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Abstract

Ascorbic acid (Asc) is a major plant antioxidant. L-galactono-1,4-lactone dehydrogenase (GLDH) is an enzyme that
catalyzes the last step of Asc biosynthesis in higher plants. Effects of endogenous Asc on resistance to high-temperature
stress were studied by using GLDH-overexpressed (GO-2) and GLDH-suppressed transgenic rice (GI-2) as experimental
materials. After high-temperature treatment, the maximal quantum yield of PSII was significantly lower in GI-2, and
higher in GO-2 compared to wild type rice. The content of reactive oxygen species (ROS) was the highest in GI-2. The
higher Asc content resulted in lower lipid peroxidation in GO-2. The contents of chlorophyll, soluble proteins, and Rubisco
large and small subunit were positively correlated to the Asc content. These results show that the higher Asc content
reduced the accumulation of ROS and maintained the function of rice leaves. We suggest that the higher Asc content could

improve the rice resistance to high-temperature stress.
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Rice is the staple crop for approximately half of the world
population (lizumi and Ramankutty 2016, Fairhurst and
Dobermann 2002). In China, rice is mainly grown in
summer. However, high temperatures in the summer cause
damage to rice and affect the photosynthetic capacity (Bita
and Gerats 2013) in rice-growing areas throughout the
world (Kaneko et al. 2016). The high-temperature damage
in rice mainly affects rice grain filling, which results in
empty rice (Aquerreta et al. 2007). These criteria are
followed to select the high-temperature-resistant rice
varieties.

High temperature induces a series of physiological and
biochemical reactions, therefore the attempt to improve the
stability of physiological and biochemical in rice at high
temperatures, such as the membrane system stability and
the normal enzymatic reaction can significantly improve
the plant photosynthetic performances (Xiong et al. 2017,

Jiang et al. 2003). Especially, after rice heading, when rice
leaves enter the aging stage, the absorption and utilization
of light energy are out of balance and excessive light could
lead to a formation of ROS. The high temperature could
affect the enzyme activities and physiological and
biochemical reactions of ROS. Excessive ROS would
destroy the photosynthetic apparatus (Hideg and Schreiber
2007), which would lead to a reduction in rice production.

Asc is an important antioxidant in plants (Akram et al.
2017, Potters et al. 2010). It directly scavenges the ROS,
and serves as a coenzyme to scavenge H,O, (Gest et al.
2013). The Asc is involved in physiological processes, such
as antioxidation, senescence regulation, and stress response
(Mekki et al. 2015, Chiang et al. 2017). The plants with in-
sufficient Asc are sensitive to environmental factors. Under
adverse conditions, Asc content is increased and is positi-
vely correlated with stress resistance in plants (Gallie 2013).
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It has been reported that I-galactono-1,4-lactone
dehydrogenase (GLDH) was the rate-limiting enzyme in
Asc synthesis (Smirnoff et al. 2001), and the Asc content
in plants was positively correlated with the expression of
GLDH gene (Landi et al. 2015, Zhang et al. 2016,
Tokunaga et al. 2005). GLDH up-regulated and the GLDH
down-regulated rice strains had been successfully
constructed (Yu et al. 2010, 2017).

In this study, we investigated the effects of endogenous
Asc on resistance to high-temperature stress in excised rice
leaves. The consequences of a changes in Asc to lipid
peroxidation, Rubisco protein, soluble protein, ROS, chlo-
rophyll (Chl), and Chl fluorescence parameters were com-
pared in GO-2, wild type (ZH-11), and GI-2. Our results
suggested that the higher Asc content could improve the
resistance capacity of rice to high-temperature stress.

Oryza sativa L. cv. Zhonghua 11 (ZH-11), a previously
described homozygous GLDH-overexpressing transgenic
rice GO-2, and the GLDH-suppressed transgenic rice
GI-2 (Liu et al. 2011) were used in this study. The
pasteurized seeds were planted in an artificial climate
incubator and grown under controlled conditions with an
average temperature of 28°C dark/33°C light, 80%
humidity, and a photoperiod of 10 h dark/14 h light
[100 pmol(photon) m2 s™! PAR]. They were transplanted
to the field after 14 d. When the plants began to tassel, the
rice cultivars with consistent growth were selected and
used for the experiments.

The flag leaves were cut at the flowering stage,
wrapped with wet gauze, and placed in a water bath at
43°C for 1 h as the high-temperature treated group (HT).
The flag leaves wrapped with wet gauze placed at 25°C for
1 h were considered as the control group (CK).

Total RNA was extracted from flag leaves using an
Omega R6827 kit (Takara, Japan) in accordance with the
manufacturer’s instructions. First-strand cDNA was
synthesized with oligo (dT) primers using a M-MLV
reverse transcriptase kit (Takara, Japan), and then the
cDNAs were stored at —80°C until further analysis.
Quantitative real-time PCR (q-PCR) was performed
according to the manufacturer’s instructions. The
g-PCR primer sequences were as follows: GLDH-F
(5'-CGGCGGCATCATTCAGGTT-3") and GLDH-R
(5'-AAGCCCACAGCGAGCAAGATA-3"). The primer
sequences of reference genes were as follows: OsUBQ-F
(5'-CCAGGACAAGATGATCTGCC-3") and OsUBQ-R
(5'-AAGAAGCTGAAGCATCCAGC-3"). Reactions were
performed using SYBR® Premix EX Tap™ 11 (Takara,
Japan) in a real-time PCR device (7500 Sequence
Detection system, Applied Biosystems, Japan). The
expression levels of the mRNA of GLDH genes were
normalized according to the reference gene OsUBQ.
Normalization and fold changes were calculated using the
AA® method of Livak and Schmittgen (2001).

