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Abstract

Photosystem II (PSII) photochemistry was examined by chlorophyll (Chl) a fluorescence analysis in high-yield rice LYPJ
flag leaves during senescence. Parameters deduced from the JIP-test showed that inhibition of the donor side of PSII was
greater than that of the acceptor side in hybrid rice LYPJ. The natural senescence process was accompanied by the
increased inactivation of oxygen-evolving complex (OEC) and a lower total number of active reaction centers per
absorption. It indicated that the inhibition of electron transport caused by natural senescence might be caused partly by
uncoupling of the OEC and/or inactivation of PSII reaction centers. Chl fluorescence parameters analyzed in this study
suggested that energy dissipation was enhanced in order to protect senescent leaves from photodamage. Nevertheless,
considerably reduced PSI electron transport activity was observed at the later senescence. Thus, natural senescence
inhibited OEC—PSII electron transport, but also significantly limited the PSII-PSI electron flow.
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Introduction

Rice (Oryza sativa L.) is one of the most important cereal
crops, cultivated in Asia, Africa, and Latin America (Wu
et al. 2014). According to Jiao et al. (2003), hybrid rice
might suffer from early or premature senescence during
the late developmental stages. Photosynthesis at a grain-
filling period, which coincided with the occurrence of flag
leaf senescence in hybrid rice plants, contributed
approximately by 60—100% of carbon in grains originating
from CO; assimilation (Wang et al. 2014). Therefore, the
rate of leaf senescence (starts from full expansion of flag
leaves) was closely related to the grain filling (Panda and
Sarkar 2013). The effect of natural senescence on
photosynthetic performance was foreseen by alterations in
the structure and function of the chloroplasts, which

resulted in the decreased photosynthetic rate (Panda and
Sarkar 2013, Wang et al. 2014).

Chlorophyll (Chl) a fluorescence analysis has been
shown to be a noninvasive, powerful, and reliable method
to assess the variation in the phenomenological and
biophysical expressions of PSII in different species to
different environmental conditions, such as light intensity
(Brestic et al. 2014), salinity (Xia et al. 2004), temperature
(Stefanov et al. 2011, Sharma et al. 2014), drought
(Boureima et al. 2012), toxic metals (Kumar et al. 2014),
nutrient deficiency (Kalaji ef al. 2014, Osoério et al. 2014),
UV-B radiation (Wang et al. 2010a), and chemical
influences (Mohapatra et al. 2010, Qiu et al. 2013,
Kreslavski et al. 2014). Fast measurement of the F./Fy
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ratio was the most common parameter, but F./F,, was
shown to be nonspecific and often insensitive (Boureima
et al. 2012, Stirbet and Govindjee 2011). Based on the
energy flux theory in photosynthetic membranes, an
analysis of the fast OJIP fluorescence rise in Chl a
fluorescence induction has been developed, referred as the
“JIP-test” (Strasser and Strasser 1995). Such an analysis
took into account the different steps and phases of the
transient with the redox states of PSII. From another
aspect, it could also extend our insight and realize the
efficiencies of electron transfer through the intersystem
chain to the end electron acceptors at the PSI acceptor side,
concomitantly (Tsimilli-Michael and Strasser 2008,
Pollastrini et al. 2014). However, it is worthwhile to
mention that the JIP-test is not the only way of evaluation
of the OJIP curves and that the curves can be affected by
many factors (Lazar 2006). Most of literature on changes
in Chl a fluorescence in rice were mainly performed at a
vegetative stage under different abiotic stresses (Panda and
Sarkar 2013, Chhotaray et al. 2014, Li et al. 2014).
Detailed information on hybrid rice during natural

Materials and methods

Plant material: Field experiments were performed with
the cultivar LYPJ of rice (O. sativa L.), which was one of
the most cultivated super high-yield hybrid rice variety in
China, at the experimental fields of the Institute of
Agricultural Sciences of Jiangsu Nanjing, China. The total
N fertilizer was applied at 225 kg per 667 m?, with an
N:P:K ratio of 1:0.6:0.6 (Yu et al. 2013). During the period
from 15 August (first flag leaf expansion) to 25 September
(the harvest time) in 2013, the sampling took place in the
morning (09:30-10:30 h) on sunny days at approximately
one-week intervals.

Analysis of fast Chl a fluorescence induction dynamics:
Chl a fluorescence of leaves was measured with a pocket
fluorometer (Handy PEA, Hansatech, UK) by referring to
methods of Strasser et al. (1995). Leaves were dark-
adapted for approximately 30 min prior to measurements
and then exposed to red light of 650 nm through LED at
excitation irradiance of 3,000 pmol(photon) m 2 s™! with a
duration of 800 ms. The experiment was carried out in
triplicate and each replicate contained ten leaves of
different plants. This experiment was repeated four times.

