

Evaluation of wild *Arachis* species for cultivation under semiarid tropics as a fodder crop

P.C. NAUTIYAL^{*+}, A.L. RATHNAKUMAR^{*}, G. KULKARNI^{**}, and M.S. SHESHSHAYEE^{***}

Directorate of Groundnut Research, Post bag 5, Junagadh – 362001, Gujarat, India^{*}

Department of Botany, Junagadh Agricultural University, Junagadh – 362001, Gujarat, India^{**}

Division of Crop Physiology, College of Agriculture, GKVK, UAS, Bangalore – 560065, Karnataka, India^{***}

Abstract

Wild *Arachis* genotypes were analysed for chlorophyll *a* fluorescence, carbon isotope discrimination (ΔC), specific leaf area (SLA), and SPAD readings. Associations between different traits, *i.e.*, SLA and SPAD readings ($r = -0.76$), SLA and ΔC ($r = 0.42$), and ΔC and SPAD readings ($r = 0.30$) were established. The ratio of maximal quantum yield of PSII photochemistry (F_v/F_m) showed a wider variability under water deficit (WD) than that after irrigation (IR). Genotypes were grouped according to the F_v/F_m ratio as: efficient, values between 0.80 and 0.85; moderately efficient, the values from 0.79 to 0.75; inefficient, the values < 0.74 . Selected genotypes were evaluated also for their green fodder yield: the efficient genotypes ranged between 3.0 and 3.8, the moderately efficient were 2.6 and 2.7, the inefficient genotypes were of 2.3 and 2.5 t ha^{-1} per year in 2008 and 2009, respectively. Leaf water-relation traits studied in WD and IR showed that the efficient genotypes were superior in maintenance of leaf water-relation traits, especially, under WD. Potential genotypes identified in this study may enhance biomass productivity in the semiarid tropic regions.

Additional key words: efficiency of photosystem II; green biomass; leaf water relation traits; water scarcity; water-use efficiency.

Introduction

The genus *Arachis* has evolved in some unusual niches, ranging from semiarid areas of northeastern Brazil to Carrado pockets in the Amazon forest, to low, deep-soil alluvial plains and humus clay swamps of the Gran Pantanal. Under such a wide ecological diversity, these species have been acclimatized for climate prevailing in the tropical and subtropical regions, especially water scarcity environments and poor soil conditions. In addition, these species could easily establish effective association with *Bradyrhizobium* in root nodules which increases soil fertility (Valls 1983). Wild *Arachis* species are considered best legumes for pasture improvement or forage crop. The most valuable attribute, which several wild species possess, is persistence under grazing that makes them special in development of permanent pastureland (Simpson 1991). On the other hand, genetic base of groundnut cultivars has become quite narrow and

wild *Arachis* species are only source for variability in morphological, physiological, and genetic traits leading to detectable differences at an isoenzyme level under normal irrigation conditions (Lu and Pickersgill 1993). Moreover, these species have been identified as a donor source for various biotic (Subrahmanyam *et al.* 1985, Bera *et al.* 2014, Michelotta *et al.* 2015) and abiotic (Nautiyal *et al.* 2008, Upadhyay *et al.* 2011, Bera *et al.* 2013) stresses. The climate change scenario also demands to increase biomass production by developing pastureland or cultivation of wild *Arachis* species for fodder purpose (Nautiyal *et al.* 2008).

Phenotyping for water use or photosynthetic efficiency requires a high throughput screening technology which is still in a stage of development. So far, in groundnut, water-use efficiency has been determined by analysing various traits, *e.g.*, ΔC (Hubick *et al.* 1986), SLA (Nautiyal *et al.* 2002), and SPAD readings (Nageswara Rao and Wright

Received 19 March 2015, accepted 19 May 2016, published as online-first 27 May 2016.

⁺Corresponding author; e-mail: prakashc@iari.res.in, pcnautiyal52@yahoo.co.in

Abbreviations: ANOVA – analysis of variance; DM – dry mass; Chl – chlorophyll; E – transpiration rate; FM – fresh mass; F_0 – minimal fluorescence yield of the dark-adapted state; F_m – maximal fluorescence yield of the dark-adapted state; F_s – steady-state fluorescence yield; F_v – variable fluorescence; F_v/F_m – maximal quantum yield of PSII photochemistry; F_0/F_m – thylakoid membrane stability; g_s – stomatal conductance; ICRISAT – International Crop Research Institute for Semi-arid Tropics; IR – irrigated (after irrigation); LA – leaf area; PCA – principal component analysis; PDB – PeeDee belemnite; RWC – relative water content; RCBD – completely randomized block design; SD – standard deviation; SPAD – soil plant analysis development; TM – turgid mass; WD – water-deficit (before irrigation); ψ_w – water potential.

1994). Basically ΔC is tendency of tolerant genotype to fix carbon molecule irrespective of its isotope form; hence, tolerant genotypes do not discriminate between ^{12}C and ^{13}C present in the ambient air. Thus, lower values of ΔC indicate photosynthetic efficiency (Hubick *et al.* 1986).

The surrogate traits often used for measuring ΔC are SLA and SPAD readings; these are basically indicative of leaf thickness and total leaf nitrogen content, respectively (Nigam and Aruna 2008). These traits were also found associated with water-use efficiency in groundnut cultivars (Varshney *et al.* 2009). In addition, chlorophyll (Chl) *a* fluorescence is widely accepted as an indication of the energetic behavior of photosynthetic system. Since, PSII emits energy in the range of 680–740 nm in spectra region, it is considered as an intrinsic probe of the fate of excitation energy and indicative of various light reactions occurring in thylakoid membranes (Govindjee 2004). It helps in maintaining balance between energy supply *via* photochemistry and energy consumption *via* photosynthetic carbon reduction in leaf (Franks and Beerling 2009). Different parameters of Chl fluorescence have been used for investigations of various crops under diverse