Fresh flag leaves of 0.1 g were cut and fully ground and
homogenized in 1 mL of 6% trichloroacetic acid (TCA)
solution in an ice bath. The homogenate was centrifuged
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at 13,000 x g at 4°C for 10 min. The supernatant was used
for the analysis of Asc contents according to Kampfenkel
et al. (1995).

Rubisco protein determination was carried out
according to Liu ef al. (2011). Fresh leaves of 0.1 g were
homogenized in 2 mL of grinding medium and the
homogenate was centrifuged at 13,000 x g for 10 min.
Supernatant (50 ul) was added to an equal volume of
sample buffer and incubated in boiling water for 5 min.
The samples (10 puL) were loaded onto gels containing
12.5% (w/v) resolving polyacrylamide gel with a 4% (w/v)
polyacrylamide gel stacker. After gel was stained with
Coomassie Brilliant Blue R-250 (Sigma, USA) and de-
stained overnight with gentle shaking to make sure that its
background turned colorless. The molecular mass of the
large and small subunit of Rubisco are 55 and 15 kDa,
respectively. The SDS-PAGE gel was scanned using the
GelDoc-It Imaging System (UVP, Upland, CA, USA) and
relative grey value of each band detected by using
TotalLab Quant software (TotalLab, Newcastle upon
Tyne, UK). On the other hand, the supernatant was
collected and diluted for 50 times. Then 250 pL of diluted
supernatant was added into the same volume of Bradford
solution. After 5 min, and the absorbance was read at a
wavelength of 595 nm (UV-Vis 2450 spectrophotometer,
Shimadzu, Tokyo, Japan).

Fresh leaves of 0.1 g were extracted with 10 mL of 80%
(v/v) acetone. The absorption of the extracts was measured
at 663 and 645 nm (UV-Vis 2450, Shimadzu, Tokyo,
Japan). The 80% (v/v) acetone was used as a blank. Chl a
and Chl b were determined according to the method of
Lichtenthaler (1987).

After HT, the leaves were dipped quickly into
potassium phosphate buffer (50 mM, pH 7.0) containing
1 mg(diaminobenzidine, DAB) mL ' and potassium phos-
phate buffer (50 mM, pH 6.4) containing 1 mg(nitrotetra-
zolium blue, NBT) mL™!, respectively. Then they were
subjected to rapid vacuum suction for 20 min. The leaves
were immediately put in the dark for 8 h and 12 h (stained
by DAB and NBT). The leaves were transferred into a
boiling methanol solution (75%, v/v) to bleach and remove
Chl. Finally, the leaves were photographed to detect the
presence of H,O; and O,"~ (Liu et al. 2007).

The leaves from the rice plants were cut, wrapped with
wet gauze, and placed in the dark for dark adaptation for
30 min. After dark adaptation, a portable fluorescence
analyzer (PAM-2100, Walz, Effeltrich, Germany) was
used to measure the minimum fluorescence, Fy, and the
maximum fluorescence, Fn, under a 6,000 pumol(photon)
m 2 s! of saturating pulse. The actinic light used in the
measurement of the parameters was 150 pumol(photon)
m~? 5. The maximum efficiency of PSII (F/Fy, calcu-
lated as 1 — Fo/Fy), effective quantum yield of PSII photo-
chemistry (®psyy, calculated as Yield = ®psp = 1 — Fy/Fp'),
and the electron transport rate (ETR, calculated as ETR =
Yield x PAR x 0.5 x 0.84) (Oxborough and Baker 1997).

Lipid peroxidation was evaluated by measuring the
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malondialdehyde (MDA) content. Flag leaves (0.2 g) were
homogenized in 2 mL of grinding medium and the
homogenate was centrifuged at 4,390 x g for 10 min.
Supernatant (2 mL) was added to an equal volume of
0.67% 2-thiobarbituric acid, and the solution was kept in a
boiling water bath for about 15 min and centrifuged at
4,390 x g for 10 min. The supernatant was evaluated for
light absorption at 532, 600, and 450 nm (UV-Vis 2450,
Shimadzu, Tokyo, Japan). The MDA amount was calcu-
lated according to the method of Heath and Packer (1968).

All experiments were conducted in triplicate. Values
were expressed as means + SD. The results were subjected
to a one-way analysis of variance (ANOVA) with Duncan’s
multiple range test between means at p<0.05. Data were
processed by using the SigmaPlot software (version 12.0,
SYSTAT Software Inc., Richmond, CA, USA).

