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Abstract

Water saturation deficit (WSD) is a parameter commonly used for detection of plant tolerance to temporary water shortages.
However, this parameter does not meet criteria set for screening. On the other hand, measurement of chlorophyll (Chl) a
fluorescence is a fast and high-throughput method. This work presents the application of learning systems to set up a model
between WSD and Chl a fluorescence parameters allowed for development of a new screening test. Multilayer perceptron
(MLP) was trained to predict WSD values on the basis of Chl a fluorescence. The best MLP consisted of three inputs:
maximal quantum yield of PSII photochemistry, approximated number of active PSII reaction centres per absorption, and
measure of forward electron transport, three hidden nodes and one output (WSD). The MLP precision was 82% with a
correlation coefficient of 0.98. Continuous improvement of MLP structure and model adaptation to new data takes place.

Additional key words: artificial intelligence, drought, photosynthesis, Triticum aestivum.

Requirements of continuous yield increase arising from
the need to feed the growing human population result
in difficult challenges for breeders to produce more of
better yielding varieties. Since the abiotic stresses, such
as salinity, drought, heat or frost, affect approximately
40% of the world land area and can limit, even by half,
the agricultural production worldwide, the scientific
investigations on improvement of plant stress tolerance
can help in handling that difficult breeding task (Rybka
and Nita 2015, Miazek et al. 2017). Most of types
of plant tolerance to environmental stresses are of
qualitative character (QTL) and are strongly modified by
environmental conditions. This is why modern research
on such complex phenomena requires approaches using
high computing power for modelling of multi-parameter
data, generated using new technologies. In plant breeding,
great expectations are associated with phenomics, which
already allow for automatic detection of physiological
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state of plants in the field and which enable building of
new crop breeding systems in the next future (Brown et
al. 2014, Grosskinsky et al. 2015, Krajewski et al. 2015,
Vadez et al. 2015).

We believe that inclusion of water saturation deficit
(WSD), as a feature of a field screening, can be valuable
for breeding progress. WSD refers to the degree of
tissues dehydration, phenomenon which occurs as one
of the first symptoms of plant responses to various
environmental stimuli, such as soil salinity, both drought,
and flooding, and temperature over or under optimal
ranges (Grudkowska and Zagdanska 2010). Plant wil-
ting is an easy to notice as a physiological reaction,
associated with complex biochemical processes leading
to induction of the stress tolerance or the programmed
cell death occurring under extreme situations in tissues of
stress-susceptible plants (Kosova et al. 2015, Miazek et
al. 2017). WSD fluctuations as a simple phenotypic trait
meets the requirements for being an indicator of plant
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IL — input layer; MLP(s) — multilayer perceptron(s); OL — output layer; Plags — performance index; » — correlation coefficient; RC/ABS
— approximated number of active PSII reaction centres per absorption; TE — test set; TF(s) — transfer function(s); TR — training set; VA
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Acknowledgements: The authors express their thanks to prof. Vasilij Goltsev from Sofia University, Bulgaria, for the discussion on the
fluorescence parameters on which the model was built. The research is supported by the National Centre for Research and Development,
Poland, as PBS3/B8/19/2015 grant. The training data set was generated within the NN 304267540 grant supported by The National
Science Centre, Poland.

226



stress tolerance (Noctor et al. 2015, Gietler et al. 2016,
Miazek et al. 2017). Unfortunately, mere WSD detection
does not meet requirements of the screening test due to the
low bandwidth. However, detection of Chl a fluorescence,
in total measurement speed if one sample per 15 s, meets
those terms, as far as the scope of manual phenotyping is
concerned (Strasser et al. 1995, 2004; Stirbet et al. 2018).
Since both traits are affected by environmental stimuli,
simple reasoning resulted in effort of indirect determination
of WSD based on modelling of fluorescence data.