growth condition, *e.g.*, barley (Guo *et al.* 2008), maize (O'Neil *et al.* 2006), groundnut (Lauriano *et al.* 2006, Singh *et al.* 2014), and broad bean (Stefano and Terashima 2008). Change in the state of PSII is related to a decrease in the value of F_v/F_m . In most of the plant species, the optimal value of F_v/F_m varies between 0.79 and 0.83 and lower values indicate that plant is lacking an optimal health (Björkman and Demming 1987). In addition to F_v/F_m , other parameters, such as F_0 and F_m , measured during grain filling stage of wheat under drought stress showed higher genetic correlation with the grain yield. Recently, full-length DNA of the chloroplast Cu/Zn-superoxide dismutase gene (*AhCSD2*) from allotetraploid groundnut cultivars and diploid wild *Arachis* species has been characterised for SOD activity (Zhang *et al.* 2015). So far wild *Arachis* species remained neglected, especially in search of genes responsible for maintaining higher photosynthetic rate under water-deficit condition. The aim of present study was to evaluate wild *Arachis* genotypes for photosynthetic efficiency, which is basic requirement for cultivation in arid and semiarid tropics where scarcity of water is the main problem.

Materials and methods

Experiments were conducted at the Directorate of Groundnut Research, Junagadh (21°31'N, 70°36'E), Gujarat, India. One experiment was carried out under greenhouse conditions and 54 wild *Arachis* species including their accessions were analysed for photosynthetic efficiency following various traits. After identification of genetic potential for photosynthetic efficiency, selected genotypes were evaluated for the fodder yield and leaf water relation traits, under field conditions.

Greenhouse experiment: Genetic stocks of wild *Arachis* species and their accessions were procured from the International Crop Research Institute for Semi-arid Tropics, India Centre, Patancheru (ICRISAT). These genotypes were propagated through rhizome or seed by transplanting in pots during rainy season (June–September) in 2000. Canopy of each individual genotype was developed in cemented hollow-bottom-ring shaped pots of 0.60 m diameter and 0.75 m height. Pots were filled with soil and sand in 1:1 ratio (w/w). In each pot, a single seed or rhizome was planted, since wild *Arachis* species are rhizomatous, it could develop canopy that covered whole pot up to 2006. During plant establishment, irrigation was provided as and when required, however, before recording observations, irrigation was given to the field capacity on 1 September 2006 and observations were recorded from 26 September (WD). Second irrigation was provided on 30 September and the same set of observations was recorded (IR). After recording, soil samples from each pot between 0 and 10 cm depths were collected and analyzed gravimetrically to determine a moisture content.

Chl *a* fluorescence: Before starting experiment, 54 genotypes were divided into two groups and observations were recorded for two consecutive days in each group, first in WD followed by IR on cloudless days. Chl *a* fluorescence parameters were recorded with fluorescence monitoring system (*FMS 2, Hansatech, England*) equipped with a fiber probe and leaf clip holder. Fully expanded two or three leaves from top of the canopy on main stem or branches of each genotype were selected and observations were recorded on three leaflets between 09:00 and 12:00 h local time. After completing observations, each pot was irrigated to the field capacity and the same set of observations was recorded one day after irrigation. All the observations were recorded on adaxial side of the leaflet and PAR during this period was between 800 and 1,130 $\mu\text{mol}(\text{photon}) \text{m}^{-2} \text{s}^{-1}$. The irradiance, run-time, and dark-adaptation period for all the measurements were 400 $\mu\text{mol}(\text{photon}) \text{m}^{-2} \text{s}^{-1}$, 5 s, and 30 min, respectively. Care was taken before and during measurement not to disturb the natural leaf orientation with respect to the sun or to shade. Steady-state fluorescence (F_s) was determined under actinic light following Nogués and Baker (2000). An actinic PPFD was 3,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and 800 ms duration was used for determination of fluorescence induction. The maximum fluorescence (F_m) and the minimal fluorescence (F_0) of sampled leaves were used to calculate the F_v/F_m ratio following Maxwell and Johnson (2000), *i.e.*, $F_v/F_m = [(F_m - F_0)/F_m]$, which represents the maximum quantum yield of PSII presuming that all the PSII centers were open. In addition, the changes in variable ($F_v = F_m - F_0$) fluorescence, the absolute values F_0 , F_m , and the half time

of the increase from F_0 to F_m ($t_{1/2}$) were determined. Thus, F_v/F_m provided a measurement of the intactness of the LHCII unit and indicated the probability that a trapped photon within the reaction centre can cause a photochemical event such as the efficiency of excitation capture by open PSII centers. As such, it could give a measure of the rate of linear electron transport, thus could be an indication of overall photosynthesis. Moreover, a linear plot of the quantum yield of CO_2 assimilation and photochemistry allowed to evaluate the electron requirement per molecule of CO_2 fixed (Epron *et al.* 1995).

Specific leaf area (SLA): For the measurement, leaves were collected after irrigation. Total 60 of fully expanded two or three leaves from the top of a canopy on main stem or branches of each genotype were collected and arranged in three replicate having 20 leaves in each. Leaf area (LA) was measured with the help of leaf area meter (*Model 3,000, LI-COR Inc.*, USA). Leaf samples were dried at 80°C until constant mass in a hot-air oven and leaf dry mass (DM) was recorded. SLA was calculated as: $\text{LA} [\text{cm}^2 \text{g}^{-1}(\text{DM})]$.

