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Thermal acclimation of the temperature dependence of the Vcmax
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Abstract

Changes in the temperature dependence of the maximum carboxylation capacity (Vcmax) of Rubisco during thermal
acclimation of Py remain controversial. I tested for acclimation of the temperature dependence of Vcmax in quinoa, wheat,
and alfalfa. Plants were grown with day/night temperatures of 12/6, 20/14, and 28/22°C. Responses of Py to substomatal
CO; (Ci) and CO; at Rubisco (C.) were measured at leaf temperatures of 10-30°C. Vmax Was determined from the initial
slope of the Py vs. Cj or C. curve. Slopes of linear regressions of 1/Vemax vs. 1/T [K] provided estimates the activation
energy. In wheat and alfalfa the increases in activation energy with growth temperature calculated using C; did not always
occur when using C,, indicating the importance of mesophyll conductance when estimating the activation energy.
However, in quinoa, the mean activation energy approximately doubled between the lowest and highest growth

temperatures, whether based on C; or C..
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Introduction

Acclimation of photosynthesis (Pn) to temperature in
higher plants has been extensively studied, and has
primarily been related to changes in the maximum capacity
of Rubisco (Vcmax) per unit leaf area and to changes in the
maximum capacity of photosynthetic electron transport
(Jmax) and/or the temperature dependence of Jnax (e.g.,
Bunce 2000, June et al. 2004, Onoda et al. 2005, Yamori
et al. 2005, Hikosaka ef al. 2006). Acclimation of Py to
growth temperature generally results in more similar rates
of Py under the various growth temperatures than expected
from the short-term response to measurement temperature
(Leuning 2002, Sage and Kubien 2007). This usually
results at least partly from increases in Vcmax at cooler
growth temperatures. The temperature dependence of
Vemax has often been considered to be quite uniform across
species and growth conditions (e.g., Farquhar et al. 1980,
Bernacchi er al. 2003), although a slightly lower mean
activation energy of Vemax has been found in Cs species
from cool compared to warm environments (Galmés et al.
2016). Deactivation of Rubisco at high temperatures
occurs in some cases, and can confound the determination

of activation energy (Kattge and Knorr 2007). However,
Hikosaka et al. (2006) restricted their analysis of the
literature to temperatures below those causing deactivation
of Rubisco, and still found that lower growth temperatures
often reduced the activation energy of Vcmax. Most of the
studies reviewed by Hikosaka et al. (2006) were for
seasonal environmental changes, which involves both
temperature and day length (Yamaguchi et al. 2016).
Mesophyll conductance (gm) to CO, movement from
beneath the stomata to Rubisco may change strongly with
temperature in species-specific patterns (von Caemmerer
and Evans 2015), and could also affect the apparent
temperature dependency of Vcmax, if not accounted for. In
this study, the analysis was restricted to temperatures
below those resulting in deactivation of Rubisco, and gm
was measured at each temperature. 1 tested for the
existence of thermal acclimation of Pn, and of the
temperature dependence of the Vemax of Rubisco in three
species, quinoa, alfalfa, and wheat, which grow well over
a range of cool to moderate temperatures.
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Abbreviations: Ci — [CO] in the substomatal (intercellular) airspace; Cc — [CO2] at Rubisco; gm — mesophyll conductance to COz;
Jmax — the maximum rate of photosynthetic electron transport; Kmcoz — the Michaelis constant of Rubisco carboxylation; Px — net
photosynthetic rate; Vcmax — the maximum rate of carboxylation of Rubisco; AHa — activation energy.
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Materials and methods

Quinoa (Chenopodium quinoa Willd.) cv. Cherry Vanilla,
alfalfa (Medicago sativa L.) cv. Arc, and wheat (Triticum
aestivum L.) cv. Jamestown were grown with day/night
temperatures of 12/6, 20/14, and 28/22°C in indoor
controlled environment chambers. Three sets of plants of
each species were grown at each temperature, with the
growth temperature treatments rotated among two growth
chambers. Light at 1,000 pmol(photon) m~ s~! PPFD was
provided 14 h per day, which provides a daily total photon
flux similar to summer values in Beltsville. The CO;
concentration in the chamber was controlled at 380 umol
mol™! during the light, and 410 umol mol™! in the dark by
addition of pure CO, or air scrubbed of CO,. CO;
concentrations were monitored with WMA-4 infrared ana-
lyzers (PP Systems, Amesbury, MA, USA). The chamber
dew point temperatures were 4°C below the night time
temperatures for all growth regimes. Plants were grown in
plastic pots filled with vermiculite and flushed daily with
a complete nutrient solution containing 14.5 mM N. Leaf
gas-exchange measurements were conducted on fully
expanded main stem leaves within a few days after
reaching maximum area. Fifth main stem leaves were
measured in alfalfa and quinoa, and eighth leaves in wheat.

