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Abstract

Water saturation deficit (WSD) is a parameter commonly used for detection of plant tolerance to temporary water shortages. 
However, this parameter does not meet criteria set for screening. On the other hand, measurement of chlorophyll (Chl) a 
fluorescence is a fast and high-throughput method. This work presents the application of learning systems to set up a model 
between WSD and Chl a fluorescence parameters allowed for development of a new screening test. Multilayer perceptron 
(MLP) was trained to predict WSD values on the basis of Chl a fluorescence. The best MLP consisted of three inputs: 
maximal quantum yield of PSII photochemistry, approximated number of active PSII reaction centres per absorption, and 
measure of forward electron transport, three hidden nodes and one output (WSD). The MLP precision was 82% with a 
correlation coefficient of 0.98. Continuous improvement of MLP structure and model adaptation to new data takes place.
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Requirements of continuous yield increase arising from 
the need to feed the growing human population result 
in difficult challenges for breeders to produce more of 
better yielding varieties. Since the abiotic stresses, such 
as salinity, drought, heat or frost, affect approximately 
40% of the world land area and can limit, even by half, 
the agricultural production worldwide, the scientific 
investigations on improvement of plant stress tolerance 
can help in handling that difficult breeding task (Rybka 
and Nita 2015, Miazek et al. 2017). Most of types 
of plant tolerance to environmental stresses are of 
qualitative character (QTL) and are strongly modified by 
environmental conditions. This is why modern research 
on such complex phenomena requires approaches using 
high computing power for modelling of multi-parameter 
data, generated using new technologies. In plant breeding, 
great expectations are associated with phenomics, which 
already allow for automatic detection of physiological 

state of plants in the field and which enable building of 
new crop breeding systems in the next future (Brown et 
al. 2014, Grosskinsky et al. 2015, Krajewski et al. 2015, 
Vadez et al. 2015). 

We believe that inclusion of water saturation deficit 
(WSD), as a feature of a field screening, can be valuable 
for breeding progress. WSD refers to the degree of 
tissues dehydration, phenomenon which occurs as one 
of the first symptoms of plant responses to various 
environmental stimuli, such as soil salinity, both drought, 
and flooding, and temperature over or under optimal 
ranges (Grudkowska and Zagdańska 2010). Plant wil-
ting is an easy to notice as a physiological reaction, 
associated with complex biochemical processes leading 
to induction of the stress tolerance or the programmed 
cell death occurring under extreme situations in tissues of 
stress-susceptible plants (Kosová et al. 2015, Miazek et 
al. 2017). WSD fluctuations as a simple phenotypic trait 
meets the requirements for being an indicator of plant 
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stress tolerance (Noctor et al. 2015, Gietler et al. 2016, 
Miazek et al. 2017). Unfortunately, mere WSD detection 
does not meet requirements of the screening test due to the 
low bandwidth. However, detection of Chl a fluorescence, 
in total measurement speed if one sample per 15 s, meets 
those terms, as far as the scope of manual phenotyping is 
concerned (Strasser et al. 1995, 2004; Stirbet et al. 2018). 
Since both traits are affected by environmental stimuli, 
simple reasoning resulted in effort of indirect determination 
of WSD based on modelling of fluorescence data.  

