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Abstract

Two greenhouse experiments were conducted in order to investigate the effects of different levels of water stress on gas
exchange, chlorophyll fluorescence, chlorophyll content, antioxidant enzyme activities, lipid peroxidation, and yield of
tomato plants (Solanum lycopersicum cv. Jinfen 2). Four levels of soil water content were used: control (75 to 80% of
field water capacity), mild water stress (55 to 60%), moderate water stress (45 to 50%), and severe water stress (35 to
40%). The controlled irrigation was initiated from the third leaf stage until maturity. The results of two-year trials indicated
that the stomatal conductance, net photosynthetic rate, light-saturated photosynthetic rate, and saturation radiation
decreased generally under all levels of water stress during all developmental stages, while compensation radiation and
dark respiration rate increased generally. Water stress also declined maximum quantum yield of PSII photochemistry,
electron transfer rate, and effective quantum yield of PSII photochemistry, while nonphotochemical quenching increased
in all developmental stages. All levels of water stress also caused a marked reduction of chlorophyll @, chlorophyll b, and
total chlorophyll content in all developmental stages, while activities of antioxidant enzymes, such as superoxide
dismutase, peroxidase, and catalase, and lipid peroxidation increased.

Additional key words: drought stress; malondialdehyde; nonstomatal limitation; Pn/PPFD response curve; stomatal limitation.

Introduction

Drought is considered as the main environmental factor
limiting plant development and yield worldwide and it
becomes increasingly severe in some regions due to the
changes in the global climate. Over the past twenty years,
considerable achievements have been made in research
related to water physiology of crops and fruits (Plaut 1995,
Tezara et al. 1999, Baquedano and Castillo 2006, Elsheery
and Cao 2008). However, most water stress research was
performed during short-term periods and did not pay
enough attention to developmental stages during which
water stress occurred. At present, influence of long-time
water stress on biochemical responses of tomato, including

gas exchange, chlorophyll (Chl) fluorescence, Chl content,
and antioxidant enzymes during different developmental
stages still remains poorly understood. As a matter of fact,
the responses of plants to water stress have been reported
to depend on duration and severity of water deficit, on a
stage of development, efc. (Bray 1997). Tomato is one of
the most important crops in China, planted mainly in
semiarid and arid regions. Tomato is sensitive to drought
at various growth stages and the yield is easily affected by
this stress. Therefore, it is necessary to investigate the
effects of different levels of water stress on leaf
photosynthetic characteristics
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and antioxidant enzyme activities of tomato at different
development stages in order to understand the mechanisms
utilized by tomato plants to tolerate drought stress and to
improve the yield.

Photosynthesis inhibition is well known as one of the
primary physiological consequences of drought (Chaves
1991, Cornic 1994, Lawlor 1995). Photosynthetic pigments
also play an important role in the adaptation and survival
of plants under drought, because they control the absorp-
tion of energy through Chl and dissipate excess energy
through carotenoids (Baquedano and Castillo 2006).
Fluorescence can provide insight into the ability of a plant
to tolerate environmental stresses and into the extent to
which those stresses damage the photosynthetic apparatus
(Fracheboud et al. 1999, Maxwell and Johnson 2000).
Drought stress usually induces the accumulation of reactive
oxygen species (ROS) (Smirnoff 1993) and excessive
ROS are detrimental because they damage membranes,
proteins, Chl, and nucleic acids (Ma et al. 2013). To reduce
this oxidative damage, plants use complex defense
mechanisms, including enzymatic antioxidants, such as
superoxide dismutase (SOD, EC 1.15.1.1), peroxidase
(POD, EC 1.11.1.7), and catalase (CAT, EC 1.11.1.6).
SOD is a major scavenger of O, by converting it into O

