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Seed priming with calcium chloride improves the photosynthesis performance of
faba bean plants subjected to cadmium stress
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Abstract

Faba bean (Vicia faba L.) seeds were treated with H,O [nonprimed (NP)] or 2% CaCl, [primed (P)] before germination for
6 h. After seven days, seedlings were exposed to 0 or 50 uM CdCl, concentrations for three weeks. Under Cd treatment,
P plants showed an improvement of gas-exchange characteristics, chlorophyll (Chl) and carotenoids contents as compared
to NP plants subjected to Cd stress. Additionally, the values of Chl fluorescence were relatively similar to those of control,
implying that no photodamage occurred. Moreover, under 50 uM Cd, the P plants exhibited lesser accumulation of
hydrogen peroxide and superoxide radicals in leaves as compared to NP plants. Likewise, results showed that CaCl,-
seed pretreatment alleviated adverse effects of Cd on electrolyte leakage. In conclusion, CaCl, improved photosynthesis
attributes of faba bean plants subjected to Cd stress by mitigating the adverse effects of Cd toxicity through a reduced

generation of reactive oxygen species.
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Introduction

Cadmium pollution is increasing day by day due to
industrialization and anthropogenic activities, such as
traffic, smelting, and mining (Karadas and Kara 2011).
Similarly, excessive use of phosphate fertilizers is a major
cause of the increase in Cd concentrations in soils (Qadir
et al. 2000). The main symptoms of Cd-induced toxicity
in plants are stunted growth, yellowing of leaves, damage
to chloroplast ultrastructure, and ultimately plant death
(Daud et al. 2009). Photosynthetic processes are directly
affected by Cd ions, which disturb the carbon utilization
and respiration mechanisms (Prasad 1995, Sanita di Toppi
et al. 2003). Cd toxicity retards the photosynthetic rate by
disturbing plant water balance, stomatal conductance, CO,
availability (Shi et al. 2010, Agami and Mohamed 2013),
chloroplast organization (Miller et al. 2008, Najeeb et al.
2011), membrane structure integrity, and photosynthetic
apparatus (Ekmekgei et al. 2008, Shi et al. 2010). This is
due to the generation of reactive oxygen species (ROS),
which deteriorate the physiological functions in plants
(Dixit et al. 2001, Schiitzendiibel et al. 2001). Many studies
showed that Cd can increase the production of ROS, such
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as superoxide anion (O,") and hydrogen peroxide (H,O,)
(Prasad 1995, Schiitzendiibel et al. 2001, Zhang et al.
2009). These ROS are able to react with lipids, proteins,
and pigments, resulting in membrane damage and enzyme
inactivation (Agami and Mohamed 2013).

Various physiological practices have been applied to
alleviate the adverse effects of biotic and abiotic stress
on normal plant functioning. Seed priming is one of the
most effective and cost-efficient methods for seed quality
improvement and stress tolerance in plants (Paparella et al.
2015). This technique is based on controlled seed hydration
that induces a particular physiological state in plants
(initial steps of germination sensu stricto). This process
allows the application of natural and synthetic compounds
into the seeds before their germination. Selection of some
exogenous chemical priming such as calcium ions can
regulate plant metabolism and improve plant resistance
(Jiang et al. 2005, Delian et al. 2014). Calcium (Ca?") is
involved in the regulation mechanisms that plants activate
to adjust the adverse environmental conditions such as
heavy metals (Antosiewicz and Hennig 2004, Siddiqui et
al. 2011). Several authors have reported the alleviation of
cadmium toxicity by Ca?" in many plants, such as beans
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Abbreviations: Car — carotenoids; Chl — chlorophyll; C; — internal CO, concentration; £ — transpiration rate; EL — electrolyte leakage;
ETR — photosynthetic electron transport rate; Fo — minimal chlorophyll fluorescence; FM — fresh mass; F., — maximal chlorophyll
fluorescence; F,,' — maximal fluorescence yield of the light-adapted state; F, — steady-state fluorescence yield; F, — variable chlorophyll
fluorescence; F,/F,, — maximum photochemical quantum efficiency of PSII; g, — stomatal conductance; NPQ — nonphotochemical
quenching; Py — net CO, assimilation rate; ROS — reactive oxygen species; SE — standard error; WUE — intrinsic water-use efficiency
(Pn/gs); ©psi — actual PSII efficiency.
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(Ismail 2008), radish (Siddiqui ef al. 2013), and cabbage
(Chen et al. 2002).