In general, data collected in time of plant screening 
for breeding purposes are of qualitative and quantitative 
character. Processing of these data by building models 
to describe and analyse the physiological state of plants 
is hindered by the nature of field data, data structure, 
variability, and quantity as well as by interactions and 
non-linear dependencies occurring between variables of 
interest (Singh et al. 2016). Practice shows that artificial 
neural networks (ANN) are efficient tools to cope with the 
modelling of such complex systems even though regular 
patterns of behaviour are not clearly defined. ANN deal 
successfully with noisy and incomplete data and have 
an ability to generalise obtained knowledge. For this 
reason, they are increasingly being used for modelling of 
complex, multi-dimensional issues or between-variable 
dependencies that are difficult to formalise. Among ANNs 
multilayer perceptrons (MLPs) are easy to apply and their 
ability to set up optimal parameters allow approximate 
solutions for extremely complex problems (Belue and 
Bauer 1993). MLP is a feed-forward, supervised-trained 
ANN consisted of input (IL), hidden (HL), and output 
layer (OL), each one built from single nodes called 
artificial neurons. Input signals are multiplied by weights 
in each layer and then transformed by transfer functions 
(TF) set for HL and OL. MLP training consists in iterative 
weights adaptation in order to provide the best fit of output 
to experimental data. Training algorithm adapts weights 
iteratively according to information about gradient of 
objective function and the direction of its minimisation. 
While MLP usually consists of a single IL and single 
OL with number of nodes resulting from the number 
of input and output variables respectively, number of 
HLs may be arbitrary, but usually one HL is enough to 
approximate each constrained continuous function with 
any low error (Hecht-Nielsen 1987, Cybenko 1989). The 
number of hidden nodes is crucial for providing the best 
generalisation ability which is the function of all node 
connections corresponding to the model complexity 
(capacity) described by Vapnik-Chervonenki´s dimension 
(VCdim) (Hush and Horne, 1993). Generalisation ability 
is dependent on the number of training cases to VCdim 
ratio. Practice shows that this ratio should be at least 10 
(Janaszek et al. 2011). 

In this paper, we attempted to provide a multilayer 
perceptron to predict WSD on the basis of Chl a 
fluorescence parameters. 

WSD and corresponding Chl a fluorescence data 
were collected as part of programmes on the effects of 
water shortages on crop yields, run in Plant Breeding 
and Acclimatization Institute–National Research 

Institute, Poland (latitude: N52°12′50.017″, longitude: 
E20°38′38.744″). Data collected on 10-d-old seedlings 
of spring wheat (Triticum aestivum L.) cultivars (from 
experiments of post-registration varieties evaluation) 
and advanced breeding lines [from single seed descent 
(SSD) breeding programs] were chosen as a general data 
set used for MLP training and testing. Seedlings grew 
as it follows: overnight germination of seeds following 
surface sterilization in 1% sodium hypochlorite;  rolling 
sets of 25 seeds into filter paper strips (25 × 5 cm), prior 
to placing into plastic boxes filled to half with Knopp 
solution supplemented with Hoagland’s micronutrients; 
10-d growth of seedlings in a climatic chamber (day/night 
temperature of 18/14oC, photoperiod of 16/8 h, PPFD of  
150 µmol m−2  s−1, and 70–80% air humidity). For gravimetric 
determination of WSD, the nutrient solution drainage for 
24–48 h was done in order to induce differences in tissues 
hydration (Gietler et al. 2016, Miazek et al. 2017). To check 
the versatility of MLP, additional data were used as an extra 
test set (ETE). Those data were obtained in the greenhouse 
measurements during LED lamps usefulness  testing 
for SSD breeding. Plants were grown in the greenhouse 
of Plant Breeding Strzelce Ltd., Co. Group IHAR in 
Strzelce, Poland (latitude: N 52°18′20.944″ longitude: E 
19°24′7.534″) in propagation trays at temperature for night/
day of 16/22 ± 3°C and humidity of 70–80% and were 
lighted for 8/24 h by PPFD 120–150 µmol m−2 s−1 from  
13 LED lamps of different spectra (based on both: red–blue 
and white LEDs) and HPS as a control. Plants under such 
cultivation differed markedly from plants grown in the 
field and were about 30–40 cm high with narrow, delicate 
leaves. Data of WSD and Chl a parameters were obtained 
during the earing stage on penultimate leaves (Stefański 
et al. 2018). In all experiments, the WSD was determined 
gravimetrically in three replicas (Miazek et al. 2017).  
Chl a fluorescence, in all experiments, was measured on  
20-min dark-adapted leaf blades on abaxial side (ten 
replica/case), using PocketPEA portable fluorometer 
(Hansatech Instruments, King’s Lynn, Norfolk, UK). 
Fluorescence was induced by saturating, red actinic light 
with energy of 3,500 µmol(photon) m−2 s−1, and first 3 s of 
transient fluorescence covering more than its exponential 
growing part were registered. Following parameters of  
Chl a fluorescence were used for modelling: maximal 
quantum yield of PSII (Fv/Fm), approximated number 
of active PSII reaction centres (RC/ABS), measure of 
forward electron transport [(1 – Vj)/Vj], performance index 
(PIABS), and maximal efficiency of water photolysis on the 
PSII donor site (Fv/F0) (Żurek et al. 2014). 