Materials and methods

Plants and experimental design: The greenhouse experi-
ments were carried out at the greenhouse of Nanjing
University of Information Science and Technology,
Nanjing City, from September to December in 2012 and
repeated from April to July in 2013. Seeds of tomato
(Solanum lycopersicum cultivar ‘Jinfen 2’) were germi-
nated in pots containing sand and peat. The experimental
plots were randomly designed. Each water treatment was
applied to tomato planted in three plots, covering the area
of 1.5 x 2.0 m, with two replicated plots, resulting in a total
of 12 plots. Concrete curbs (depth of 1.5-2.0 m) and dikes
were constructed around each plot to prevent lateral spread
of water. The soil was medium loam. The soil water
content was adjusted to four levels: control (CK, 75-80%
of field capacity), mild water stress (MiWS, 55-60% of
field capacity), moderate water stress (MoWS, 45-50% of
field capacity), and severe water stress (SeWS, 35-40% of
field capacity). The timing of irrigations (frequency and
duration) was carried out according to the soil water
potential monitored in each treatment using two granular
matrix sensors (EM50, Decagon, USA) at 15-cm depth.
Sensors were read hourly, and irrigation started when soil
water potential dropped below the target values. The
controlled irrigation was initiated from the third leaf stage
until maturity, about 120 d. Measurements of gas ex-
change, Chl fluorescence, Chl content, antioxidant enzyme
activities, and MDA content were made on September
28-30, October 15-18, October 25-26, and November
8-10 in 2012, as well as May 9-11, May 23-25, June

and H,0,. The latter is then converted by CAT into H,O
and O,, while POD decomposes H>O, by oxidation of
substrates. Plants with lower ROS production and greater
activity of antioxidant enzymes potentially better resist to
drought stress. Malondialdehyde (MDA) is a marker for
lipid peroxidation and shows greater accumulation under
environmental stresses (Cakmak and Horst 1991).

In our study, two long-time field experiments were
carried out to investigate the effects of different levels of
water stress on the leaf gas exchange and Chl fluorescence
parameters of tomato in all developmental stages, from
seedling to maturation. We measured light response curves
to quantify the physical and biochemical limitations to the
leaf gas exchange in response to water stress. Leaf Chl
content, antioxidant enzyme activities, and lipid peroxi-
dation were also analyzed in different developmental
stages under different levels of water stress. Two hypo-
theses were tested: (/) based on the fact that photosynthesis
was hampered under drought conditions, netphotosynthetic
rate (Pn) and photosynthetic rate at light saturation (Pmax)
should decrease with the increased level of water stress in
all developmental stages; and (2) under different levels of
water stress, the reason why Py decrease would be
different.

13-14, and June 25-26 in 2013, which represented the
seedling stage, stage of anthesis, young fruit stage, and
maturation stage of tomato plants, respectively. During the
experimental period, the average air temperature in the
greenhouse was 26.5 +4.3°C in 2012 and 21.2 + 3.5°C in
2013, with the maximum air temperature of 31.8 + 4.6°C
in 2012 and 26.8 + 4.7°C in 2013, and the minimum air
temperature of 20.5 + 3.4°C in 2012 and 17.0 + 3.4°C in
2013, and the average relative humidity (RH) was 71.1 £+
10.9% in 2012 and 69.2 + 8.2% in 2013. The volumetric
soil water content of CK varied between 30-32%, while it
varied between 22-24, 18-20, and 13-16% under MiWS,
MoWS, and SeWS, respectively (Fig. 1).

Gas exchange and Pnx/PPFD response curve: Py, stoma-
tal conductance (gs), intercellular CO; concentration (C;),
and ambient CO, concentration (C,) were measured using
a portable photosynthesis measurement system (LI-6400,
LI-COR Bioscience, Lincoln, NE, USA). The measure-
ments were made of three plants per treatment. For each
measurement, the third fully expanded leaf (from the apex),
which was free of chlorosis and/or disease symptoms, was
exposed to 1,000 umol(photon) m2 s' PPFD, chamber
temperature of 25°C, CO; concentration of 380 + 10
umol(CO,) mol™!, and RH of 60-70%. The stomatal
limitation value (L) was then calculated using thefollowing
formula: Ls = 1 — Ci/C, according to Berry and Downton
(1982). The Pnx/PPFD curves were measured under the
conditions inside the sample chamber maintained at 25°C,
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Fig. 1. Variation of volumetric soil water content
of'the greenhouse soil during experimental period
in2012 (4) and in 2013 (B). CK — control; MiWS
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CO» concentration of 380 + 10 pmol(CO,) mol™', and
60-70% RH. The light intensity at each point of the curves
were 0, 50, 100, 200, 300, 400, 600, 800; 1,000; 1,200;
1,400; 1,600; 1,800; and 2,000 pmol(photon) m2 s},
respectively. Measurement of photosynthesis was taken
after 3—5 min of light exposure, and repeated in triplicate
for each treatment. Pn/PPFD curves were modeled by
fitting nonrectangular hyperbola to data as described by
Prioul and Chartier (1977):

