H., Flexas J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. – *New Phytol.* **175**: 81-93, 2007.

Guan X.Q., Gu S.: Photorespiration and photoprotection of grapevine (*Vitis vinifera* L.cv.Cabernet Sauvignon) under water stress. – *Photosynthetica* **47**: 437-444, 2009.

Guilmet J.J., Giannibelli M.C.: Nuclear and cytoplasmic ‘stay green’ mutations of soybean alter the loss of leaf soluble proteins during senescence. – *Physiol. Plantarum* **96**: 655-661, 1996.

Hu Y.Y., Riichi Oguchi, Wataru Y. *et al.*: Cotton bracts are adapted to a microenvironment of concentrated CO₂ produced by rapid fruit respiration. – *Ann. Bot.-London* **112**: 31-40, 2013.

Hu Y.Y., Zhang Y.L., Luo H.H. *et al.*: Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. – *Planta* **235**: 325-336, 2012.

Hymus G.J., Snead T.G., Johnson D.P.: Acclimation of photosynthesis and respiration to elevated atmospheric CO₂ in two Scrub Oaks. – *Glob. Change Biol.* **8**: 317-328, 2002.

Chollet R., Vidal J., O'Leary M.H.: Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. – *Annu. Rev. Plant Phys.* **47**:273-298, 1996.

Imaizumi N., Usuda H., Nakamoto H. *et al.*: Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles. – *Plant Cell Physiol.* **31**: 835- 843, 1990.

Kato M.C., Hikosaka K., Hirotsu N. *et al.*: The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. – *Plant Cell Physiol.* **44**: 318-325, 2003.

Kumar B., Pandey D.M., Goswami C. *et al.*: Effect of growth regulators on photosynthesis, transpiration and related parameters in water stressed cotton. – *Biol. Plantarum* **44**: 475- 478, 2001.

Li H.B., Bai K.Z., Hu Y.X. *et al.*: Stomatal frequency on some non-leaf organs of four crop species and their significance in photosynthesis. – *Acta Phytoccol. Sin.* **26**: 351-354, 2002.

Lichtenthaler HK: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. – *Methods Enzymol.* **148**: 350- 382, 1987.

Miyake C., Miyata M., Shinzaki Y. *et al.*: CO₂ response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence. – *Plant Cell Physiol.* **46**: 629-637, 2005.

Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. – *Biochim. Biophys. Acta* **1767**: 414-421, 2007.

Noodén L.D., Guiamét J.J., John I.: Senescence mechanisms. – *Physiol. Plantarum* **101**: 746-753, 1997.

Ogren W.L.: Photorespiration: pathways, regulation, and modification. – *Annu. Rev. Plant. Phys.* **35**: 415-442, 1984.

Osmond C.B., Björkman Ö.: What is photoinhibition? Some insights from comparison of shade and sun plants. – In: Baker NR, Boyer JR. (ed.): *Photoinhibition: Molecular Mechanisms to the Field*. Pp 1-24. Bios Scientific Publications, Oxford 1994.

Osmond C.B., Grace S.C.: Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? – *J. Exp. Bot.* **46**: 1351-1362, 1995.

Redondo-Gómez S., Mateos-Naranjo E., Moreno F.J.: Physiological characterization of photosynthesis, chloroplast ultrastructure, and nutrient content in bracts and rosette leaves from *Glaucium flavum*. – *Photosynthetica* **48**: 488-493, 2010.

Russell W.A., Critchley C., Robinson S.A. *et al.*: Photosystem II regulation and dynamics of the chloroplast D1 protein in *Arabidopsis* leaves during photosynthesis and photoinhibition. – *Plant Physiol.* **107**: 943-952, 1995.

Sage RF.: C4 photosynthesis in terrestrial plants does not require Kranz anatomy. – *Trends Plant Sci.* **7**: 283-285, 2002.

Serraj R., Sinclair T.R.: Osmolyte accumulation: can it really help increase crop yield under drought conditions? – *Plant Cell Environ.* **25**: 333-341, 2002.

Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. – In: Papageorgiou G.C., Govindjee (ed.): *Chlorophyll a Fluorescence: A Signature of Photosynthesis*. Pp. 279-319. Springer Publications, Dordrecht 2004.

Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition? – *Trends Plant Sci.* **13**: 178-182, 2008.

Tambussi E.A., Nogués S., Araus J.L.: Ear of durum wheat under water stress: water relations and photosynthetic metabolism. – *Planta* **221**: 446-458, 2005.

Valentini R., Epron D., De Angelis. *et al.*: In situ estimation of net CO₂ electron flow and photorespiration in Turkey oak (*Q. cerris* L.) leaves: diurnal cycles under different levels of water supply. – *Plant Cell Environ.* **18**: 631-640, 1995.

Wingler A., Quick W.P., Bungard R.A. *et al.*: The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. – *Plant Cell Environ.* **22**: 361-373, 1999.

Wullschleger S.D., Oosterhuis D.M.: Photosynthesis, transpiration, and water-use efficiency of cotton leaves and fruit. – *Photosynthetica* **25**: 505-515, 1991.

Xu H.L., Ishii R.: Effects of water deficit on photosynthesis in wheat plants. V. Difference among plant parts in water relations. – *Jpn. J. Crop Sci.* **59**: 384-389, 1990.

Zhang Y.L., Feng G.Y., Hu Y.Y. *et al.*: Photosynthetic activity and its correlation with matter production in non-foliar green organs of cotton. – *Acta Agron. Sin.* **36**: 701-708, 2010.

Zhang Y.P., Wang Z.M., Huang Q. *et al.*: Changes of chloroplast ultra microstructure and function of different green organs in wheat under limited irrigation. – *Acta Agron. Sin.* **34**: 1213-1219, 2008.