Moreover, in a previous study, we found that seed
priming with CaCl, was effective in reducing the adverse
effects of Cd on V. faba seedlings (Nouairi et al. 2012).
Calcium appears to play a central role in many defense
mechanisms that are induced by environmental stresses
(Delian et al. 2014, Hironari and Takashi 2014), and Ca**
signalling is required for the acquisition of plant tolerance
(Delian et al. 2014).

The objective of the present study was to assess amelio-
rative roles of CaCl,-seed priming against the cadmium
toxicity in faba bean plants based on the measurement of
the photosynthetic parameters, ROS accumulation, and the
electrolyte leakage (EL) in leaves.

Materials and methods

Plant growth and treatment: Seeds of faba bean (Vicia
faba L. cv. Saber 02) were surface-sterilized for 3 to 4 min
with 0.1% HgCl, and washed thrice with deionized water
and then divided into two parts. For priming, one part was
soaked in 2% CacCl, solution for 6 h (P), the other part of a
nonprimed (NP) seeds was soaked in H,O. Sterilized seeds
of both parts (P and NP) were germinated in 15 ¢m in
diameter plastic pots filled with acid-washed and sterilized
sand used as a growth support and supplied with half
strength Hoagland solution (Hoagland and Arnon 1938).
After 7 d from sowing, the medium was changed to full-
strength Hoagland solution (containing 0 or 50 uM Cd).
Pots were saturated daily with 300 mL of solution. The
seedlings were grown for 3 weeks (21 d) in a greenhouse
at a day/night cycle of 12/12 h, at 23/18°C, respectively;
relative humidity was approximately 70%.

Gas exchange and Chl fluorescence: After three weeks
of Cd treatment (0 or 50 uM Cd), gas-exchange attri-
butes, such as net CO, assimilation rate (Px), stomatal
conductance (g;), intracellular CO, concentration (C),
transpiration rate (£), and water-use efficiency [WUE, the
ratio between carbon gain in photosynthesis (Px) and water
loss in transpiration (£)] were determined on the youngest
and fully expanded top leaves by using an open type and
portable photosynthesis system (LCA-4, Bio-Scientific,
Great Amwell, Herts, UK) under the following conditions:
saturating light intensity of about 1,350 pmol(photon)
m? s, CO, concentration of 380 pmol mol™, leaf tem-
perature of 27 &+ 2°C, and relative humidity was 65 + 5%.

Chl fluorescence was monitored using a modulated
Chl fluorimeter (OSI-FL, Opti-Sciences, Tyngsboro, MA,
USA). Leaves previously selected for the measurement
of photosynthetic gas exchange were used for Chl fluo-
rescence measurements following the procedure described
by Genty ef al. (1989). After a dark-adaptation period of
30 min, the minimal Chl fluorescence (F,) was determined
by a weak red light pulse (6 s). Maximum fluorescence of
dark-adapted state (F.,) was measured during a subsequent
saturating pulse of white light [8,000 pmol(photon) m2s™!
for 0.8 s].

The maximal photochemical efficiency of PSII (F,/F.)

was expressed as: F./F, = (Fn — Fo)/F,. The relative
quantum yield of PSII at steady state was calculated as
DOpsiy = (Fu' — Fy)/F.', where F, and F,,' are fluorescence
at steady state and maximum fluorescence in the light,
respectively. The nonphotochemical quenching coefficient
(NPQ), describing regulated dissipation of excess energy,
was estimated as (F,, — F")/Fy' (Bilger et al. 2001). The
linear electron transport rate (ETR) was calculated using
the equation: ETR = PAR X 0.5 x ®pgy % 0.84, where PAR
is the photosynthetic active radiation, 0.5 is distribution
of energy between the two photosystems, and 0.84 is a
fraction of light energy absorbed by a leaf (Genty et al.
1989). All Chl fluorescence measurements were taken
from 11:00 to 13:00 h. The mean of the six measurements
was calculated and used for each treatment.