0.5

aPPFD + Prmax —| (aPPFD +Pmax)2—4kaPPFDPmax

P~ - —Rp

2k

where o is the initial slope or apparent photosynthetic
quantum yield (Pn/PPFD at low PPFD); PPFD is the
photosynthetic photon flux density [pimol(photon) m 2 s7'];
Pnax is the photosynthetic rate at light saturation
[umol(CO,) m? s71; k is the curve convexity (dimension-
less); and Rp is the dark respiration rate [pmol(CO>)
m2s].

Chl fluorescence parameters were recorded on the fully
expanded, penultimate leaf with a portable fluorimeter
(FMS 2, Hansatech, U.K.). Leaflets were acclimated to
darkness for 15 min (Murkowski 2001). The minimal
fluorescence level (Fo) was measured with the modulated
light (0.1 pmol m™2 s7') in the completely dark-adapted
state, and the maximal fluorescence level (Fr) was deter-
mined aftera 0.8 s saturating flashes at 8,000 pmol m2 s
in dark-adapted leaves. The leaves were then continuously
illuminated with white actinic light (600 umol m=2 s™") for
3 min; the steady state value of fluorescence (Fs) was
recorded. A second saturating pulse at 8,000 umol m2 s™!
was imposed to determine maximal fluorescence level in
the light-adapted state (Fi'). Using both light and dark
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— mild water stress; MoWS — moderate water
stress; SeWS — severe water stress.

fluorescence parameters, the following calculations were
made: (/) Fy/Fin = (Fi — Fo)/Fm; (2) ®psn= (Fn' — Fs)/Fn;
(3) ETR = ®psy x PPFD x 0.84 x 0.5; (4) NPQ =
(Fm — Fn')/Fu', where F,/Fp, is maximum quantum yield of
PSII photochemistry, ®@psn is effective quantum yield of
PSII photochemistry, ETR is electron flow rate, and NPQ
is nonphotochemical quenching.

Chl content: A known mass of fresh leaves (FM) of the
third fully expanded leaf (from the apex) was extracted
with a mixture of acetone:ethanol:water (4.5:4.5:1, v/v/v).
The exact concentrations of Chl @ and Chl » were measured
using spectrophotometry (Cary 50 UV-VIS, Varian,
Victoria, Australia) and the absorbance was measured at
664 and 647 nm. Chlorophyll concentrations were calcu-
lated using the equation proposed by Wellburn (1994).

Chl a = 1 1.65A664-2.69A647
Chl b =20.81A¢64-4.53A647

where (Agss) and (Aesa7) represent absorbance values read
at 663 and 645 nm, respectively. Chl a, Chl b, and
Chl (a+b) contents were expressed as mg g~'(FM). The
pigment measurements were performed on the same leaf
used for the photosynthesis and Chl fluorescence mea-
surements.