Results

OJIP fluorescence rise kinetics: The OJIP fluorescence
rise showed characteristic difference at each phase after
full expansion of the flag leaves (O-J, J-I, and I-P phase)
(Fig. 14). The O-J phase showed some changes, whereas
the intensity in the phases of J-I and I-P significantly
decreased. Significant difference was observed on 14 d
after full expansion (DAE) of the flag leaves. During this

senescence processes is not available on energy
absorption, utilization, and dissipation of excess excitation
energy using Chl a fluorescence technique after full
expansion of flag leaves.

In addition to agronomic and biotechnological stra-
tegies, improvement of weakness in hybrid rice through
breeding and molecular tools is in progress (Wu et al.
2013, Chen et al. 2014). Most of the methods on evaluation
of early or premature senescence would be complex and
time-consuming under field conditions. Due to the ease-
of-use, time-saving, and noninvasiveness of Chl a fluores-
cence measurement, it could be developed into an indirect
screening indicator for hybrid rice breeding under field
conditions (Hsu 2007). On this background, we analyzed
the changes in PSII photochemistry in flag leaves of high-
yield rice LYPJ during senescence by means of parameters
derived from the fast Chl a fluorescence records. We
assumed that different developmental periods would be
accompanied by different effects on photochemical
processes.

Statistical testing of normality of data distribution was
performed according to the method of Lazar and Naus
(1998). The parameters were calculated as mentioned in
Table 1 (Lazar 2006, Shen et al. 2015).

Protein immunoblot analysis: Rice leaves were washed
with cold water and used for extraction of thylakoid
membranes as described by Timperio et al. (2007) and
processed as described by D’Amici et al. (2008).
Separation and solubilization of thylakoid membrane
complexes were performed according to the method of
Kiigler et al. (1997). The isolated thylakoid membrane
suspension was pretreated with loading buffer containing
5% SDS, 30 mM mercaptoethanol, 5% sucrose, 2 mM
EDTA, 0.02% Bromophenol Blue, and 125 mM Tris-HCI
(pH 6.8), and boiled for 5 min. For protein immunoblot
analysis, isolated thylakoid protein samples with the same
amount of Chl were first separated by 12 % SDS-PAGE,
then transferred to PVDF membranes and immunoblotted
with various antibodies (Agrisera, Sweden). Antibodies
were detected using a chemiluminescence detection
system (ECL, Qiagen).

period, an increase in Fo (50 ps), Fy (2 ms), F; (30 ms), but
a decrease in Fy (at tem) were observed. Fy increased by
6.5% on 14 DAE of the flag leaves, with simultaneous
8.2% rise in Fj, 0.8% in Fj, and 6.4% reduction in Fy.
Analysis of the fluorescence transients revealed that the
major effects of natural senescence for hybrid rice LYPJ
plants occurred in the I-P phase. There was reduction
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Table 1. Formulae and definitions of the selected JIP-test fluorescence parameters used in the present study. Subscript “0” (or “0” when
written after another subscript) indicates that the parameter refers to the onset of illumination, when all RCs are assumed to be open.
The parameters were calculated as mentioned in Lazéar (2006) and Shen et al. (2015).

Terms and formulae

Illustrations

V1= (Fi~Fo)/(Fm—Fo)
V1= (Fi—Fo)/(Fm—Fo)
Vi= (Fx—Fo)/(FM—Fo)

W= (Fk—Fo)/(F1—Fo)
Vk/ Vi

Sm = Area/Fv

Sum K = Kp+ Kn

Kn
Kp

ABS/RC = (Mo/Vy)/[1- (Fo/Fm)]
DIo/RC = ABS/RC-TRo/RC
ETo/RC = (Mo/Vy) x (1 — Vi)

TRo/RC = (Mo/Vy)

REo/RC =Mo (1/Vy) (1 - Vi)
©Po=TRo/ABS = Fv/Fm= [1- (Fo/Fm)]
©Fo = ET/ABS = [1 — (Fo/Fu)] % (1-V))
Yo=1-V;

¢Do= DIo/ABS = 1 — ¢Po= (Fo/Fm)
SRo= (1 -Vp/(1-Vy)

¢Ro =Py yEo SRo

ABS/CSm =Fwm

TRo/CSm = @po < (ABS/CSm)
ETo/CSm = @Eo x (ABS/CSm)
DIo/CSm = (ABS/CSm) — (TRo/CSm)