Chl determination: Leaf Chl a, b, and carotenoid (Car)
concentrations of the NP or P faba bean plants were
determined three weeks after cadmium application by the
method of Lichtenthaler and Wellburn (1983). Fresh leaf
tissues (0.3 g) from fully expanded healthy leaves were
ground and extracted with 10 mL of 80% (v/v) acetone.
The suspension was centrifuged at 4°C for 5 min at
5,000 x g and absorbance was measured at 470, 646, and
663 nm, using a UV-visible spectrophotometer (Jenway
6850 UV-Vis, Cole-Parmer Ltd., UK). The pigment content
[expressed as mg g '(FM)] was calculated by using the
following equations:

Chl a=13.95 x A(,@s —6.88 x A649
Chl b =24.96 X Agso — 7.32 x Ages
Car = (1,000 X Ag70—2.05 x Chl a — 114.8 x Chl b)/245

Electrolyte leakage (EL) determination: The total in-
organic ions leaked out in the leaves were estimated by
the method of Dionisio-Sese and Tobita (1998). Twenty
leaf discs were taken in a boiling tube containing 10 mL
of deionized water and electrical conductivity (EC,) was
measured (Conductivity Model Consort K912, CONSORT-
PARKLAAN, Belgium). The contents were heated at
45°C and 55°C for 30 min in a water bath and electrical
conductivity (EC,) was measured. Later, the content was
again boiled at 100°C for 10 min and electrical conductivity
(EC,) was again recorded. The EL was calculated by using
the formula: EL [%] = (EC, — EC,)/(EC. — EC,) x 100.

Histochemical detection of H,O, and O, In situ
accumulations of superoxide radical and hydrogen
peroxide were examined with histochemical staining
protocols. Location of O, in faba bean leaf discs was
determined using the nitroblue tetrazolium (NBT)
reduction test described by Dutilleul et al. (2003). Leaf
discs were sampled and immediately vacuum-infiltrated
in 0.5 mg(NBT) mL™! and 10 mM potassium phosphate
buffer at pH 7.8. After being incubated in dark at room
temperature for 1 h, samples were cleared in 90% ethanol
at 70°C to remove Chl. O, was visualized as a blue
color at the site of NBT precipitation. The stained
discs were transferred into Petri dishes, analysed, and
photographed under a binocular microscope (Leica S6E,
Leica Microsystems, Wetzlar, Germany) coupled with
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a digital camera. Histochemical changes in H,O, were
studied by using starch-potassium iodide (KI) method
(Olson and Varner 1993). Leaf discs were incubated on
a solid medium (4% starch, 0.1 M KI, 1.0 M glucose,
and 0.8% agarose) for 4 h at room temperature for color
development. To quantify the stained areas, digital images
of leaf discs were converted into grayscale images and
the percentage of stained spot areas to the total leaf disc
areas were determined with /mage J software (Image J,
ver. 1.51p, Wayne Rasband, National Institutes of Health,
USA).

Statistical analysis: All data are presented as means +
SD of at least five replicate seedlings. One-way analysis
of variance (ANOVA) was performed in SPSS program
version 20.0 (SPSS, Chicago, USA). Comparisons
between the mean values were accomplished by the least
significant difference (LSD) test at the level of p<0.05. All
graphs were made using SigmaPlot version 11.0 (Systat).

Results

Chlorophylls and gas-exchange attributes: In NP plants,
results showed that the Py, E, g, Ci, and WUE values
significantly decreased under 50 uM Cd treatment by

12

64, 42, 69, 55, and 37%, respectively, as compared with
controls (Fig. 1). In contrast, CaCl, seed priming improved
the photosynthetic parameters under Cd stress conditions
and increased Py, E, gs, Ci, and WUE by 88, 48, 95, 68,
and 27%, respectively, compared to Cd-stressed plants
alone (Fig. 1). Thus, these results revealed that CaCl,
seed priming could improve photosynthetic activity and
alleviate Cd-induced photosynthetic changes in faba bean
plants.