Carbon isotope discrimination: For the measurement of ΔC ($^{13}\text{C}/^{12}\text{C}$), leaf samples were collected from each pot by selecting fully expanded two or three leaves from top of the canopy on main stem or branches. Total 30 leaves were collected from each genotype and arranged in three replicates. Leaf samples were dried on sun inside butter paper bags; this was followed by drying at 40°C for 2 h before grinding. ΔC was calculated by measuring difference in carbon isotope ratios of the air and of the leaf samples. The dried material was ground in order to pass through a 100 μM iron sieve. Isotope composition was measured by ratio mass spectrometry. The ratio of the air was taken as $-7.6\text{\textperthousand}$ on the PeeDee belemnite (PDB) scale (Hubick *et al.* 1986). For illustration, leaf samples of approximately 10 mg were combusted in an elemental analyser (*Carlo Erba Instrumazione*, Italy). The combustion products were moved in a stream of helium, and CO_2 in the effluent gas was separated from impurities chromatographically. Carbon dioxide gas was concentrated in a trap cooled with liquid N_2 and helium was pumped away. The trap was warmed and the CO_2 was allowed to enter the inlet of the ratio mass spectrometer for measurement of isotope ratio. The isotope ratios of the samples were estimated by comparison with a working standard of CO_2 with an isotope ratio of $-35.08\text{\textperthousand}$ relative to PDB. Carbon isotope discrimination differs from $\Delta^{13}\text{C}$ in that it describes only that change in isotopic composition induced by the plant, eliminating variation as a result of the starting value of the atmospheric CO_2 used for photosynthesis. ΔC was determined following Farquhar and Richards (1984) as quoted by Cernusak *et al.* (2013):

$$\Delta [\text{\textperthousand}] = \frac{Ra - Rp}{Rp} = \frac{\delta a - \delta p}{1 + \delta p} \quad (1)$$

where R_a is the $^{13}\text{C}/^{12}\text{C}$ ratio of CO_2 in air, and R_p is that of plant carbon. In the second form of Eq. 1, δ_a is $\Delta^{13}\text{C}$ of CO_2 in air and δ_p is that of plant carbon. The $\Delta^{13}\text{C}$ is defined with respect to a standard:

$$\delta^{13}\text{C}_{\text{sample}} = \frac{R_{\text{sample}} - R_{\text{std}}}{R_{\text{std}}} \quad (2)$$

where $\Delta^{13}\text{C}_{\text{sample}}$ is that of the sample of interest, R_{sample} is its $^{13}\text{C}/^{12}\text{C}$ ratio, and R_{std} is the $^{13}\text{C}/^{12}\text{C}$ ratio of a standard. The internationally accepted standard for expressing stable carbon isotope ratios is PDB, with a $^{13}\text{C}/^{12}\text{C}$ of 0.0112372 (Craig 1957) as quoted by Cernusak *et al.* (2013). In order to avoid working with very small numbers, Δ and $\delta^{13}\text{C}_{\text{sample}}$ are typically multiplied by 1,000, and denoted as parts per thousand [‰]. When Eq. 1 is multiplied by 1,000, this does not affect terms in the denominator. Therefore, if Δp were 28‰ in the numerator, $1+\Delta\text{p}$ in the denominator is still 1.028.

Soil plant analysis development (SPAD) readings: The readings were recorded with the help of SPAD-meter (*SPAD-502, Minolta Corp.*, USA). For recording observations, three fully expanded second or third leaf from top of the canopy on main stem or branches of each genotype were selected. Observations were recorded on each leaflet and averaged. While taking observations, care was taken to ensure that the SPAD meter sensor was fully covering the leaf lamina and that the interference from veins and midribs was totally avoided.

Evaluation of fodder yield: Based on the ratio of F_v/F_m in WD, genotypes were identified as efficient, moderately efficient, and inefficient. Field trials were conducted to analyse six selected genotypes, *i.e.*, *A. prostrata* Benth. (section: Extranervosae; NRCG 11,847), *A. glabrata* Benth. (section: Rhizomatosae, NRCG 11,818), and *A. marginata* Gardner [section: Extranervosae; NRCG 17,206 (efficient)], *A. pintoi* Krapov. and W.C. Gregory [section: Caulorrhizae, NRCG 12,990 (moderately-efficient)], and *A. hagenbeckii* Benth. (section: Rhizomatosae, NRCG 11,846), and *A. appressipila* Krapov. and W.C. Gregory [section: Procumbentes, NRCG 12,035 (inefficient)] for fodder yield during 2008 and 2009 in completely randomized block design (RCBD).

Plants of each genotype were multiplied through stem cuttings in polyethylene bags filled with soil and sand in 1:1 ratio during July 2006. After one year, fully grown cuttings were pit-planted in $15 \times 15 \text{ m}$ plot size with spacing of 7 m between rows and 1 m between plants with three replicates. Plants were allowed to establish and develop into dense foliage during one year. Agronomical practices, such as application of fertilizers, insecticides, and pesticides, were avoided, in spite of the low soil fertility at the experimental site. Crop after establishment in field received four irrigations to the field capacity between February and May at one-month intervals, each year. Crop did not receive any irrigation between June and

January and sustained on available soil moisture generated during rainy season (June–October). After one year from planting, the fodder yield was recorded by performing four cuttings at every 45-d intervals between July and January; fresh mass (FM) of the foliage was recorded and expressed as fresh mass (FM) yield $t\text{ ha}^{-1}$ per year.

Leaf water relation traits: Leaf relative water content (RWC), water potential (ψ_w), transpiration rate (E), and stomatal conductance (g_s) were measured under water-deficit (WD) and fully irrigated (IR) conditions. WD was simulated by withholding irrigation for 26-d and observations were recorded for three consecutive days. Crop was irrigated to the field capacity and after 1 d, the same set of observations was recorded for three consecutive days. During this period, maximum evapotranspiration was around 6 mm daily, as recorded by using Class A pan evaporation system; this period was free from rainfall. Soil samples from 0–10 cm depth were collected from both IR and WD conditions immediately after recording observations and the soil moisture content was determined gravimetrically.