Leaf gas-exchange measurements of responses of Px to
CO; concentration were conducted in a darkened
controlled environment chamber, whose temperature was
set to match that of the measured leaf. The use of the
darkened chamber prevented possible dehydration of
plants grown at low temperatures when exposed to higher
evaporative demand at high temperatures. Steady-state
responses of Px to five CO, concentrations from 50 to 800
umol mol™ were measured at PPFD = 2,000 umol m™2 s}
at leaf temperatures of 10, 15, 20, 25, and 30°C, using a
CIRAS-3 portable photosynthesis system (PP Systems,

Results

Overall, thermal acclimation of Py was evident in the shifts
in the temperature response of Pn measured at C; =
250 pmol mol™. In all of these cases, Px was limited by
Vemax rather than Jinax at C; below about 300 umol mol™.
In quinoa, all three growth temperatures produced
different Py vs. temperature curves (Fig. 14). Acclimation
to temperature in quinoa resulted in higher rates of Py at
the daytime growth temperature in plants acclimated to
lower temperatures than would have occurred without
acclimation (Fig. 14). In wheat, the highest growth
temperature resulted in lower Py at low temperatures and
higher Py at high temperatures than the two lower growth
temperatures (Fig. 1B). Alfalfa had low Py at all
temperatures when grown at the lowest temperature
(Fig. 1C). As with wheat, in alfalfa the highest growth
temperature reduced Py at the lowest measurement
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Amesbury MA, USA) with light, temperature, CO,, and
humidity control. The leaf to air water vapor pressure
differences were between 0.8 and 1.8 kPa at all measure-
ment temperatures. Mesophyll conductance (gm) was
estimated independently of this data, using different
plants, and a different leaf gas exchange system. A Li-Cor
6400 system (Li-Cor, Inc., Lincoln, NB, USA) was used to
determine gn from the oxygen sensitivity of photo-
synthesis (Bunce 2009) at substomatal CO, (C;) values of
about 150 pmol mol™, at a PPFD of 2,000 umol m= s! at
leaf temperatures of 10, 15, 20, 25, and 30°C for three
leaves of each species at each growth and measurement
temperature. Mean values of gn, for each species, measure-
ment and growth temperature were used to calculate the
CO; concentration at Rubisco (Cc) from Py and Cj, using
C: = (Ci — Pn)/gm. Vemax was then determined from the
initial slope of the Pn vs. Ci or C. for each leaf and
measurement temperature, with Vemax calculated in two
different ways: taking gn into account (C), and alterna-
tively, by assuming infinite g (C;). Linear regressions of
1/Vemax vs. 1/T [K] provided estimates of the activation
energy (AH.) of Vemax (Medlyn et al. 2002, Kattge and
Knorr 2007), and standard errors of regression. There were
no cases in which measurements made at the highest
temperature (30°C) deviated substantially from a linear
regression developed from measurements at lower
temperatures. Therefore deactivation of Rubisco at high
measurement temperature did not occur in this data, and
no deactivation term was used in estimating AH,.

For each growth condition, AH, was determined with
and without gn, included, for three or four leaves of each
species. Analysis of variance was used to test for effects of
growth temperature on the AH, of Vcmax for each species,
using Vemax estimated with or without gp,.

temperatures and increased Py at the highest measurement
temperature (Fig. 1C).

The effect of measurement temperature on the initial
slope of the Py vs. C; curves was in all cases less at lower
growth temperatures than at the highest growth tempera-
ture, as illustrated for quinoa in Fig. 2 and for wheat in
Fig. 3. The Vcmax based in C; at low measurement tempera-
tures was higher in quinoa plants grown at 12/6°C than in
plants grown at 28/22°C, but the reverse pattern occurred
at high measurement temperatures (Fig. 4). These patterns
indicate that the activation energy of Vcmax based on C; was
in all cases highest at the highest growth temperature.

Mesophyll conductance varied substantially with
measurement temperature in all of the species, in ways
which depended on the growth temperature (Fig. 5). In
general, low growth temperature reduced the increase in
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Fig. 1. The temperature responses of Pn measured at a

photosynthetic photon flux density of 2,000 umol m2 s™!, at a
substomatal CO2 concentration of 250 pmol mol™! for quinoa (4),
wheat (B), and alfalfa (C) grown at day/night temperatures of
12/6, 20/14, and 28/22°C. Error bars indicate standard errors for
three or four leaves.

gm at the high measurement temperatures, which occurred
in all of the species when grown at the highest temperature
(Fig. 5). In the case of alfalfa and wheat grown at the
lowest temperature, gn was reduced at the high measure-
ment temperatures.