The WSD prediction was realised by MLP consisted of 
three layers. Single MLP input node corresponded to one 
input variable and the output node corresponded to WSD. 
General data set used for this study included 237 cases, 
which were divided into a training set (TR) that covered 
90% of cases presented during whole training process and 
test set (TE) which included 10% of cases, unused in MLP 
training. Within TR, a validation set (VA) of 20% cases 
was allocated to control the training process. Another extra 
TE (ETE) was allocated for final verification of the best 
MLP and included 14 cases obtained from independent 
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experiment with wheat grown in a greenhouse under 
different LED illuminations. The MLP task was to map 
input variables onto one output using weights adaptation 
and TF to obtain high correlation coefficient (r) between 
experimental and predicted WSD values as well as the 
lowest global error (GE) given as:
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where n denotes number of test cases, zi means WSD 
experimental value, yi stands for MLP output and the 
nominator under the root denotes sum of squares of 
residuals. Since neither the structure of the best MLP 
nor the best combination of TFs were known, MLPs 
with different number of inputs as well as 4 different TFs 
(identity, logistic, exponential, and hyperbolic tangent) 
were tested to select model that met the requirements. 
During training inputs and outputs were normalised 
to obtain values in range 0–1. All tested MLPs were 
implemented in Statistica 13.1 (Dell Inc., 2016) and 
trained according to quasi-Newtonian Broyden-Fletcher-
Goldfarb-Shanno (BFGS) training algorithm. Weights in 
the first training cycle were randomly initiated and during 
whole training process weight reduction was realized 
in the range of 0.0001–0.001 in both HL and OL. After 
choosing the best MLP model, its sensitivity analysis was 
made to simulate how reduction of input variables affects 
the predictive capabilities of the model. The sensitivity 
measure is the ratio of residual sum of squares calculated 
if a single variable is excluded from a set of MLP inputs to 
the residual sum of squares calculated if all input variables 
are considered. The greater the ratio the more sensitive 
model is to the lack of excluded variable. 

To account for the initial weight variance, each 
combination of input variables with set of TFs was tested 
by m = 2,000 MLPs, giving a total of 62,000 tested 
models. From each mth group of MLPs, the best five 
were chosen in terms of quality measured as r between 
experimental and approximated WSD values included in 
the TE. As a result, we identified 155 models with r in 
the range of 0.91–0.98. Then, the best models left were 
grouped according to the number of input variables (i) and 
in each group i = (1, 2, ..., 5) one model was identified 
with the lowest GE (Table 1). Each of top five models 

processed data with logistic TF in the HL and exponential 
TF in the OL. Their GE ranged from 0.18 to 0.26 and  
r values were in the range of 0.96–0.98. Based on GE, r, 
and model complexity, the best MLP was selected. The 
winning MLP was based on (1 – Vj)/Vj, RC/ABS, and  
Fv/Fm parameters used to approximate WSD values  
(Table 1). The best MLP was characterised by GE of 0.18 
with corresponding r of 0.98, both determined for the 
TE (Fig. 1A). The best MLP generalisation ability was 
additionally verified on ETE (Fig. 1A). Obtained results 
were above the expectations (GE = 0.14). The reason 
was low variation of input variables and WSD values 
included in ETE. It was discovered that low WSD values 
and corresponding Chl a parameters were oversampled in 
general data set and thus also in TR. Additionally, those 
Chl a fluorescence parameters have a high variation 
whereas corresponding WSD values have lower variability 
and consequently disrupted the training process. None-
theless, such small difference in GE between TE and 
ETE indicates that MLP acquired generalisation abilities 
during training and this fact encourages further analysis 
and model improvements. In order to check MLP stability, 
additional 2,000 models were built using the same 237 
cases but different, randomly selected combinations of 
test cases. Each model had the same proportion of cases 
in TR, VA, and TE, as well as the same structure and TFs 
as the previously chosen MLP. As a result, three MLPs, 
characterised by the highest quality, were chosen. Obtained 
results might be considered similar since GE varied from 
0.2 to 0.17, whereas correlations ranged from 0.96 to 0.97 
(Fig. 1B). This confirmed that the best MLP was stable 
and its parameters (weights) were not accidental. It should 
be pointed that MLP with GE = 0.17 (better than the 
MLP chosen previously) has lower quality (r = 0.97). It 
is interesting and noteworthy fact that the model included 
three parameters describing the functional activity at 
three main stages of energy transformation within PSII: 
(1) the light energy harvesting (the parameter RC/ABS 
describes a relative concentration of active PSII reaction 
centers in total pigments harvesting the light energy for 
PSII); (2) the energy trapping (the parameter Fv/Fm relates 
to maximum efficiency of the light reactions and efficiency 
of energy trapping by PSII reaction centers); (3) electron 
transport in ETC (the parameter [(1 – Vj)/Vj] reflects 
potential efficiency of secondary electron transfer leading 
to stabilization of charges primarily separated in PSII 
reaction center) (Strasser et al. 1995, 2004; Goltsev et al. 
2016, Paunov et al. 2018, Stirbet et al. 2018). In general, 