Relative variable fluorescence at the phase J of the fluorescence induction curve
Relative variable fluorescence at the phase I of the fluorescence induction curve
Relative variable fluorescence at the phase K of the fluorescence induction
curve

Represent the damage to oxygen evolving complex OEC

Relative measure of inactivation of OEC

Normalized total complementary area above the OJIP transient

The sum of photochemical rate constant Kp and nonphotochemical rate
constant Kn

The nonphotochemical de-excitation rate constant in the excited antennae for
nonphotochemistry

The photochemical de-excitation rate constant in the excited antennae of energy
fluxes for photochemistry

Light absorption flux (for PSII antenna chlorophylls) per reaction center (RC)
Dissipation energy flux per PSII reaction center (RC) (at t = 0)

Maximum electron transport flux (further than Qa") per PSII reaction center
(RC) (att=10)

Trapped (maximum) energy flux (leading to Qa reduction) per reaction center
(RC) (att=0)

Electron flux reducing end electron acceptors at the PSI acceptor side per RC
The maximum quantum yield of primary photochemistry

The quantum yield of electron transport

The efficiency with which a trapped exaction can move an electron into the
electron transport chain further than Qa

Thermal dissipation quantum yield

Efficiency/probability with which an electron from the intersystem electron
carriers moves to reduce end electron acceptors at the PSI acceptor side

The quantum yield of reduction of end electron acceptors of PSI

Absorption flux of photons per cross section, approximated by Fm
Phenomenological fluxes for trapping per cross section, approximated by Fum
Potential electron transport per cross section, approximated by Fm
Dissipation per cross section, approximated by Fm

Plas= (RC/ABS) x [@Po/(1 — @Po)] % [wo/(1 —yo)] The performance index on absorption basis

in the net Chl @ content of leaves with onset of senescence
(see Wang et al. 2014), and this might affect the
fluorescence peaks.

A significant K rise was noticed in the transients on
35 DAE in the flag leaves. It has been also noticed that the
phase K was caused by an inhibition of electron transfer to
the secondary electron donor of PSII, which was due to a
damaged oxygen-evolving complex (OEC) (Holland et al.
2014). We assayed the accumulation of subunits of OEC
by immunoblot analysis. Immunoblotting revealed that the
PsbO, PsbP, and PsbQ slightly declined in parallel on 21
DAE but notably declined during the next days (Fig. 1B).

The donor and acceptor side of PSII: In order to study
further the effect of natural senescence on the electron
transport at the donor side of PSII in this cultivar, two
parameters, Vkx and Wk, were measured. Natural
senescence did not result in obvious changes of Vk and
Wk, till 14 DAE (Fig. 24,B). When the natural senescence
occurred on 21 DAE, Vk went up significantly. Moreover,
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Wk (as a relative measure of inactivation of OEC)
significantly increased as the flag leaves reached
senescence, which was found directly proportional to the
age of the leaves.

Fig. 2C demonstrated the changes in the acceptor side
of PSII. Sum K showed more or less a decreasing trend
after full expansion of the flag leaves. The net rate of PSII
closure (M,) increased significantly after full expansion of
the flag leaves, confirming that there was an inhibition on
the acceptor side, in electron transport between Qa and Qg.
A similar trend was recorded in K, which reached its
minimum on 35 DAE exhibiting 27% decrease. The non-
photochemical de-excitation rate constant in the excited
antennae for nonphotochemistry gradually increased.

Analyses of the JIP test showed that Vi increased by
45.4% at 21 DAE and 172 % at 35 DAE. Wy increased by
19.4% and 76.6 % on 21 and 35 DAE, respectively, during
the senescence stage. The Vj showed no change at 21 DAE
but it decreased by 11.4% at 35 DAE during the
senescence stage (Fig. 2C). The Vi decreased by 7.8% at
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Fig. 1. Changes in chlorophyll fluorescence transient of leaf
senescence of super high-yield LYPJ hybrid rice (4). Immunoblot
with antibodies against oxygen-evolving complex—associated
protein of thylakoid isolated from leaves after full expansion of
flag leaves (B). Each lane was loaded with amount of pigment-
protein complexes corresponding to 2 pg of Chl.
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Fig. 2. Changes in PSII donor side (4, B) and acceptor side (C)
during leaf senescence of high-yield LYPJ hybrid rice. Data are
means with error bars indicating SD (n = 10). Different small
letters indicate significant differences at P<0.05.