Antioxidant enzyme assays: SOD activity was analyzed
according to Beauchamp and Fridovich (1971) with some
modifications. A known mass of fresh leaves (FM) was
homogenized in the extraction buffer consisting of 50 mM
sodium phosphate buffer, pH 7.8, 0.1% (w/v) ascorbate,
and 0.05% (w/v) B-mercaptoethanol. The assay mixture of
3 ml contained 50 mM phosphate buffer (pH 7.8), 9.9 mM
L-methionine, 0.025% (w/v) nitroblue tetrazolium (NBT),
and 0.0044% (w/v) riboflavin. The photoreduction of NBT
(formation of purple formazan) was measured at 560 nm
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(UV-1800, Shimadzu, Japan). One unit of SOD activity
was defined as extract volume that caused 50% inhibition
of the photoreduction of NBT. POD activity was assayed
by the oxidation of guaiacol in the presence of H,O»
(Ghanati et al. 2002). The increase in absorbance was
recorded at 470 nm. The reaction mixture contained
50 mM phosphate buffer (pH 7.0), 0.1 mM H,0,, 0.3 mM
guaiacol, and the enzyme extract. Activity was determined
using the extinction coefficient of 6.39 mM™' ¢cm™!. The
activity was expressed in mmol~!(guaiacol) min~! g”!(FM)
of a leaf tissue. CAT activity was measured by monitoring
the disappearance of H>O,. CAT activity was assayed as
described in Diaz-Vivancos et al. (2008) by measuring the
decrease in absorbance at 240 nm in a reaction mixture
consisting of 1.5 ml of 50 mM sodium phosphate buffer
(pH 7.8), 0.3 ml 100 mM H>0,, and 0.2 ml of the enzyme
extract. Activity was determined using the extinction
coefficient of 39.4 mM™!' cm™!.The activity was expressed
as mmol~'(H,0,) min~! g~!(FM). Each result of SOD, POD
and CAT was the mean of three replications.

Lipid peroxidation was estimated in terms of MDA con-
tent. The level of lipid peroxidation was measured with the
method of Zheng et al. (2006) with slight modifications.
Fresh leaves (1.0 g) were grinded in 10% trichloroacetic
acid and then centrifuged at 3,000 rpm for 10 min. The
supernatant (2 ml) was mixed with 2 ml of 0.6% thiobar-

Results

Gas exchange and Pn/PPFD response curve: Py and g
decreased in response to water stress in all developmental
stages; the decline was more pronounced with the
increasing level of water stress (Table 1). From the seedling
stage to maturation stage, Px and Pumax increased with the
advancing development under all water treatments (Tables
1, 2). C; decreased, therefore Ls increased under MiWS in
all developmental stages. However, under MoWS and
SeWS, C;increased in all developmental stages, causing Ls
decline (Table 1). Compensation irradiance (/) increased
with the increasing water stress in almost all
developmental stages (except for the maturation stage in
2012 and the young fruit stage in 2013). Except for the
seedling stage in 2012 and the anthesis stage in 2013,
saturation irradiance (/5) decreased under all levels of
water stress in all developmental stages and showed the
tendency to drop even more under more severe water
stress. Rp generally increased with the increasing water
stress in all developmental stages (Table 2).

Chl fluorescence parameters: F./F,, declined under water
stress in all developmental stages (Figs. 2, 3). As water
stress became more severe, it dropped more. Similarly,
ETR and ®psi decreased under water stress. They declined
less under MiWS, while they declined sharply under
MoWS and SeWS (Figs. 2, 3). With plant developmental
advancing, both parameters increased under almost all

bituric acid (TBA) and incubated for 30 min at 100°C to
develop the (TBA)2-MDA adduct. The mixture was cooled
rapidly in an ice bath. After centrifugation at 5,000 rpm for
10 min, the absorbance was measured at wavelength of
450, 532, and 600 nm. Lipid peroxidation was expressed
as pmol g”'(FM) by using the following formula:
6.45(A532 — A60()) — 0.56A450, where A532, As()(), A45() refers
to the absorbance measured at wavelength of 450, 532, and
600 nm, respectively.

Yield: On the harvest day, the fruit number of three tomato
plants, which were chosen randomly from each water
treatment, was counted. The fresh mass (FM) of tomato
fruits was obtained instantly, while the dry mass (DM) was
measured after oven drying at 80°C until the constant mass
was reached during a period of 72 h.