The growth retardation of faba bean plants (Fig. 2) by
the Cd application (50 uM), was found to be associated
with a significant decrease in Chl a and Chl b contents
(by 53 and 59%, respectively, as compared with the Cd-free
control plants) (Fig. 3). However, CaCl, pretreatment (P)
significantly alleviated this Cd-induced inhibition; Chl a,
Chl b, and Car increased by 30, 67, and 73%, respectively,
compared with a Cd-stressed plants (NP with 50 uM Cd).
Moreover, results indicated that CaCl,-pretreated plants
(P) exhibited significant increases in Chl a, Chl b, and Car
values (by 17, 4, and 54%, respectively) compared with
the Cd-free control (NP at 0 uM Cd) (Fig. 3).

Chl fluorescence: Under Cd treatment (50 uM), Chl fluo-
rescence parameters (F,/F,, ®psy, and ETR) declined by
14, 7, and 23%, respectively, as compared with control
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transpiration rate, £ (B),
stomatal conductance, g (C),
intracellular CO, content,
C: (D), and water-use effi-
ciency, WUE (E) in Vicia
faba plants pretreated with
2% CaCl, (P) or H,O (NP)
for 6 h and growing for 21
days under 0 or 50 uM Cd.
Values are the means of five
replications + SD. The data
followed by different letters
are significantly different at
p<0.05.
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NP P

Fig. 2. Vicia faba L. plants pretreated with 2% CaCl, (P) or with
H>O (NP) for 6 h, and growing for 21 days under 0 or 50 uM Cd.
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NP 50uM Cd
BN P OpM Cd
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Fig. 3. Chlorophyll (Chl) a, Chl b, and carotenoids (Car) in leaves
of Vicia faba plants pretreated with 2% CaCl, (P) or H,O (NP)
for 6 h and growing for 21 days under 0 or 50 uM Cd. Values are
the means of 12 replications = SD. The data followed by different
letters are significantly different at p< 0.05.

(Fig. 44,B,D). The value of NPQ under Cd treatment
exhibited an increase of 20% in comparison with control
(Fig. 4C). Furthermore, in Cd-treated faba bean plants,
CaCl, pretreatment showed significant improvement in the
values of F,/F., ®@psi, and ETR compared to Cd-stressed
plants alone. In contrast to this finding, the value of NPQ
declined significantly in CaCl,-pretreated plants subjected
to Cd stress compared to Cd-stressed plants alone

(Fig. 40).

H,0, and O, production: Endogenous O, in leaf tissues
was stained with NBT to form a dark blue insoluble
formazan compound. As expected, the generation of O,
increased in leaves considerably in response to the Cd

treatment. However, CaCl, seed pretreatment reduced
O, generation in leaves of Cd-treated plants (Fig. 54).
To verify in situ the accumulation of H,O, in faba bean
leaves, a histochemical method with starch-KI, based on
the formation of local brown spots by H,O, in leaves,
was used (Fig. 5B). Under 50 uM CdCl, treatment, H,O,
accumulation was high in leaves of faba bean seedlings.
However, CaCl, seed pretreatment decreased intensity of
brown deposit in leaves of Cd-treated seedlings indicating
lower concentration of H,O, (Fig. 5B).

EL: Membrane stability decreased significantly with Cd
stress (50 uM) in control plants (NP). An increase (by
61%) in the EL under 50 pM Cd treatment was observed
(Fig. 6). However, in Cd-treated faba bean plants, CaCl,
pretreatment showed significant improvement of the
values of EL compared with a Cd-stressed plants.