21 DAE and 11.4% at 35 DAE. Hence, the inhibition of
the donor side of PSII was greater than that of the acceptor

side. This finding indicated that the electron transfer
capability of both donor and the acceptor side of the PSII
reaction centre was significantly altered by natural
senescence.

The amount of PSII reaction centers: Natural senes-
cence induced 22% decrease of RC/CS,, 38% decrease
of RC/ABS on 35 DAE (Fig. 34). Reducing the number of
active reaction centers of this rice cultivar meant that less
energy was used to drive electron transport. Therefore, this
energy must be dissipated by nonphotochemical
mechanisms.

PSII efficiency and excitation energy dissipation: The
quantum yields are shown in Table 2. The values of the
maximum quantum yield of primary photochemistry
(pPy), the quantum yield of the electront ransport (¢E),
and the probability that a trapped exciton moves an
electron into the electron transport chain beyond Qa (yo)
decreased by 16.3, 25.2, and 15.6%, respectively, on 35
DAE. An apparent increase was found in thermal
dissipation quantum yield (¢Dy).

The quantum yield of reduction of end electron
acceptors of PSI was expressed as Ry Ry decreased by
61.4% on 35 DAE. The decrease of this parameter was
associated with the decrease in IP amplitude (AVip)
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Fig. 3. Changes in the amount of active PSII reaction centers per
excited cross section (RC/CSo) and the total number of active
reaction center per absorption (RC/ABS) (4), and the content of
PSI reaction centers (AVIP) (B) during leaf senescence of high-
yield hybrid rice LYPJ. Vertical bars show standard errors
(n=10). Different small letters indicate significant differences at
P<0.05.

425



Y.W. WANG et al.

Table 2. Quantum yields and flux ratios, specific energy fluxes per Qa-reducing PSII centers and phenomenological fluxes during leaf

senescence of high-yield LYPJ hybrid rice. Different letters in superscript indicate significant differences at P<0.05.

Variable Time after full expansion of flag leaves [d]
7 14 21 28 35

Quantum oPo 0.765+0.009*  0.736 £ 0.008>  0.726 + 0.006° 0.691+£0.011>  0.636 +0.008°

efficiencies ¢Eo 0.426 £0.019*  0.436 +0.007*  0.449 + 0.0042 0.436+0.017*°  0.318+£0.015"
Yo 0.557+£0.011>  0.593+0.009* 0.619 £ 0.007* 0.631+£0.012*  0.499+0.016°
¢Do 0.235+£0.0199 0264 +0.017° 0.274 £ 0.009° 0.309+£0.021>  0.364 +0.031°
SRo 0.176 £ 0.007* 0.155+0.017*  0.162+0.0142 0.156 + 0.009" 0.108 £0.011°
oRo 0.057 + 0.006? 0.054 £ 0.006* 0.053 £0.001? 0.047 £ 0.003° 0.022 £0.001¢

Specific fluxes ABS/RC 1.896 + 0.004¢ 1.898 £ 0.004°  2.346 £ 0.004° 2.355+0.003" 3.382 +£0.00322
DIo/RC 0.445 + 0.0034 0.500 +£ 0.003°  0.638 + 0.004° 0.728 + 0.004° 1.279 £ 0.00312
ETo/RC 0.807 + 0.002° 0.827 £0.002°  1.056 £ 0.003? 1.027 £ 0.0022 1.046 £ 0.0022
TRo/RC 1.4505+0.037° 1.397£0.031°  1.708 + 0.034° 1.627 £0.036>  2.103 +0.0312

Phenomenological ABS/CSm 2,318 £52¢ 2,288 £ 592 2,293 £ 58 2,209 £512 1,959 + 50°

fluxes TRo/CSm 1,773 + 47° 1,686 & 39° 1,663 = 41° 1,525 + 49¢ 1,256 + 45¢
ETo/CSm 987 £ 112 997 £ 192 1,028 £272 963 £13° 631 £12°
DIo/CSm 554+ 114 602 £+ 12° 628 +28° 683 £ 12° 702 £132

(Fig. 3B). The specific activities per reaction centre (RC)
and phenomenological fluxes per cross section (CSy,) were
presented in Table 2. The derived specific fluxes per active
PSIT RC were affected after full expansion of the flag
leaves during the senescence stage. Both ABS/RC and
TRo/RC significantly increased under natural senescence.
In spite of this, ET¢/RC did not notably differ after full
expansion of the flag leaves during the senescence stage,
because of the significantly higher DIo/RC.

