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Abstract

Predicting responses to stressful conditions is very important. Chlorophyll a fluorescence (ChlF) can be used to assess 
effects of various stresses on photosynthetic performance. We tested the responses of five 10-d old maize hybrids to 
salinity stress by measuring ChlF parameters, fresh (FM) and dry mass (DM). ChlF data were incorporated into a penalized 
regression model to predict biomass traits. The values of FM and DM significantly decreased under salt stress by 42  
and 25%, respectively. Strong responses in ChlF parameters assessing the absorption dissipation and trapping fluxes to 
NaCl treatment were detected. In penalized regression models, 118 transients showed greater (R2 = 0.663 for FM and  
R2 = 0.678 for DM), although comparable, predictive abilities as 18 selected JIP-test parameters (R2 = 0.597 for FM and  
R2 = 0.636 for DM). Genetic assessment of developed models is needed, as they efficiently predict biomass traits and 
provide physiological context to the obtained predictions. 
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Introduction

Maize (Zea mays L.) is one of three most important cereal 
crops used as a human food, feed for livestock, and raw 
material in many industries. Abiotic stress is one of the 
main causes of yield loss worldwide and soil salinity is 
very common abiotic factor in the crop production which 
negatively affects plant growth at multiple stages in the 
form of both hyperosmotic and hyperionic stresses (Munns 
2002, James et al. 2011, Gupta and Huang 2014, Kan et al. 
2017). In general, maize is considered moderately sensitive 
to salt stress (Zörb et al. 2004, Farooq et al. 2015), a 
category which comprises plants that maintain growth in 

saline soils with an electrical conductivity between 3 and  
6 dS m–1 (Hasanuzzaman et al. 2013). A saline level of more 
than 0.25 M NaCl may inhibit maize growth and cause 
severe wilting (Menezes-Benavente et al. 2004). Moderate 
soil salinity in the range of 8 to 10 dS m–1 results in yield 
losses up to 55% in maize (Satir and Berberoglu 2016). As 
the salinity increases, growth decreases until plants become 
chlorotic and die (Dikilitas and Karakas 2010). A saline 
soil can be defined as the one with electrical conductivity 
of the saturation extract in the root zone exceeding 4 dS m–1 

at 25°C with exchangeable sodium of 15%, which appro-
ximates 40 mM NaCl (Shrivastava and Kumar 2015). 
Different factors, such as long drought periods, high surface 
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evaporation, using saline water for irrigation, excessive 
use of water in dry climates with heavy soils, and practice 
of waterlogging without adequate drainage, lead to soil 
salinization (Mateo-Sagasta and Burke 2011, Tomescu  
et al. 2017). According to FAO, estimates around 800 
million hectares of land worldwide is affected by either 
salinity (397 million ha) or sodicity (434 million ha) (FAO 
2005) which accounts for more than 6% of the world's 
total land area (Munns 2005).