Discussion

The reported research was undertaken to improve our
understanding of physiological processes determining
heavy metal tolerance and the induction of such processes
by CaCl, seed priming for the alleviation of Cd-induced
decreases in photosynthesis. In the present study, plant
growth and photosynthetic parameters decreased under
Cd stress (Figs. 1,2). Cadmium-induced inhibition in plant
growth has already been reported in many plant species,
such as wheat (Rizwan et al. 2012), rice (Cao et al. 2013),
maize (Vaculik et al. 2015), Brassica napus (Nouairi et al.
20006), tomato (Ammar et al. 2015), and bean plants (Saidi
et al. 2013). It has been shown that photosynthesis was
closely related to plant growth and biomass production.
Therefore, the decrease in plant growth might be due to
Cd-induced toxicity on photosynthetic apparatus (Bashir e?
al. 2015, Moradi and Ehsanzadeh 2015) and/or structural
alterations in plants (Nouairi et al. 2006, Belkhadi et al.
2010). Decrease in plant growth and biomass might also
be due to oxidative damage and reduction in antioxidant
enzymes activities (Ahmad et al. 2009) and/or reduction
in mineral nutrients uptake by plants (Ben Ghnaya et al.
2009). It might be assumed that this decrease in plant
growth could be due to the reduced cell expansion (Daud
et al. 2013), decrease of Calvin-cycle enzymes, inhibition
of the photosynthetic electron transport chain, and might
also be due to Cd-induced inhibition in gas-exchange
characteristics and Chl contents (Ali et al. 2014, Per et al.
2016).

In the present investigation, it was found that CaCl,
seed priming markedly alleviated Cd-induced reduction in
growth and photosynthetic parameters in faba bean plants
(Figs. 1,2). Indeed, under Cd stress, results indicated that
CaCl, pretreatment caused significant increases in g, C
and E values. Thus, these results suggested that CaCl, could
alleviate the stomata closure caused by Cd and promote
the photosynthesis by ensuring the transport of abundant
CO, to the chloroplast. Moreover, the Cd-induced Chl
content reduction was significantly reversed when faba
bean seeds were treated with 2% CaCl, (Fig. 3). This
indicated that Ca®*" pretreatment mediated improvement
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Fig. 4. Cadmium effect on the maximum quantum yield of PSII photochemistry, F./F,, (4), quantum efficiency of PSII photochemistry,
®pgir (B), nonphotochemical quenching, NPQ (C), and the relative PSII electron transport rate, ETR (D) in Vicia faba plants pretreated
with 2% CaCl, (P) or H,O (NP) for 6 h and growing for 21 days under 0 or 50 uM Cd. Values are the means of 6 replications + SD. The
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Fig. 5. Histochemical detection of O, and H,O, (4) and the
percentage of the stained leaf area (B) in leaves of Vicia faba
plants pretreated with 2% CaCl, (P) or with H,O (NP) for 6 h and
growing for 21 days under 0 or 50 uM Cd. Values are the means
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Fig. 6. Electrolyte leakage (EL) in leaves of Vicia faba plants
pretreated with 2% CaCl, (P) or with H,O (NP) for 6 h and
growing for 21 days under 0 or 50 uM Cd. Values are the means
of 10 replications = SD. The data followed by different letters are
significantly different at p< 0.05.

in photosynthesis, partly due to increasing Chl synthesis.
Moreover, it has been shown that Ca** served as secondary
messenger for cytokinin action in improving synthesis of
Chl (Lechowski and Bialczyk 1993).