Significant differences were observed in the expression
of GLDH gene in leaves of three rice cultivars (Fig. 14).
GLDH expression was 30-times higher in GO-2 plants
than that in ZH-11, while the expression of GLDH in GI-2
plants was 6-times lower. Similarly, there were significant
differences in the Asc content of the GO-2, ZH-11, and
GI-2 leaves. The content of Asc in GO-2 was 3.1- and
10-fold higher than those of the ZH-11 and GI-2,
respectively (Fig. 1B).

In plants, the O, ~ and H,O, react with NBT and DAB
to generate blue and tan insoluble precipitations, respec-
tively, on the blade surface. The leaves of the plants
subjected to HT were stained with NBT and DAB. The
results showed that the leaves of GO-2 strain exhibited the
lightest color, while the leaves of ZH-11 and GI-2 showed
deep staining (Fig. 1C,D). Using NBT and DAB histo-
chemical staining, we detected the corresponding accumu-
lation of greater amounts of O," ~ and H»O,, respectively,
in the flag leaves of GI-2 plants.

Polyacrylamide gel electrophoresis did not show the

obvious differences in the content of RL and RS between
the leaves of GI-2, GO-2, and ZH-11 under normal
temperature conditions. However, the HT decreased the
content of RL and RS in rice leaves. The content of RL
decreased by 34, 32, and 41% in the leaves of GO-2, ZH-
11, and GI-2, respectively (Fig. 1F). The content of RS
decreased in 31, 33, and 70% in the leaves of GO-2, ZH-
11, and GI-2, respectively (Fig. 1F). The polyacrylamide
gel electrophoresis showed that high temperature resulted
in a significant decrease in the content of RL and RS. The
content of RS was the lowest one after HT (Fig. 1G).
The content of MDA reflects the lipid peroxidation. The
HT increased the membrane lipid peroxidation in rice
leaves (Fig. 24). The highest lipid peroxidation was
observed in the GI-2 plants. The MDA content increased
by 35, 63, and 168% in GO-2, ZH-11, and GI-2, respecti-
vely. The soluble protein content in rice leaves decreased
after HT, with the largest decrease in the GI-2 plants
(29%). The soluble protein content of GO-2 and ZH-11
decreased by 18 and 22%, respectively (Fig. 2B).
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Fig. 1. Relative expression of 1-galactono-1,4-lactone dehydro-
genase gene (GLDH; 4) and ascorbic acid content (Asc; B) in
flag leaves of GO-2, ZH-11, and GI-2 plants. Nitroblue
tetrazolium staining (NBT; C) and diaminobenzidine staining
(DAB; D) showed the accumulation of superoxide anion (O2™)
and hydrogen peroxide (H202) in the flag leaves of GO-2,
ZH-11, and GI-2 plants after high-temperature treatment. The
changes of Rubisco large subunit (RL; E) and Rubisco small
subunit (RS; F) in flag leaves of GO-2, ZH-11, and GI-2 plants
after high-temperature treatment (CK, normal temperature
control group; HT, high-temperature treatment group). (G)
Detection of the changes in RL and RS by SDS-PAGE in flag
leaves of GO-2, ZH-11, and GI-2 plants after high-temperature
treatment. Values are means + SD (n = 5). Different letters above
bars indicate statistical significance (p<0.05).

Insignificant differences in yield, ETR, and F/F., were
found in the leaves of the three genotypes of rice at normal
temperature (Fig. 2C,D,E). However, the HT significantly
decreased the Chl fluorescence parameters in GO-2,
ZH-11, and GI-2. The decline in yield and F./Fy, of GO-2
plants were the smallest (30 and 46%, respectively), while
the maximum decline were observed in GI-2 plants (81 and
80%, respectively) (Fig. 2C,E). The total Chl content of
the leaves of the three genotypes decreased after HT
compared with those under normal temperature. The
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Fig. 2. Changes of malondialdehyde (MDA; 4), soluble protein
(B), yield (C), and electron transport rate (ETR; D) in flag leaves
of GO-2, ZH-11, and GI-2 plants after high-temperature treat-
ment. Changes in maximal quantum yield of PSII photochemistry
(Fv/Fm; E), total chlorophyll (Chl) contents (F), Chl a contents
(G), and Chl b contents (H) in flag leaves of GO-2, ZH-11, and
GI-2 plants after high-temperature treatment. CK, normal
temperature control group; HT, high-temperature treatment
group. Values are means = SD (n = 5). Different letters above
bars indicate statistical significance (p<0.05).

maximum decrease of total Chl content in GI-2 leaves was
30%. The GO-2 and ZH-11 plants showed a reduction of
only 10% (Fig. 2F). Moreover, the change trends of Chl a
content and Chl b content in the leaves of the three
genotypes were consistent with the total Chl content
(Fig. 2G,H).

Plants are exposed to a variety of adverse environ-
mental stresses during growth, and HT stress is one of
them. When plants were stressed, they produced higher
amounts of ROS. If ROS cannot be removed in time, they
would damage the plant (Tanaka and Hadwiger 2017,
Hemavathi et al. 2009). There were two major systems for
the removal of ROS in plants: the enzymatic system and
the nonenzymatic system; in both, Asc plays an important
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