Relative water content: For the measurement of RWC, leaf samples were collected from fully expanded two or three leaves from top of the canopy on the main stem or branches, in an ice box, between 09:00 and 10:00 h of the local time. Sampling was performed for each genotype, replicate, and water regime for three consecutive days. Leaf samples were arranged in laboratory in six replicates for each genotype, soil moisture regime, and three days. Thus, two leaves, *i.e.*, eight leaflets were arranged in each replicate and FM was recorded. Leaflets were soaked in distilled water in petri plates, after 4 h of soaking, leaf turgid mass (TM) was recorded. After recording TM, samples were dried at 80°C until constant mass in hot-air oven and dry mass (DM) was recorded. Relative water content was calculated following the formula as suggested by Barrs and Weatherly (1962):

$$\text{RWC} [\%] = [(FM - DM)/(TM - DM)] \times 100.$$

Leaf water potential (ψ_w): For the measurement of ψ_w , three fully expanded from the second or third leaves from top of the canopy on the main stem or branches were

collected in each genotype, replicate, and water regime, in an icebox, between 11:00 and 12:00 h of the local time (midday) for three days. Leaf ψ_w was determined on 12 leaf discs collected from each leaflet of three leaves, thus ψ_w was average of three leaves, 12 leaf disc, and three replicates for three consecutive days. Each leaf disc was placed in the leaf chamber (C-2) of CR 7 measurement and control system (*Campbell Scientific INC*, Logan, Utah) and ψ_w was recorded.

Measurement of transpiration rate (E): For measuring E and g_s , leaf porometer (*AP 4, Leaf Porometer, Delta-T Devices*, UK) was used. The measurements were made on three fully expanded second or third leaves from top of the canopy on the main stem or branches of each genotype, replicate, and soil moisture regime. Both abaxial and adaxial surfaces of single leaflets were used to record observations. Observations were recorded during between 09:00 and 10:00 h, 12:00 and 13:00 h, and 15:00 and 16:00 h of local time. Thus, values were an average of three different times, three leaflets of different leaves, two leaf surfaces, and three days.

Leaf protein: For the measurement of protein contents, fully expanded two or three leaves from top of the canopy on the main stem or branches were sampled from each genotype and replicate. Leaves were dried in oven at 80°C to constant mass. Micro-Kjeldahl method was followed to measure nitrogen content and values were multiplied by 5.46 to convert it into total protein contents (Soluski and Imafidon 1990).

Statistical analysis was performed following Gomez and Gomez (1984). Data collected in greenhouse experiment and field trial for the fodder yield were analysed following one-way of analysis of variance (*ANOVA*). Standard deviation (SD) was calculated and used at $p=0.05$ to explain genotypic variations. Principal component analysis (PCA) was performed according to Davis (2002) by using correlation method. Number of significant PCs was identified based on “screen plot” as suggested by Jackson (1993) and PC 1 and PC 2 with eigen value >1 and percentage variance between 43 and 27, respectively, were used to explain their contribution.

Results

Photosynthetic efficiency was measured by following different traits: F_v/F_m ratio, ΔC , SLA, and SPAD readings and genotypic response for these traits varied (Table 1). For example, the F_v/F_m ratio ranged from 0.83–0.85 in IR and 0.85–0.69 in WD indicating higher variability in WD, while F_0/F_m exhibited considerable degree of variability both in IR and WD (Table 1). Based on the F_v/F_m ratio in

WD, *i.e.*, average $(0.80) \pm \text{SD}$, genotypes with the F_v/F_m ratio between 0.80–0.85 were identified as efficient, 0.79–0.75 as moderately efficient, and those with less than 0.74 as inefficient ones (Table 1). Soil moisture during observation period in IR and WD at 0–10 cm depths ranged between 19 and 20%, and 15 and 16%, respectively. Association between F_v/F_m and F_0/F_m was inverse

Table 1. Quantum yield of PSII [F_v/F_m] and stability of thylakoid membranes [F_0/F_m] under irrigated (IR) and water-deficit (WD) conditions, and carbon isotope discrimination ($^{13}\text{C}/^{12}\text{C}$ or ΔC), specific leaf area (SLA), SPAD readings, under irrigated condition (IR) in 54 wild *Arachis* species and their accessions.