Table 1. The characteristic of top five multilayer perceptrons. MLP structure – number of nodes in input - hidden - output layer; 
complexity – number of modified weights (input – hidden and hidden – output connections); GE – global error; r – correlation coefficient.

Input variables MLP structure complexity GE r
(1 – Vj)/Vj 1 - 3 - 1 6 0.26 0.96
(1 – Vj)/Vj, RC/ABS 2 - 7 - 1 21 0.21 0.97
(1 – Vj)/Vj, RC/ABS, Fv/Fm 3 - 3 - 1 12 0.18 0.98
(1 – Vj)/Vj, RC/ABS, Fv/Fm, Fv/F0 4 - 3 - 1 15 0.19 0.97
(1 – Vj)/Vj, RC/ABS, Fv/Fm, Fv/F0, PIABS 5 - 2 - 1 12 0.20 0.97
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plant tissues dehydration leads to changes in hydration 
and polarisation of cell macromolecules which on hand 
results in conformational modifications and finally causes 
their lower biological efficiency (Malferrari et al. 2013, 
Ball 2017). All these phenomena have been described and 
are experimentally studied in more detail (Kościelniak and 
Biesaga-Kościelniak 2006, Grzesiak et al. 2007, Rapacz 
2007, Ashraf and Harris 2013). Goltsev et al. (2012) 
studied the influence of stepwise reduction of relative 
water (RWC) content in detached primary leaves of 20–
25 old pea plants on changes in photosynthetic electron 
transport, based on the data of raw fluorescence [prompt 
(PM) and delayed (DF)] and modulated reflection (MR) 
of light at 820 nm as well as using parameters of the JIP 
test. The best model for RWC estimation was based on the 
raw data of PM, DF, and MR curves (Goltsev et al. 2012).  

Our model combines three variables on the basis of 
their ability to explain WSD. The sensitivity analysis 
provided information on inputs hierarchy within the best 
neural model. Obtained results showed that among three 
MLP inputs variable (1 – Vj)/Vj was the carrier of the most 
important information on WSD variability. The residual 
sum of square ratio calculated for (1 – Vj)/Vj indicated 
that its exclusion from the input dataset diminished model 
accuracy about 8.24 times compared to the MLP with 
all three inputs. In case of RC/ABS exclusion, model 
accuracy decreased 4.08 times whereas Fv/Fm removal 
lowered model prediction ability 1.44 times. These results 
indicated that for WSD prediction, (1 – Vj)/Vj is about 
twice as important as RC/ABS and almost six times more 
important than Fv/Fm.

Since general data set did not cover entire range of 
WSD and additionally middle and high values of this 
variable were underrepresented, further research is being 

carried out to collect data accounting for the greatest 
possible variability of WSD and corresponding Chl a 
fluorescence characteristics. It is also very important to 
identify all factors, which may modify Chl a fluorescence 
parameters, and in result disrupt a proper WSD prediction. 
Moreover, attempts of neural model adaptation will 
continue to obtain its adequate structure ensuring high 
accuracy and sensitivity.
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