Soil salinity causes accumulation of toxic Na+  and 
Cl− concentrations in plant tissues (Munns 2002) which 
is particularly damaging during germination and at the 
early stages of growth (Park et al. 2016). Exposure to 
NaCl induces hyperosmotic and hyperionic stress and an 
ion toxicity (particularly caused by Cl−) when plants are 
exposed to high concentrations of this salt for long periods 
(Kalaji and Pietkiewicz 1993, Munns 2002, Chaves et al. 
2009). The accumulation of Na+ and Cl− in the cells causes 
ion imbalance and excess uptake might cause significant 
physiological disorders (Gupta and Huang 2014). At the 
plant level, salt stress can reduce growth in an early 
phase of plant development which significantly reduces 
the yield (Zörb et al. 2018). At the cellular level, a high 
Na+ concentration inhibits uptake of K+ ions, which is an 
essential element for growth and development, resulting 
in reduced productivity or even death (James et al. 2011). 
High concentrations of Na+ in the soil cause hyperosmotic 
stress due to a rapid change in the osmotic potential 
between the plant and the environment which reduces 
water absorption capacity of plants (Munns 2002, Fricke 
et al. 2006, Schleiff 2008) triggering plant responses 
similar to drought stress (Kalaji et al. 2018). At high 
salinity levels, salts accumulate in leaf tissues to excessive 
concentrations. Salts may accumulate in the apoplast and 
dehydrate the cell, they may accumulate in the cytoplasm 
inhibiting enzymes involved in carbohydrate metabolism, 
or they may accumulate in the chloroplast and exert a direct 
toxic effect on photosynthetic processes (Munns and Tester 
2008). At the initial stage of salinity stress, osmotic stress 
causes changes in various physiological processes, such as 
decreased photosynthetic efficiency of both photosystems, 
PSI and PSII (Liska et al. 2004, Stepien and Klobus 2006, 
Qu et al. 2012, Gao et al. 2016), although photochemical 
activity of PSII in maize is more sensitive to salt stress than 
that of PSI (Kan et al. 2017). The effects of salt stress have 
been already investigated by the measurements of ChlF 
emitted by plants. ChlF measurements are informative in 
assessment of structure and function of the photosynthetic 
apparatus (Strasser et al. 2010) and the JIP-test (Strasser et 
al. 2000) has become widely used for large-scale screening 
of stress effects (Kalaji et al. 2016). The JIP-test was proven 
to be a very useful tool for the in vivo investigations of 
the adaptive behavior of the photosynthetic apparatus to a 
wide variety of stressors, as it translates the shape changes 
of the O-J-I-P transient curve to quantitative changes of 
the several parameters (Strasser et al. 2004) and provides 
assessment of the cascade of chloroplast redox reactions 
at microsecond or millisecond scales (Kalaji et al. 2016). 
Particularly, the JIP-test and ChlF transients have been 
used so far to assess the effects of salt stress in many 
species, such as barley (Kalaji et al. 2011), wheat (Mehta 

et al. 2010), sunflower (Umar et al. 2019), maize (Kan et 
al. 2017), Tilia cordata Mill. (Kalaji et al. 2018), sorghum 
(Sayyad-Amin et al. 2016, Zhang et al. 2018), and rocket 
(Hniličková et al. 2017). 

With the advent of the mass availability of the geno-
typing data, such as single nucleotide polymorphisms 
(SNP) from genotyping diversity arrays or sequencing 
efforts, the crop genomic prediction models were deve-
loped (i.e., genomic/genome-wide selection models). The 
next step towards obtaining more accurate predictions 
would be the integration of the new phenotypes that are 
easy to measure, highly heritable, and correlated with 
traits of interest into the models. Subsequently, these 
relevant variables have to be integrated into the genotype-
to-phenotype (G2P) models to improve the model 
prediction accuracy (van Eeuwijk et al. 2018). Technow  
et al. (2015) developed a crop growth model (CGM), 
which integrates the physiological variables into the 
genome-wide prediction models. The aim of CGMs is not 
only to increase prediction accuracy, but also to provide 
the biological framework in plant breeding to increase the 
understanding of plant adaptation to environments and 
stresses (Cooper et al. 2016, Messina et al. 2018). Since 
ChlF kinetics is highly informative tool used for studying 
effects of different environmental stresses, including salt 
stress on photosynthesis (Kalaji et al. 2011), it might serve 
as a new, adequate high-throughput phenotyping tool in 
CGM and G2P models, especially, because some ChlF 
parameters are affected by similar genetic regions as grain 
yield in stressful environments (Galić et al. 2019). 

Here, we provided a first step towards the use of ChlF 
data in prediction models by incorporating the measured 
transients and calculated parameters into a penalized 
regression model aiming to predict biomass responses 
in terms of FM and DM to salinity. Additionally, the 
photosynthetic responses of young plants of five maize 
hybrids to salinity stress were analyzed by the means of 
biomass accumulation and JIP-test.