Genotypes	Accession number	Section	IR [F_v/F_m]	WD [F_v/F_m]	IR [F_0/F_m]	WD [F_0/F_m]	IR ΔC	IR SLA [$\text{cm}^2 \text{g}^{-1}$]	IR SPAD readings
<i>A. rigonii</i>	12,031	Procumbentes	0.85	0.84	0.12	0.15	20.8	253	19
<i>A. glabrata</i>	11,847	Rhizomatosae	0.85	0.84	0.13	0.15	21.7	187	29
<i>A. duranensis</i>	12,038	Arachis	0.85	0.84	0.13	0.15	21.0	206	19
<i>A. prostrata</i>	11,847	Rhizomatosae	0.85	0.84	0.13	0.15	21.9	184	30
<i>A. appressipila</i>	11,786	Procumbentes	0.85	0.84	0.12	0.15	19.0	184	30
<i>A. glabrata</i>	11,838	Rhizomatosae	0.85	0.84	0.12	0.16	19.0	130	38
<i>A. glabrata</i>	11829	Rhizomatosae	0.85	0.84	0.13	0.18	22.4	166	30
<i>A. glabrata</i>	11,818	Rhizomat	0.84	0.83	0.12	0.16	23.1	138	35
<i>A. glabrata</i>	11,831	Rhizomatosae	0.84	0.83	0.12	0.16	22.6	146	33
<i>A. glabrata</i>	11,815	Rhizomatosae	0.85	0.83	0.13	0.16	21.8	124	32
<i>A. paraguariensis</i>	11,793	Erectoides	0.85	0.83	0.13	0.16	21.7	144	26
<i>A. glabrata</i>	11,833	Rhizomatosae	0.85	0.82	0.12	0.17	19.5	140	30
<i>A. glabrata</i>	11,842	Rhizomatosae	0.85	0.82	0.12	0.17	21.4	162	37
<i>A. marginata</i>	17,206	Rhizomatose	0.85	0.82	0.13	0.17	22.1	150	41
<i>A. kempff-mercadoi</i>	12,019	Arachis	0.84	0.82	0.12	0.17	22.2	242	29
<i>A. glabrata</i>	11,839	Rhizomatosae	0.84	0.82	0.12	0.17	23.0	300	21
<i>A. glabrata</i>	11,845	Rhizomatosae	0.85	0.82	0.12	0.17	21.5	148	31
<i>A. glabrata</i>	11,844	Rhizomatosae	0.85	0.81	0.13	0.18	21.7	173	39
<i>A. glabrata</i>	12,033	Rhizomatosae	0.85	0.81	0.13	0.18	21.9	166	30
<i>A. glabrata</i>	11,841	Rhizomatosae	0.85	0.81	0.12	0.18	22.7	137	31
<i>A. glabrata</i>	11,819	Rhizomatosae	0.85	0.81	0.13	0.18	22.5	131	41
<i>A. duranensis</i>	11,782	Arachis	0.84	0.81	0.12	0.18	19.6	128	40
<i>A. glabrata</i>	11,826	Rhizomatosae	0.84	0.81	0.12	0.18	23.0	284	14
<i>A. glabrata</i>	11,822	Rhizomatosae	0.85	0.81	0.12	0.18	20.4	129	30
<i>A. monticola</i>	11,799	Arachis	0.84	0.81	0.13	0.18	20.8	152	30
<i>A. glabrata</i>	12,046	Rhizomatosae	0.85	0.80	0.14	0.19	24.5	233	19
<i>A. glabrata</i>	11,824	Rhizomatosae	0.85	0.80	0.14	0.19	23.5	231	24
<i>A. glabrata</i>	11,828	Rhizomatosae	0.85	0.80	0.12	0.19	21.2	133	39
<i>A. batizocoi</i>	11,795	Procumbentes	0.85	0.80	0.13	0.19	21.2	133	30
<i>A. duranensis</i>	11,803	Arachis	0.85	0.80	0.14	0.19	21.4	180	20
<i>A. glabrata</i>	11,837	Rhizomatosae	0.85	0.80	0.13	0.19	22.5	222	23
<i>A. kretschmeri</i>	12,029	Procumbentes	0.85	0.80	0.13	0.21	19.3	153	33
<i>A. monticola</i>	11,800	Arachis	0.84	0.80	0.12	0.17	19.0	140	35
<i>A. glabrata</i>	11,813	Rhizomatosae	0.85	0.80	0.14	0.22	21.3	137	32
<i>A. glabrata</i>	11,821	Rhizomatosae	0.85	0.80	0.14	0.19	20.4	111	31
<i>A. stenosperma</i>	12,026	Arachis	0.85	0.80	0.15	0.21	22.0	183	26
<i>A. duranensis</i>	12,045	Arachis	0.84	0.80	0.15	0.19	21.9	150	35
<i>A. glabrata</i>	11,835	Rhizomatosae	0.85	0.80	0.15	0.22	22.5	310	19
<i>A. glabrata</i>	11,834	Rhizomatosae	0.85	0.79	0.15	0.20	22.1	177	27
<i>A. batizocoi</i>	12,018	Procumbentes	0.84	0.79	0.14	0.20	22.0	136	33
<i>A. batizocoi</i>	11,810	Procumbentes	0.84	0.78	0.15	0.20	19.5	187	38
<i>A. paraguariensis</i>	ICG 8,903	Erectoides	0.85	0.78	0.16	0.21	20.0	230	15
<i>A. glabrata</i>	12,036	Rhizomatosae	0.85	0.78	0.17	0.21	22.5	225	26
<i>A. glabrata</i>	11,823	Rhizomatosae	0.85	0.78	0.16	0.22	21.9	117	38
<i>A. diogoi</i>	11,781	Arachis	0.84	0.78	0.14	0.22	22.1	187	27
<i>A. duranensis</i>	11,809	Arachis	0.85	0.78	0.15	0.29	19.0	103	30
<i>A. duranensis</i>	12,043	Arachis	0.85	0.78	0.15	0.30	22.0	211	22
<i>A. pintoi</i>	12,990	Caulorhizae	0.84	0.77	0.14	0.22	22.1	150	35
<i>A. glabrata</i>	11,832	Rhizomatosae	0.84	0.77	0.15	0.22	21.5	160	37
<i>A. duranensis</i>	11,801	Arachis	0.83	0.77	0.15	0.25	22.5	160	28
<i>A. hagenbeckii</i>	11,846	Rhizomatosae	0.83	0.70	0.16	0.23	21.2	155	31
<i>A. batizocoi</i>	12,030	Procumbentes	0.83	0.70	0.14	0.26	22.5	251	28
<i>A. stenophylia</i>	11,811	Erectoides	0.84	0.70	0.16	0.30	22.1	271	20
<i>A. appressipila</i>	12,035	Procumbentes	0.84	0.70	0.16	0.30	20.1	132	38
	SD (p=0.05)		0.005	0.035	0.013	0.038	2.96	49.4	6.88

Table 2. Leaf relative water content (RWC), water potential [MPa], stomatal conductance (g_s) and transpiration (E) under irrigated (IR) and water-deficit (WD) conditions in selected wild *Arachis* species belonging to efficient, moderately efficient and inefficient groups.

Drought tolerance type	Species/Accession	IR RWC	WD RWC	IR Ψ_w [MPa]	WD Ψ_w [MPa]	IR g_s [mol(H ₂ O) m ⁻² s ⁻¹]	WD g_s [mol(H ₂ O) m ⁻² s ⁻¹]	IR E [mmol(H ₂ O) m ⁻² s ⁻¹]	WD E [mmol(H ₂ O) m ⁻² s ⁻¹]
Efficient	<i>A. glabrata</i> 11,818	97	87	-0.7	-0.90	291	256	11.2	10.2
	<i>A. prostrata</i> 11,847	98	90	-0.7	-1.0	305	267	11.4	10.5
	<i>A. marginata</i> 17,206	97	91	-0.8	-1.0	291	267	10.9	10
Moderately efficient	<i>A. pinoi</i> 12,990	96	87	-0.8	-1.2	291	267	10.5	9.4
	<i>A. hagenbeckii</i> 11,846	94	84	-0.7	-1.2	278	256	10	9.2
Inefficient	<i>A. appressipila</i> 12,035	96	85	-0.8	-1.1	278	246	11.7	9.4
SD ($p=0.05$)		NS	7.16	NS	0.70	9.9	8.4	1.5	1.2