In general, data collected in time of plant screening
for breeding purposes are of qualitative and quantitative
character. Processing of these data by building models
to describe and analyse the physiological state of plants
is hindered by the nature of field data, data structure,
variability, and quantity as well as by interactions and
non-linear dependencies occurring between variables of
interest (Singh et al. 2016). Practice shows that artificial
neural networks (ANN) are efficient tools to cope with the
modelling of such complex systems even though regular
patterns of behaviour are not clearly defined. ANN deal
successfully with noisy and incomplete data and have
an ability to generalise obtained knowledge. For this
reason, they are increasingly being used for modelling of
complex, multi-dimensional issues or between-variable
dependencies that are difficult to formalise. Among ANNs
multilayer perceptrons (MLPs) are easy to apply and their
ability to set up optimal parameters allow approximate
solutions for extremely complex problems (Belue and
Bauer 1993). MLP is a feed-forward, supervised-trained
ANN consisted of input (IL), hidden (HL), and output
layer (OL), each one built from single nodes called
artificial neurons. Input signals are multiplied by weights
in each layer and then transformed by transfer functions
(TF) set for HL and OL. MLP training consists in iterative
weights adaptation in order to provide the best fit of output
to experimental data. Training algorithm adapts weights
iteratively according to information about gradient of
objective function and the direction of its minimisation.
While MLP usually consists of a single IL and single
OL with number of nodes resulting from the number
of input and output variables respectively, number of
HLs may be arbitrary, but usually one HL is enough to
approximate each constrained continuous function with
any low error (Hecht-Nielsen 1987, Cybenko 1989). The
number of hidden nodes is crucial for providing the best
generalisation ability which is the function of all node
connections corresponding to the model complexity
(capacity) described by Vapnik-Chervonenki’s dimension
(VCdim) (Hush and Horne, 1993). Generalisation ability
is dependent on the number of training cases to VCdim
ratio. Practice shows that this ratio should be at least 10
(Janaszek et al. 2011).

In this paper, we attempted to provide a multilayer
perceptron to predict WSD on the basis of Chl a
fluorescence parameters.

WSD and corresponding Chl a fluorescence data
were collected as part of programmes on the effects of
water shortages on crop yields, run in Plant Breeding
and  Acclimatization  Institute—National =~ Research
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Institute, Poland (latitude: N52°12'50.017", longitude:
E20°38'38.744"). Data collected on 10-d-old seedlings
of spring wheat (7riticum aestivum L.) cultivars (from
experiments of post-registration varieties evaluation)
and advanced breeding lines [from single seed descent
(SSD) breeding programs] were chosen as a general data
set used for MLP training and testing. Seedlings grew
as it follows: overnight germination of seeds following
surface sterilization in 1% sodium hypochlorite; rolling
sets of 25 seeds into filter paper strips (25 x 5 cm), prior
to placing into plastic boxes filled to half with Knopp
solution supplemented with Hoagland’s micronutrients;
10-d growth of seedlings in a climatic chamber (day/night
temperature of 18/14°C, photoperiod of 16/8 h, PPFD of
150 umolm™s™!, and 70-80% air humidity). For gravimetric
determination of WSD, the nutrient solution drainage for
24-48 h was done in order to induce differences in tissues
hydration (Gietler et al. 2016, Miazek et al. 2017). To check
the versatility of MLP, additional data were used as an extra
test set (ETE). Those data were obtained in the greenhouse
measurements during LED lamps usefulness testing
for SSD breeding. Plants were grown in the greenhouse
of Plant Breeding Strzelce Ltd., Co. Group IHAR in
Strzelce, Poland (latitude: N 52°18'20.944" longitude: E
19°24'7.534") in propagation trays at temperature for night/
day of 16/22 + 3°C and humidity of 70-80% and were
lighted for 8/24 h by PPFD 120-150 umol m™2 s™! from
13 LED lamps of different spectra (based on both: red—blue
and white LEDs) and HPS as a control. Plants under such
cultivation differed markedly from plants grown in the
field and were about 30-40 cm high with narrow, delicate
leaves. Data of WSD and Chl a parameters were obtained
during the earing stage on penultimate leaves (Stefanski
et al. 2018). In all experiments, the WSD was determined
gravimetrically in three replicas (Miazek et al. 2017).
Chl a fluorescence, in all experiments, was measured on
20-min dark-adapted leaf blades on abaxial side (ten
replica/case), using PocketPEA portable fluorometer
(Hansatech Instruments, King’s Lynn, Norfolk, UK).
Fluorescence was induced by saturating, red actinic light
with energy of 3,500 umol(photon) m™2s™!, and first 3 s of
transient fluorescence covering more than its exponential
growing part were registered. Following parameters of
Chl a fluorescence were used for modelling: maximal
quantum yield of PSII (F./F.), approximated number
of active PSII reaction centres (RC/ABS), measure of
forward electron transport [(1 — V;)/Vj], performance index
(Plags), and maximal efficiency of water photolysis on the
PSII donor site (F,/Fo) (Zurek et al. 2014).