Indeed, it has been reported by many researchers
that exogenous application of Ca*" enhanced the plant
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tolerance to heavy metals (Farzadfar ef al. 2013, Lwalaba
et al. 2017) and other stresses (Jiang et al. 2001, Xu et
al. 2013, Methenni et al. 2018). Ca*-mediated biomass
enhancement might occur due to an increase in the uptake
of nutrients by plants under stressful conditions (Khan et
al. 2012, Siddiqui et al. 2012). Calcium may maintain the
photosynthetic capacity of plants by increasing stomatal
conductance and maintaining Rubisco activity and
chloroplast ultrastructure under abiotic stress (Liang ef al.
2009, Tan et al. 2011, Xu et al. 2017). The Chl fluorescence
technique has been proven to be a sensitive method for
the detection and quantification of changes induced
in the photosynthetic apparatus. This analysis permits
detection, monitoring, and evaluation of abiotic stresses
upon healthy plants (da Silva et al. 2012). The F./F,, and
photochemical quenching coefficient (qp) are frequently
used to measure the maximum photochemical efficiency
of PSII and proportion of oxidized (open) reaction centres
PSII, respectively, while F./F, (activity of PSII) and
Fu/Fo (electron transport through PSII) are also used to
explore the photosynthetic efficiency of plants in changing
environmental conditions (Xing et al. 2010). Studies
demonstrate that stress factors generally affect functional
activity of PSII and thus decrease these ratios (Xing ef al.
2010). Under Cd stress, the decline in F,/F,,, ®psi, and ETR
(Fig. 4) indicated structural and functional alterations in
photosynthetic process as evidenced by decreased growth
of faba bean plants (Fig. 2). In addition, the NPQ value
significantly increased under Cd stress (50 uM), indicating
that an antenna pigment could not effectively transform
light energy into chemical energy and it was, therefore,
released as heat (Zou et al. 2015).

On the other hand, CaCl, seed priming significantly
alleviated Cd-induced damaging effects on photosynthesis
(Fig. 4), which could be correlated with improved
photosynthetic efficiency of faba bean plants. Moreover,
under Cd stress, in CaCl,-pretreated plants, the NPQ value
remarkably decreased, suggesting that CaCl, improved the
light-utilisation efficiency.

Another protective mechanism of CaCl, seed pre-
treatment in alleviating Cd toxicity was via eliminating free
radical-induced damage caused by Cd. Previous studies
have shown that Cd toxicity resulted in the accumulation
of ROS and oxidation of lipid membranes (Chaoui et
al. 1997, Nouairi et al. 2006). In the current study, Cd-
stressed faba bean plants had the increased O, and H,O,
accumulation and EL (Figs. 5,6). However, CaCl, seed
pretreatment significantly lowered the ROS overproduction
and decreased EL in leaves of Cd-stressed plants. The
Ca-induced inhibition of EL and ROS contents indicates
that CaCl, seed priming could significantly alleviate the
harmful effects of Cd stress in faba bean plants. Moreover,
our results suggest that calcium alleviated the adverse
effect of the oxidative stress by reducing the content of O,
and H,O, possibly through stimulation of ROS-scavenging
enzymes, such as superoxide dismutase (SOD), catalase
(CAT), guaiacol peroxidase (GPX), and enhancement of
nonprotein thiol (—SH) contents in leaves of faba bean
Cd-stressed plants (Nouairi ef al. 2012). In addition, Ca**
is one of many cellular network parameters orchestrating

complex cellular signalling coordinating responses
to numerous developmental cues and environmental
challenges. It has been shown that Ca*" had the function
of preventing cell membrane injury and leakage as well as
stabilizing cell membranes under adverse environmental
conditions (Guimardes et al. 2011, Nouairi et al. 2012).
Indeed, it has been demonstrated that a high concentration
of Ca?* around plasma membrane reduces cell-surface
negativity and harmfulness of cationic toxicants (Kinraide
1998) or the uptake of Cd via calcium channels to mimic
Ca (Suzuki 2005). Thus, seed priming with CaCl, seems
to play a fundamental role in the establishment of a basal
resistance to environmental stresses.

Conclusion: Taken together, the overall results from
this research suggest that Cd significantly inhibited the
growth traits as well as the photosynthetic parameters in
faba bean seedlings. It is suggested that Cd acts as the
main limiting factors for photosynthesis via Chl loss,
changes in the photosynthetic apparatus, and damage of
PSII reaction centre. However, seed priming with CaCl,
significantly alleviated Cd-induced inhibition of faba bean
growth, chlorophyll contents, gas-exchange attributes, and
photosynthetic efficiency. CaCl, pretreatment markedly
reduced Cd-induced ROS accumulation and EL, and
might be an important technique that enables the plants to
tolerate abiotic stress.
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