($r = -0.85$). In addition, Chl fluorescence parameters did not show any significant association with the rest of the traits measured in this study. Further, ΔC ranged from 19.0–24.5 being lower in *A. monticola* 11,800 and *A. duranensis* 11,809 and higher in *A. glabrata* 12,046 (Table 1). This range of ΔC in wild *Arachis* species was slightly higher than the range recorded in groundnut cultivars and germplasm (data not presented). In addition, ΔC in about 50% of genotypes ranged between 19–22, and association between ΔC and SLA was not strong enough ($r = 0.42$). While SLA, which is a surrogate trait for ΔC , ranged between 103 in *A. duranensis* 11,809 and 310 in *A. glabrata* 11,835 (Table 1). However, such a wide range also was not able to indicate photosynthetic efficiency due to poor association with the main trait. SPAD readings also followed more or less the same trend as shown in SLA, it ranged between 16 and 41. This range also indicated total Chl concentration and associations between SPAD readings and SLA ($r = -0.76$) were strong, while SPAD readings and ΔC ($r = -0.30$) were weakly associated.

Principal component analysis: All traits studied were analysed for genotype-by-trait (GT-biplot) interaction following PCA and only two PCs, PC 1 and PC 2, showing eigen values higher than 1, were used. Among the traits analysed, loadings of components were higher in F_v/F_m followed by F_0/F_m and correlation between loading and trait was also higher for these two parameters: $r = -0.55$ and $r = 0.52$, respectively, in WD. Further, “scatter plot analysis” indicated variability among genotypes for the trait. In biplot analysis, vector length of traits showed that each parameter was contributing differently and their association with each other varied significantly due to genotype-by-trait, and trait-by-trait interactions. In WD, vector of length in F_v/F_m was longer than all the other traits, indicating that most of the variation was represented by this trait.

Field trials: The efficient, moderately efficient, and inefficient genotypes identified by the F_v/F_m ratio indicated significant variations in leaf water relation traits (Table 2) and fodder yield (Table 3). This vindicated that selection based on F_v/F_m ratio was a true representation of the measurement of photosynthetic efficiency.

Leaf water relation traits: Among genotypes, distribution of leaf water traits, such as RWC, ψ_w , E , and g_s , when values were averaged over IR and WD, varied significantly. This indicated that maintenance of leaf water status was better in the efficient than that in inefficient genotypes under water deficit (Table 2). For illustration, among genotypes, distribution of each component of leaf water-relation trait based on average values was at a higher range in efficient, moderately higher in moderately efficient, and lower in the inefficient genotypes. In general, RWC ranged between 94 and 98% in IR, and 84 and 91% in WD (Table 2). Genotypic response of RWC in efficient

and inefficient genotypes under water deficit was quite distinct, *i.e.*, it ranged between 87 and 91% in efficient and 84 and 85% in inefficient. Similarly, ψ_w ranged between -0.7 and -0.8 in IR and -0.9 and -1.2 MPa in WD, however, in WD it was more negative in the inefficient (-1.1 to -1.2 MPa) than that of efficient (-0.9 to -1.0 MPa) genotypes (Table 2). E ranged between 10.0 and 11.6 mmol (H_2O) $m^{-2} s^{-1}$ in IR and 9.2 and 10.5 mmol(H_2O) $m^{-2} s^{-1}$ in WD, in addition, E was higher in *A. appressipila* 12,035 in IR and thereafter it decreased in WD (Table 2). In efficient genotypes, the decrease in E was lower in WD.

Table 3. Fodder yield during 2008 and 2009 in fresh mass (FM) and leaf protein contents in selected wild *Arachis* species belonging to efficient, moderately efficient, and inefficient groups.

Species/Accession		Fodder yield [t(FM) ha^{-1}] (2008)	Fodder yield [t(FM) ha^{-1}] (2009)	Leaf protein [%]
Efficient	<i>A. glabrata</i>	3.8	3.7	16.9
	<i>A. prostrata</i>	3.6	3.8	14.2
	<i>A. marginata</i>	3.2	3	16.8
Moderately efficient	<i>A. pintoi</i>	2.7	2.6	12.1
Inefficient	<i>A. hagenbeckii</i>	2.3	2.4	11.1
	<i>A. appressipila</i>	2.5	2.3	14.8
	SD ($p=0.05$)	0.78	0.75	1.2

Green biomass production or fodder yield: During both the years, the fodder yield was recorded higher in the efficient than that of inefficient genotypes and decreased in linear fashion starting from efficient to moderately efficient to inefficient genotypes (Table 3). Among genotypes, it ranged between 2.3 and 3.8 t ha^{-1} being higher in *A. glabrata* 11,818 in 2008 and *A. prostrata*

Similarly, g_s varied from 278–305 and 246–256 mmol (H_2O) $m^{-2} s^{-1}$ in IR and WD, respectively, however, the efficient genotypes maintained higher g_s both in IR and WD than that of the inefficient genotypes (Table 2). Thus, leaf water-relation traits in the efficient genotypes exhibited a potential in maintaining higher leaf water status, especially under WD. Soil moisture during the period of recording the observations in IR and WD at 0–10 cm depths ranged between 18 and 20%, and 14 and 15%, respectively.

11,847 in 2009 (both efficient). Among various groups the fodder yield ranged from 3.1–3.8 in efficient, 2.6–2.7 in moderately efficient, and 2.3–2.5 t ha^{-1} in inefficient in 2008 and 2009, respectively. In addition, leaf protein contents on DM basis were higher in efficient, ranging between 14.2 and 16.9% than inefficient (11.1–14.8%) genotypes (Table 3).

Discussion

This study demonstrated wide genotypic variations in the photosynthetic efficiency as defined by the F_v/F_m ratio. Further, analysis of identified genotypes, belonging to different groups, for biomass production and leaf water-relation traits, indicated important role of PSII in adaptation of photosynthetic apparatus. This adaptation helped the efficient genotypes in production of higher biomass under limited water supply and poor soil conditions. Thus, adaptation in PSII favoured higher fixation of CO_2 molecules per molecule of water loss. Thus the efficient genotypes, *i.e.*, *A. glabrata* 11,818, *A. prostrata* 11,874, and *A. marginata* 17,206, were identified with higher water-use efficiency. Their cultivation under WD environments could be an advantage. Therefore, use of these genotypes either in cultivation as fodder crop or development of pastureland may increase biomass in marginal production environments in subtropical regions, worldwide.