The WSD prediction was realised by MLP consisted of
three layers. Single MLP input node corresponded to one
input variable and the output node corresponded to WSD.
General data set used for this study included 237 cases,
which were divided into a training set (TR) that covered
90% of cases presented during whole training process and
test set (TE) which included 10% of cases, unused in MLP
training. Within TR, a validation set (VA) of 20% cases
was allocated to control the training process. Another extra
TE (ETE) was allocated for final verification of the best
MLP and included 14 cases obtained from independent
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experiment with wheat grown in a greenhouse under
different LED illuminations. The MLP task was to map
input variables onto one output using weights adaptation
and TF to obtain high correlation coefficient () between
experimental and predicted WSD values as well as the
lowest global error (GE) given as:

GE=\/i(z,-—y,-)2/iz3 ()

i=1

where n denotes number of test cases, z; means WSD
experimental value, y; stands for MLP output and the
nominator under the root denotes sum of squares of
residuals. Since neither the structure of the best MLP
nor the best combination of TFs were known, MLPs
with different number of inputs as well as 4 different TFs
(identity, logistic, exponential, and hyperbolic tangent)
were tested to select model that met the requirements.
During training inputs and outputs were normalised
to obtain values in range 0-1. All tested MLPs were
implemented in Statistica 13.1 (Dell Inc., 2016) and
trained according to quasi-Newtonian Broyden-Fletcher-
Goldfarb-Shanno (BFGS) training algorithm. Weights in
the first training cycle were randomly initiated and during
whole training process weight reduction was realized
in the range of 0.0001-0.001 in both HL and OL. After
choosing the best MLP model, its sensitivity analysis was
made to simulate how reduction of input variables affects
the predictive capabilities of the model. The sensitivity
measure is the ratio of residual sum of squares calculated
if a single variable is excluded from a set of MLP inputs to
the residual sum of squares calculated if all input variables
are considered. The greater the ratio the more sensitive
model is to the lack of excluded variable.

To account for the initial weight variance, each
combination of input variables with set of TFs was tested
by m = 2,000 MLPs, giving a total of 62,000 tested
models. From each m" group of MLPs, the best five
were chosen in terms of quality measured as » between
experimental and approximated WSD values included in
the TE. As a result, we identified 155 models with r in
the range of 0.91-0.98. Then, the best models left were
grouped according to the number of input variables (i) and
in each group i = (1, 2, ..., 5) one model was identified
with the lowest GE (Table 1). Each of top five models
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processed data with logistic TF in the HL and exponential
TF in the OL. Their GE ranged from 0.18 to 0.26 and
r values were in the range of 0.96—0.98. Based on GE, r,
and model complexity, the best MLP was selected. The
winning MLP was based on (1 — V;)/V;, RC/ABS, and
F./F., parameters used to approximate WSD values
(Table 1). The best MLP was characterised by GE of 0.18
with corresponding » of 0.98, both determined for the
TE (Fig. 14). The best MLP generalisation ability was
additionally verified on ETE (Fig. 14). Obtained results
were above the expectations (GE = 0.14). The reason
was low variation of input variables and WSD values
included in ETE. It was discovered that low WSD values
and corresponding Chl a parameters were oversampled in
general data set and thus also in TR. Additionally, those
Chl a fluorescence parameters have a high variation
whereas corresponding WSD values have lower variability
and consequently disrupted the training process. None-
theless, such small difference in GE between TE and
ETE indicates that MLP acquired generalisation abilities
during training and this fact encourages further analysis
and model improvements. In order to check MLP stability,
additional 2,000 models were built using the same 237
cases but different, randomly selected combinations of
test cases. Each model had the same proportion of cases
in TR, VA, and TE, as well as the same structure and TFs
as the previously chosen MLP. As a result, three MLPs,
characterised by the highest quality, were chosen. Obtained
results might be considered similar since GE varied from
0.2 to 0.17, whereas correlations ranged from 0.96 to 0.97
(Fig. 1B). This confirmed that the best MLP was stable
and its parameters (weights) were not accidental. It should
be pointed that MLP with GE = 0.17 (better than the
MLP chosen previously) has lower quality (» = 0.97). It
is interesting and noteworthy fact that the model included
three parameters describing the functional activity at
three main stages of energy transformation within PSII:
(1) the light energy harvesting (the parameter RC/ABS
describes a relative concentration of active PSII reaction
centers in total pigments harvesting the light energy for
PSII); (2) the energy trapping (the parameter F./F,, relates
to maximum efficiency of the light reactions and efficiency
of energy trapping by PSII reaction centers); (3) electron
transport in ETC (the parameter [(1 — V;)/V;] reflects
potential efficiency of secondary electron transfer leading
to stabilization of charges primarily separated in PSII
reaction center) (Strasser et al. 1995, 2004; Goltsev et al.
2016, Paunov et al. 2018, Stirbet et al. 2018). In general,