The activation energy of Vemax increased with growth
temperature over the whole range of temperatures in

Discussion

Although responses of Py to C; were obtained on different
plants and by different instruments than those used to
measure gm, both sets of plants and instruments produced
very similar rates of Py at a given Cj, as illustrated for
quinoa (Fig. 24). This supports the validity of both sets of
measurements.

By the usual criterion of changes in the value of Px
assayed at a common moderate temperature (e.g., 20°C)
after growth at different temperatures, acclimation of Py to
growth temperature did not occur in wheat (Fig. 1). In
quinoa, the intermediate growth temperature produced
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Fig. 2. Responses of Pn to substomatal CO2 concentrations
measured at 15 or 30°C, for quinoa grown at day/night
temperatures of 12/6 (4) or 20/14°C (B). Circles represent values
from the Ciras-3 instrument, and triangles represent values
obtained with the LiCor instrument on different plants obtained
during the course of estimating mesophyll conductance.

quinoa, whether Vemax was calculated using Ci or C;
(Fig. 6). In wheat, activation energies increased from the
medium to the highest growth temperature whether
calculated using C; or C,, but increased significantly at the
highest growth temperature compared with the lowest
temperature only when based on Cj, not when based on C,
(Fig. 6). In alfalfa, activation energy increased at the
highest growth temperature when based on Cj, but not
when calculated using C; (Fig. 6).

leaves with the highest Vemax, suggesting that acclimation
to the intermediate growth temperature occurred compared
with the highest growth temperature, but that photo-
synthetic acclimation to the lowest growth temperature
was unsuccessful, as in wheat (Fig. 1). That this is too
narrow a criterion for the existence of acclimation of Py to
growth temperature is most clearly evident in the case of
quinoa, where Py at the lowest measurement temperature
was increased by growth at the lowest temperatures
(Fig. 14), despite the reduction in Vcmax assayed at 20°C.
Higher Py at the lowest measurement temperature in this
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Fig. 3. Responses of Pn to substomatal CO2 concentrations
measured at 15 or 30°C, for wheat grown at day/night tempera-
tures of 20/14 (A4) or 28/22°C (B).
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Fig. 4. Responses of the maximum carboxylation capacity of
Rubisco (Vcmax) to measurement temperature in quinoa grown
with day/night temperatures of 12/6 or 28/22°C. Vcmax was
calculated assuming infinite mesophyll conductance. Error bars
represent standard errors.
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Fig. 5. Responses of mesophyll conductance (gm) to measure-
ment temperature for quinoa, wheat, and alfalfa grown at three
temperatures.

case was clearly the result of the reduction in the activation
energy of Vemax (Figs. 4, 5) during growth at low tem-
perature.

In quinoa grown at the lowest temperature, Py at C; =
250 umol mol™! decreased at measurement temperatures
above 20°C (Fig 14). This also occurred, to a smaller
extent, for wheat grown at the lowest two growth tempera-
tures (Fig. 1B). In these cases, the reductions in Py at high
temperature were attributable to their low values of the
AH, of V cmax, rather than the more usual cause of limitation
by Jmax at high temperatures. For these growth conditions
and species, the low AH, of Vcmax apparently result in a
smaller increase in Vcmax With temperature than the
increase in the Michaelis constant of Rubisco carboxy-
lation (Kmco2), since Jmax Was found to be not limiting
below C; = 300 umol mol™!. Busch and Sage (2017) also
found that Vcmax rather than Ju. limited Pn at high
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Fig. 6. The activation energy of the maximum carboxylation
capacity of Rubisco (Vcmax ) of Rubisco for quinoa, wheat, and
alfalfa grown at three temperatures. Activation energies were
based either on Pn vs. substomatal CO2 concentration (Ci) or Pn
vs. CO2 at Rubsico (C¢) response curves. Error bars represent
standard errors of regression for determination of activation
energies. See the text for details.

temperatures in sweet potato. A low AH, of Vemax would
result in a decrease in Py at high temperatures despite Py
being still limited by Vemax. Although the AH, of the Kinco2
was not measured here, it averages about 44 kJ mol™! in Cs
Spermatophyta (Galmés et al. 2016). It would be
interesting to know whether other cases of low optimum
temperature of Py in air are caused by low values of AH,
of Vemax compared with the AH, of Kincoo.

For the quinoa and wheat, thermal acclimation of the
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