Materials and methods 

Plant material and experimental design: The experi-
ments were carried out with five commercial maize (Zea 
mays L.) hybrids of Agricultural Institute Osijek, Croatia. 
Hybrids were chosen in a way to represent the maturity 
variations frequently observed in the farmers' fields in 
South-Eastern Europe. Hybrid pedigrees, FAO maturity 
classifications, and parental components with their respec-
tive genetic backgrounds were: 

Hybrid FAO 
maturity

♀ parent ♀ back-
ground

♂ parent ♂ back-
ground

378 370 OS 2340-8 Iodent OS 27488 Oh43
444 450 OS 3-48 Iodent OS 135-88 Lancaster
505 510 OS 23-48 Iodent OS 942 Oh43
Drava 420 OS 84-28A Iodent OS 942 Oh43
Veli 590 OS 024445 Iodent OS KLT14 Stiff Stalk 

Synthetic
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Experiments were set under controlled conditions with 
temperature of 25°C, 16/8-h day/night regime, and light 
intensity of 200 μmol(photon) m–2 s–1. Soil properties were 
70 mg(NH3 + NO3

–) L–1, 80 mg(P2O5) L–1, 90 mg(K2O) L–1, 
70% organic matter, and pH = 5.7 (CaCl3). Seeds of the 
five maize hybrids were planted in trays filled with organic 
soil substrate in two treatments (control and NaCl) and 
four replicates. Briefly, 15 seeds of each hybrid planted 
in each tray for each genotype in both control and NaCl 
treatment were considered a single biological replicate 
(totally eight trays per genotype). Soil for the NaCl 
treatment was treated with dilution of 50 mM of NaCl per 
kilogram of soil. The mentioned concentration was chosen 
according to the results by Yang and Lu (2005) as the 
middle concentration which affects the PSII and is feasible 
to find in field-growing scenarios. Plantlets were grown 
for 10 d and watered with spray bottle every second day 
before the ChlF measurements. 

ChlF measurements and weighting: ChlF was measured 
with hand-held fluorimeter Handy-PEA (Hansatech, King's 
Lynn, UK) in the middle of the first fully developed leaf. In 
each replicate of each treatment ten uniformly developed 
plants were measured, comprising totally 40 measurements 
per genotype per treatment. After the dark adaptation of  
30 min, ChlF transients were induced by a red light satura-
tion pulse [650 nm; 3,200 mmol m–2 s–1] on the leaf surface 
exposed by the leaf clip (12.56 mm2). The light pulse 
induces ChlF increase from minimal fluorescence (F0), 
when all reaction centers are open, to maximal fluorescence 
(FM), when all reaction centers are closed. During the 1-s 
measurement, 118 data points are collected. ChlF data 
were processed with PEA Plus software (V1.10) provided 
with the fluorimeter. The JIP-test (Strasser and Strasser 
1995, Strasser et al. 2000, 2004) was used to analyze each 
ChlF transient. JIP-test is a mathematical model based on 
the theory of ‘energy flow’ across thylakoid membranes 
(Strasser et al. 2000) developed as a biophysical tool for 
assessment of the cascade of chloroplast redox reactions at 
microsecond or millisecond scales (Kalaji et al. 2016). The 
formulas in Appendix illustrate how each of the mentioned 
biophysical parameters can be calculated from the original 
fluorescence measurements. JIP-test data were used to 
perform principal component analysis (PCA). Parameters 
for further analyses and statistical modelling were chosen 
according to the series of the PCAs to represent best the 
variation existing among hybrids and their reactions to 
salinity. 

Aboveground biomass of each measured plant was 
weighed on the four decimal laboratory scale and desig-
nated as FM. Plants were oven dried for 24 h in an open 
15-ml falcon tube at 80°C before weighting for DM. DM 
was expressed as percentage of FM. 

Statistical analyses and model validation: All statistical 
analyses were carried out in R programming environment 
(R Core Team 2018). Analysis of variance and the post-hoc 
tests were performed in package agricolae (Mendiburu 
and Simon 2015) after Shapiro-Wilk's test of normality. 