Statistical analysis: Differences among different levels of
water stress for the photosynthetic parameters, Chl
fluorescence parameters, Chl content, and antioxidant
enzyme activities were tested by a one-way analysis of
variance (ANOVA) using the statistical software SPSS 6.0
(SPSS Inc., Chicago, IL, USA); the treatment means were
compared by using Duncan's multiple range test (DMRT)
at P<0.05. Data were expressed as mean + standard error
(SE). The Pn/PPED response curves were fitted using
linear regression and nonlinear regression.

water treatments. Contrary to ETR and ®ps, NPQ
increased under all levels of water stress in all
developmental stages and it generally decreased with
developmental stage advancing under all levels of water-
stressed treatments (Figs. 2, 3).

Chl content: Chl a, Chl b, and Chl (a+b) decreased
significantly under MoWS and SeWS in all developmental
stages (Table 3). With increasing water stress, they
decreased more. From the seedling to maturation stage,
Chl a, Chl b, and Chl (a+b) increased with proceeding age.
Similar to Chl a, Chl b, and Chl (a+b), the ratio of Chl a/b
also generally decreased under water stress treatments.

Antioxidant enzyme activities and lipid peroxidation:
Significant differences among different water treatments
were observed in the enzyme activities in all the
developmental stages in dependence on water deficit
(Table 4). SOD activity was much higher in water stress-
treated plants than that of control during all developmental
stages; it increased with the increasing degree of water
stress. POD and CAT activity changed in the same way as
SOD under the water stress treatments. From the seedling
to anthesis stage, with the duration of drought prolonged,
antioxidant enzyme activities of SOD, POD, and CAT
increased. However, all of them dropped sharply at the
maturation stage. The MDA content increased under water
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Fig. 2. Effect of different levels of water stress on maximum quantum yield of PSII photochemistry (Fv/Fm) (4), electron flow rate
(ETR) (B), effective quantum yield of PSII photochemistry (®psu) (C), and nonphotochemical quenching (NPQ) of tomato at different
developmental stages during 2012 experimental period. Values are mean + SE (» = 3) and differences between the means were compared

by Duncan's multiple range test. Different letters

indicate

significant differences with control groups at P<0.05.

CK — control; MiWS — mild water stress; MoWS — moderate water stress; SeWS — severe water stress.

stress, especially under MoWS and SeWS, in all
developmental stages compared with control. From the
seedling to maturation stage, it increased with the
advanced plant age.

Yield: Significant differences among different water stress
treatments were observed in the yield of tomato plants. In
2012, the fruit number per plant decreased by 16.3, 37.2,
and 57.0% under MiWS, MoWS, and SeWS compared

Discussion

Water stress is an important environmental factor that
could influence the physiological and biochemical charac-
teristics of plants (Ren et al. 2007). Photosynthesis is a
highly regulated and integrated process. Photosynthetic
machinery evolved to maximize the use of light, optimize
the use of carbon resources, and minimize the damaging
effects of excessive energy. The photosynthetic process is
highly sensitive to any change in the environment (Yin
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with CK, respectively. The fresh mass per fruit was
reduced by 10.0, 29.1, and 47.8% and the dry mass per
fruit decreased by 9.8, 24.2, and 32.6% under MiWS,
MoWS, and SeWS compared with CK, respectively. The
fresh fruit mass per plant declined by 24.4, 55.4, and
77.6% and the dry fruit mass per plant decreased by 19.5,
49, and 70.4% under MiWS, MoWS, and SeWS compared
with CK, respectively (Table 5). The experiment in 2013
showed the same trend as that in 2012.