In addition, detailed analysis of traits by PCA indicated that F_v/F_m under WD was closely associated with photosynthetic machinery than any other trait examined in this study. The characteristic of water saving and tolerance

of photosynthetic machinery under water deficit have been also reported in drought-tolerant groundnut cultivars (Nautiyal *et al.* 1995, 1999, 2012). This mechanism could be illustrated by details of PSII activity. For example, it is possible that in an inefficient genotype, under water deficit, an overcharged photosynthetic apparatus is generated, while in the efficient genotype stability of carotene and dissipative cycle around PSII might be protecting reaction centres (Lauriano *et al.* 2000). Ultimately, this activity in the efficient and inefficient genotypes might influence biomass productivity. Groundnut cultivars have been reported for such variation in the F_v/F_m ratio and this was attributed to variation in final productivity (Lauriano *et al.* 2006). Thus, in the process of photosynthesis under water deficit, F_v/F_m plays a regulatory role in maintaining a balance between energy supply *via* photochemistry and energy consumption *via* photosynthetic carbon reduction (Franks and Beerling 2009). In this study, lower biomass production in the inefficient genotypes under limited water supply and poor soil conditions could be ascribed to susceptibility of PSII under water deficit which was

indicated by the decrease of F_v/F_m leading to restriction in diffusion of CO_2 into chloroplast. Susceptibility to water deficit modifies primary photochemistry and ultimate carbon metabolism (Galmés *et al.* 2007, Franks and Beerling 2009) which results in a lower biomass production as compared to efficient genotypes. Thus, variations in PSII activity played an important role in defining adaptation of photosynthetic efficiency, which is easy to measure as the F_v/F_m ratio, under water deficit.

Among other traits, ΔC is reported to be closely associated with photosynthetic efficiency (Hubick *et al.* 1986, Nageswara Rao and Wright 1994). However, in this study, it showed a narrow range. In addition, SLA and SPAD readings are often used as surrogate trait for ΔC (Nautiyal *et al.* 2002, Nigam *et al.* 2008), however, both of these traits measure Chl contents in relation to leaf thickness and nitrogen content, respectively. Therefore, association between SLA and SPAD readings was strong ($r = 0.76$) while between ΔC and SLA was weaker ($r = 0.46$). Thus surrogate traits, such as SLA and/or SPAD readings, may (Varshney *et al.* 2009) or may not (Vasfilov 2012) be true indication of photosynthetic efficiency. In

addition, there are reports that photosynthetic rate and F_v/F_m are more closely associated with Rubisco as compared to SPAD readings, and it was concluded that PSII photochemical and CO_2 assimilation capacities are strongly influenced by the Rubisco activity (Kumagai *et al.* 2009). Therefore, F_v/F_m measures photosynthetic efficiency more accurately than any other traits used in this study.

Conclusion: This study generated knowledge on genotype-by-trait and trait-by-trait interactions which led us to identify the efficient genotypes by measuring the F_v/F_m ratio. Thus, use of identified genotypes in cultivation as fodder crop or for development of pastureland certainly enhances biomass productivity in semiarid tropics where scarcity of water is a serious problem. In addition, donor source identified in this study could be of immense value in developing new germplasm and designing ideotype for improving photosynthetic efficiency in groundnut cultivars. Moreover, large number of populations may be screened by the F_v/F_m ratio, under water deficit, which is easy to use, precise, and rapid.

References

Barrs H.D., Weatherly P.E.: A re-examination of the relative turgidity technique for estimating water deficit in leaves. – *Aust. J. Bio. Sci.* **15**: 413-428, 1962.

Bera S.K., Ajay B.C., Singh A.L.: *WRKY* and Na^+/H^+ antiporter genes conferring tolerance to salinity in interspecific derivatives of peanut (*Arachis hypogaea* L.). – *Aust. J. Crop Sci.* **7**: 1173-1180, 2013.

Bera S.K., Kamdar J.H., Maurya A.K. *et al.*: Molecular diversity and association of simple sequence repeat markers with bud necrosis disease in interspecific breeding lines and cultivars of peanut (*Arachis hypogaea* L.). – *Aust. J. Crop Sci.* **8**: 771-780, 2014.

Björkman O., Demming B.: Photon yield of O_2 evaluation and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. – *Planta* **170**: 489-504, 1987.

Cernusak L.A., Ubierna N., Winter K. *et al.*: Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. – *New Phytol.* **200**: 950-965, 2013.

Craig H.: Isotopic standards for carbon and oxygen and correlation factors for mass-spectrometric analysis of carbon-dioxide. – *Geochim. Cosmochim. Ac.* **12**: 133-149, 1957.

Davis J.C.: Statistics and Data Analysis in Geology. Pp. 509-523. John Wiley & Sons, New York 1986.

Epron D., Godard D., Cornic G. *et al.*: Limitation of net CO_2 assimilation rate by internal resistances to CO_2 transfer in the leaves of two tree species (*Fagus sylvatica* L. and *Castanea sativa* Mill.). – *Plant Cell Environ.* **18**: 45-51, 1995.

Farquhar G.D., Richards R.A.: Isotopic composition of plant carbon correlates with water-use efficiency in wheat genotypes. – *Aust. J. Plant Phys.* **11**: 539-552, 1984.

Fiorani F., Schurr U.: Future scenarios for plant phenotyping. – *Annu. Rev. Plant Biol.* **64**: 267-291, 2013.

Franks P.J., Beerling D.J.: Maximum leaf conductance driven by CO_2 effects on stomatal size and density over geologic time. – *P. Natl. Acad. Sci. USA* **106**: 10343-10247, 2009.