Table 1. The characteristic of top five multilayer perceptrons. MLP structure — number of nodes in input - hidden - output layer;
complexity —number of modified weights (input —hidden and hidden — output connections); GE — global error; »— correlation coefficient.

complexity GE r

Input variables MLP structure

(1 =Vy)/V; 1-3-1 6
(1-V;)/V;, RC/ABS 2-7-1 21
(1= V)/V;, RC/ABS, F,/F., 3-3-1 12
(1-V,)/V,, RC/ABS, F,/Fy, F,/F 4-3-1 15
(1-=V)/V;, RC/ABS, F,/Fy, F./Fy, Plags 5-2-1 12

0.26 0.96
021 097
0.18 0.98
0.19 097
0.20 0.97
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Fig. 1. Real data and data predicted by MLP. WSD — water saturation deficit [%], lower index E — experimental data (original) from
test or extra test set, lower index P — data predicted by MLP (MLP output), GE — global error, TE — test set, ETE — extra test set, dotted
line corresponds to ideal data mapping, i.e. global error of 0 (zero) — full accuracy. Deviations from the dotted line represent mapping

imperfection (inaccuracy) expressed as global error higher than 0.

plant tissues dehydration leads to changes in hydration
and polarisation of cell macromolecules which on hand
results in conformational modifications and finally causes
their lower biological efficiency (Malferrari et al. 2013,
Ball 2017). All these phenomena have been described and
are experimentally studied in more detail (KoScielniak and
Biesaga-Koscielniak 2006, Grzesiak et al. 2007, Rapacz
2007, Ashraf and Harris 2013). Goltsev et al. (2012)
studied the influence of stepwise reduction of relative
water (RWC) content in detached primary leaves of 20—
25 old pea plants on changes in photosynthetic electron
transport, based on the data of raw fluorescence [prompt
(PM) and delayed (DF)] and modulated reflection (MR)
of light at 820 nm as well as using parameters of the JIP
test. The best model for RWC estimation was based on the
raw data of PM, DF, and MR curves (Goltsev et al. 2012).

Our model combines three variables on the basis of
their ability to explain WSD. The sensitivity analysis
provided information on inputs hierarchy within the best
neural model. Obtained results showed that among three
MLP inputs variable (1 — V;)/V; was the carrier of the most
important information on WSD variability. The residual
sum of square ratio calculated for (1 — V;)/V; indicated
that its exclusion from the input dataset diminished model
accuracy about 8.24 times compared to the MLP with
all three inputs. In case of RC/ABS exclusion, model
accuracy decreased 4.08 times whereas F./F, removal
lowered model prediction ability 1.44 times. These results
indicated that for WSD prediction, (1 — V;)/V; is about
twice as important as RC/ABS and almost six times more
important than F./F,,.

Since general data set did not cover entire range of
WSD and additionally middle and high values of this
variable were underrepresented, further research is being

carried out to collect data accounting for the greatest
possible variability of WSD and corresponding Chl a
fluorescence characteristics. It is also very important to
identify all factors, which may modify Chl a fluorescence
parameters, and in result disrupt a proper WSD prediction.
Moreover, attempts of neural model adaptation will
continue to obtain its adequate structure ensuring high
accuracy and sensitivity.
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