The derived phenomenological fluxes per excited leaf
sample CS, estimated from Fu, were reduced after full
expansion of the flag leaves during the senescence stage
(Table 2). Associating with ABS/CSy, the photons
absorbed by antenna molecules slightly decreased during
7—21 DAE, but notably decreased on 28 DAE (Table 2).
We noted here that the gradually decreased TRo/CSwm and
increased DIo/CSy led to a reduction in ET¢/CSy in rice
after full expansion of the flag leaves.

PSII performance index: The values of performance
indices (Pliot, Plabs, Plesm, Pleso) Were normalized to those
of the 7 DAE old rice plants (Fig. 4). The parameters were
used to quantify the PSII behavior and found decreased
significantly during natural senescence, but the F./F, ratio

Discussion

In our study, Vk and Wk significantly increased after full
expansion of the flag leaves during the senescence stage,
which further indicated that natural senescence had a
negative effect on electron transport at the donor side of
PSIT (Feng et al. 2014). By analyzing key sites in the
electron transport chain, we also found that at the
beginning of senescence there was no obvious variation in
F./Fo, Mo, Vj, and Vi parameters. However, significant
changes occurred during the later senescence process,
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Fig. 4. The total performance index (Plit), the performance index
on absorption basis (Plwbs), the performance index on cross
section (Plesm, Pleso) of flag leaves during leaf senescence of high
yield hybrid rice LYPJ.

showed insignificant variation. Over 21 DAE, the
decreases of Ply,s and Plegm were much more pronounced
compared to other parameters.

indicating a limitation at the acceptor side of PSII
(Fig. 2C). Hence, we speculate that the inhibition of the
donor side was greater than that of the acceptor side. This
difference would disturb the electron transport capacity of
PSII after full expansion of the flag leaves in LYPJ rice,
resulting in a larger imbalance in the ratio of PSII to
intersystem transport activities. This phenomenon would
accelerate leaf senescence after full expansion of the flag
leaves.
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The later senescence process was accompanied by the
appearance of the K-phase, quantified as the increase in
Wk (a partial uncoupling of OEC) (Fig. 2B) (Kalachanis
and Manetas 2010, Feng et al. 2014). In present study, the
late occurrence of the K-phase showed that disruption at
the acceptor side of PSII did not result in a serious decrease
in PSII activity at the beginning of senescence (Table 2).
During this period, the increased value of Wk proved that
natural senescence in hybrid LYPJ rice caused partial
damage of the electron transport from OEC to P680*, but
the effect was not strong enough to generate a distinct
OKIIP transient, caused by the impairment of a very small
part of OEC. This could be confirmed by the variation in
amounts of OEC subunits (PsbO, PsbP, and PsbQ) after
full expansion of the flag leaves (Fig. 1B).

We compared the quantum efficiencies @Po, @Eo, yo,
and @Ry after full expansion of the flag leaves. The energy
dissipation efficiency (@Dy), increased with the aging
process due to its direct relationship with the decreased
quantum yield of primary photochemistry (¢Po). Hence,
we concluded that PSII in hybrid LYPJ rice suffered from
some inactivation not only in energy trapping, but also in
the electron flow during the senescence stage. Another
point of concern was the gradual decrease in the relative
amplitude of the I-P phase in rice. There was experimental
evidence that I-P phase was related to the events in the
vicinity of PSI, mainly the electron flow from PSI to the
final electron acceptors (Schansker ef al. 2005, Kalachanis
and Manetas 2010, Hussain and Reigosa 2011). Recently,
it has also been proposed that a link between a low value
of AV and a low content of PSI, or a decrease of PSI
fraction, are involved in the linear electron flow
(Kalachanis and Manetas 2010, Ceppi et al. 2012, Holland
et al. 2014). As shown in Fig. 3B, a smaller value of AVip
in hybrid LYPJ rice was observed during later senescence
process at 28 DAE. The variation was not significant from
14 to 28 DAE, but notably decreased from 28 to 35 DAE.
However, the probability of an electron from reduced
intermediate carriers to reduce the end acceptor of PSI
(8R,) was lower in hybrid LYPJ rice on 28 DAE during
later senescence, indicating that a hindered electron flow
along PSII was accompanied with a later hindrance along
PSI in this study. It has been suggested that PSII was more
susceptible to natural senescence than PSI and a greater
decrease in PSII activity was observed during the later
senescence process (Panda and Sarkar 2013).

It was of interest to find out if natural senescence could
alter the ratio between antenna light-harvesting complex
and active PSII reaction centres during the senescence
process (Table 2). Then, the increase in ABS/RC reflected
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