etal. 2006). In our experiment, PN, Pmax, g, and I
decreased, while /. and Rp increased under all levels of
water stress in all developmental stages in accordance with
Yin et al. (2006), Sofo et al. (2009) and Peri et al. (2011).
Stomatal conductance is the first parameter affected by
water stress because plant hormones, especially abscisic
acid, could act as root-to-shoot signals triggering stomatal
closure (Cornic 2000). Under MiWS, C; decreased and L
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Fig. 3. Effect of different levels of water stress on maximum quantum yield of PSII photochemistry (Fv/Fm) (4), electron flow rate
(ETR) (B), effective quantum yield of PSII photochemistry (®psi) (C), and nonphotochemical quenching (NPQ) (D) of tomato at
different developmental stages during 2013 experimental period. Values are mean + SE (n = 3) and differences between the means were
compared by the Duncan's multiple range test. Different letters indicate significant differences from control groups at P<0.05. CK —
control; MiWS — mild water stress; MoWS — moderate water stress; SeWS — severe water stress.

increased, thus, stomatal limitation was the main reason of
the Pn decline. However, C; increased and Lg decreased
under MoWS and SeWS, therefore the main reason of the
decrease in Py was nonstomatal limitation under MoWS
and SeWS; it resulted mainly from photosystem damage,
inhibition of Rubisco and other enzyme activities (Cornic
and Fresneau 2002, Vandoorne et al. 2012), and the
increasing Rp and photorespiration. Increasing /. and
decreasing Is would reduce the amount of available light
energy for phosynthesis, and increasing of Rp would make
plants consume more photosynthetic products. With the
advancing plant development, Py and Pmax increased
significantly under the same level of water stress. The
reason might be that plants in advanced developmental
stages have higher photosynthetic capacity. Rp also
increased in advanced developmental stages (the young
fruit and maturation stage).

F./Fm showed the proceeding decrease with intensi-
fying water stress, which was in agreement with Baquedano
and Castillo (2006) and Galmés et al. (2007). The reason

might be in inhibited activity of PSII that caused the
reduction in ®psy in agreement with Baquedano and
Castillo (2006) and Xu and Zhou (2006). Many previous
studies used a decline in F./F, and ®ps as reliable
indicators of photoinhibition in response to stress (Wagner
and Dreyer 1997, Lu and Zhang 1998). ETR decreased
under water stress in all the developmental stages. It has
been assumed that downregulation of PSII efficiency
might be a strategy, by which the stressed plants down-
regulate the photosynthetic electron transport to keep the
production of adenosine triphosphate and nicotinamide
adenine dinucleotide phosphate in equilibrium with the
decreased CO, assimilation capacity (Baker and Rosen-
qvist 2004). It corresponded with the findings of Flexas et
al.(2004). NPQ increased under water stress in all
developmental stages in agreement with other studies
(Medrano et al. 2002, Tezara et al. 2005, Wu et al. 2008,
Elsheery and Cao 2008). Higher NPQ under water stress
indicates that plants efficiently dissipate energy trapped at
PSII in the form of heat (Wu ef al. 2008) and it protects
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photosynthetic apparatus against photoinhibition.

Chl a, Chl b, and Chl (a+b) decreased under water
stress in all developmental stages in accordance with
Loggini et al. (1999), Younis et al. (2000), and Elsheery et
al. (2008). Some authors have suggested that the decrease
in pigment contents in stressed plants could be related to
pigment photooxidation because of excess energy
absorbed (Powles 1984, Krause 1988), while others have
proposed that it could be an adaptive mechanism to prevent
the absorption of excessive energy (Elvira ef al. 1998).

SOD activity increased under drought stress in all
developmental stages when compared with control plants.
Similar findings were presented under drought stress in
higher plants, such as rice (Wang et al. 2005), wheat (Shao
et al. 2005), and maize (Jiang and Zhang 2002). POD also
increased under water stress in all developmental stages
when compared with control plants. POD plays a role in
decreasing H,O, content, eliminating peroxidation of
membrane lipids, and maintaining cell membrane integrity
(Jaleel et al2008). Increased POD activity was also
reported in drought stressed soybean (Zhang et al. 2006)
and chives plants (Egert and Tevini 2002). Similarly to
SOD and POD, the activity of CAT also increased in all
developmental stages under drought stress when compared
with control plants. Similar results were reported under
drought stress in wheat (Shao et al. 2005) and Phaseolus
acutifolius (Tirkan et al. 2005). MDA content increased
under drought stress in all developmental stages when
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