Galmés J., Medrano H., Flexas J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. – *New Phytol.* **175**: 81-93, 2007.

Gomez K.A., Gomez A.A.: Statistical Procedures for Agriculture Research. Pp. 241-270. John Wiley & Sons, New York 1984.

Govindjee: Chlorophyll *a* fluorescence: A bit of basic and history. – In: Papageorgiou G.C., Govindjee (ed.): *Chlorophyll a Fluorescence: A Probe of Photosynthesis*. Pp. 1-42. Kluwer Academic, Dordrecht 2004.

Guo P., Baum M., Varshney R.K. *et al.*: QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under postflowering drought. – *Euphytica* **163**: 203-214, 2008.

Hubick K.T., Farquhar G.D., Shorter R.: Correlation between water use efficiency and carbon isotope discrimination in diverse peanut (groundnut) germplasm. – *Aust. J. Plant Physiol.* **13**: 803-816, 1986.

Jackson D.A.: Stopping rules in principal components analysis: a comparison of hueristical and statistical approaches. – *Ecology* **74**: 2204-2214, 1993.

Kumagai E., Araki T., Kubota F.: Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (*Oryza sativa* L.) plants. – *Plant Prod. Sci.* **12**: 50-53, 2009.

Lauriano J.A., Lidon F.C., Carvalho C.A. *et al.*: Drought effects on membrane lipids and photosynthetic activity in different peanut cultivars. – *Photosynthetica* **38**: 7-12, 2000.

Lauriano J.A., Ramalho J.C., Lidon F.C. *et al.*: Mechanism of energy dissipation in peanut under water stress. – *Photosynthetica* **44**: 404-410, 2006.

Lu J., Pickersgill B.: Isozyme variation and species relationship in peanut and its wild relatives (*Arachis* L. Leguminosae). – *Theor. Appl. Genet.* **85**: 550-560, 1993.

Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – *J. Exp. Bot.* **51**: 659-668, 2000.

Michelotto M.D., Barioni W. Jr., de Resender M.D. *et al.*:

Identification of fungus resistant to wild accessions and interspecific hybrids of the genus *Arachis*. – PLoS ONE: e128811, 2015.

Nageswara Rao R.C., Wright G.C.: Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut. – *Crop Sci.* **34**: 98-103, 1994.

Nautiyal P.C., Ravindra V., Joshi Y.C.: Gas exchange and leaf water relations in two peanut cultivars of different drought tolerance. – *Biol. Plantarum* **37**: 371-374, 1995.

Nautiyal P.C., Ravindra V., Zala P.V. *et al.*: Enhancement of yield in groundnut following the imposition of transient soil-moisture-deficit stress during the vegetative phase. – *Exp. Agr.* **35**: 371-385, 1999.

Nautiyal P.C., Nageswara Rao Rachaputi, Joshi Y.C.: Moisture-deficit-induced changes in leaf water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. – *Field Crop. Res.* **74**: 67-79, 2002.

Nautiyal P.C., Rajgopal K., Zala P.V. *et al.*: Evaluation of Wild *Arachis* species for abiotic stress tolerance: I Thermal stress and leaf water relations. – *Euphytica* **159**: 43-57, 2008.

Nautiyal P.C., Ravindra V., Rathnakumar A.L. *et al.*: Genetic variations in photosynthetic rate, pod yield and yield components in Spanish groundnut cultivars during three cropping seasons. – *Field Crop. Res.* **125**: 83-91, 2012.

Nigam S.N., Aruna R.: Stability of soil plant analytical development (SPAD) chlorophyll meter reading (SCMR) and specific leaf area (SLA) and their association across varying soil moisture stress conditions in groundnut (*Arachis hypogaea* L.). – *Euphytica* **160**: 111-117, 2008.

Nogués S., Baker N.R.: Effect of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. – *J. Exp. Bot.* **51**: 1309-1317, 2000.

O'Neill P.M., Shanahan J.F., Schepers J.: Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions. – *Crop Sci.* **46**: 681-687, 2006.

Singh A.L., Nakar R.N., Chakraborty K. *et al.*: Physiological efficiency in mini-core peanut germplasm accessions during summer season. – *Photosynthetica* **52**: 627-635, 2014.

Simpson C.E.: Global collaborations find and conserve the irreplaceable genetic resources of wild peanut in South America. – *Diversity* **7**: 59-61, 1991.

Sosulski F.W., Imafidon G.I.: Amino acid composition and nitrogen-to-protein conversion factors for animals and plant foods. – *J. Agric. Food Chem.* **38**: 1351-1356, 1990.

Stefanov D., Terashima I.: Non-photochemical loss in PSII in high-and low-light-grown leaves of *Vicia faba* quantified by several fluorescence parameters including L_{NP} , F_0/F_m : a novel parameter. – *Physiol. Plantarum* **133**: 327-338, 2008.

Subhramanyam P., Moss J.P., McDonald D. *et al.*: Resistance to leaf spot caused by *Cercosporidium personatum* in wild *Arachis* species – *Plant Disease* **69**: 951-954, 1985.

Upadhyaya, H.D., Dwivedi S., Nadaf H. *et al.*: Phenotypic diversity and identification of wild *Arachis* accessions with useful agronomic and nutritional trait. – *Euphytica* **182**: 103-115, 2011.

Valls J.F.M.: Collection of *Arachis* germplasm in Brazil. – *Plant Genet. Resour. Newslett.* **53**: 9-14, 1983.

Varshney R.K., Bertioli D.J., Moretzsohn M.C. *et al.*: The first SSR-based genetic linkage map for cultivated groundnut (*Arachis hypogaea* L.). – *Theor. Appl. Genet.* **118**: 729-739, 2009.

Vasfilov S.P.: Analysis of the cause of variability of the dry leaf mass-per-area ratio. – *Biol. Bull. Rev.* **2**: 238-253, 2012.

Zhang X., Wan Q., Liu F.Z. *et al.*: Molecular analysis of the chloroplast Cu/Zn-SOD gene (AhCSD2) in peanut. – *Crop J.* **3**: 246-257, 2015.