According to the p values from Shapiro-Wilk's test, it was 
chosen between ordinary least-squares-based Fisher's 
LSD test and Kruskal-Wallis test for multiple comparisons. 
Analysis of variance was performed with mean values of 
replicates (trays), n = 40. For PCA, the R base function 
prcomp was used with log-transformed centered variables. 
The plots were constructed with the ggbiplot2 library (Vu 
2011). Only the components explaining more than 10% 
of the variance were analyzed. Only parameters with 
correlation coefficients < 0.9 were analyzed in this manner.

Partial least squares (PLS) regression was used to 
fit the models between the ChlF and biomass-related 
data (FM, DM). PLS regression was chosen because the 
method was designed to effectively solve the collinearity 
problem often present among sequential measurements 
and multiple predictor variables in the regression models. 
The models were fitted with pls library (Mevik et al. 2018) 
function plsr. After the model fitting, model calibration 
was carried out with 10-fold cross validation procedure. 
Namely, in this procedure, the data set was divided into ten 
equal subsets, and the data from nine subsets were used to 
predict a single subset, after which the correlation between 
the predicted and observed values of the dependent variable 
was calculated. The process was repeated (folded) until 
the last single set was predicted. Mean correlation across 
the folds was calculated in each step as the independent 
variables were rearranged in all possible manners reducing 
their dimensionality while explaining the highest possible 
proportion of variance in both x and y directions. After the 
cross-validation procedure, the number of components 
(dimensions) was chosen according to the absolute 
lowest calculated value of the root mean square error of 
prediction (RMSEP). The model with absolute lowest 
value of RMSEP was considered a calibrated model. 
The dependent variables in the models were FM and DM 
and two models per trait were constructed: first with the 
selected 18 JIP-test parameters used for PCA chosen to 
represent best the variation in the dataset, and second with 
all 118 measured ChlF transients as independent variables 
(predictors).

For further (independent) validation of the models, we 
planted another independent experiment similar to the 
control from the first experiment. The calculated models 
for predicting FM and DM were employed and the corre-
lations between the observed and predicted values were 
calculated, as well as the RMSEP values of the predictions.

Results
Effects of NaCl stress on selected ChlF and JIP-test 
parameters are shown in Fig. 1. Values of parameters were 
normalized to their respective controls in order to compare 
genotypes. Significant differences were detected between 
genotypes in control and NaCl treatment for all examined 
parameters and both biomass-related traits. Effect of NaCl 
treatment was significant for both biomass-related traits 
and most ChlF parameters. Values of time to reach FM (TFM), 
electron transport per active reaction center (ET0/RC), 
φPo, and φRo did not show significant changes under the 
NaCl stress (Table 1S, supplement). 
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Data extracted from the recorded fluorescence 
transient: Values of total complementary area between the 
fluorescence induction curve and FM (Area) and normalized 
complementary area above the fluorescence induction 
curve (Sm) decreased in NaCl treatment in all investigated 
genotypes. The largest decrease in both parameters was 
recorded in genotype 505, while genotype Drava showed 
the lowest decrease. Drava, 378, and 444 values of F0, FM, 
and FV parameters increased under the NaCl stress (Fig. 1).

Specific fluxes per active reaction center: Values of 
absorption (ABS/RC), dissipation (DI0/RC), trapping 
(TR0/RC) per active reaction center (RC), and electron flux 
reducing the end electron acceptors at the PSI acceptor 
side per RC (RE0/RC) increased under the NaCl treatment 
in all investigated genotypes. The lowest increase was 
recorded in genotype 444, while genotype 505 showed the 
largest increase in ABS/RC, DI0/RC, and TR0/RC, while 
the genotype Drava showed the largest increase in RE0/RC 
in relation to their respective controls (Fig. 1).

Quantum yields and efficiencies/probabilities: Values of 
maximum quantum yield of PSII (φPo) and quantum 
yield for reduction of end electron acceptors at the PSI 
acceptor side (φRo) did not change significantly under the 
NaCl treatment. In contrast, efficiency/probability that an 
electron moves further than QA

– (ψEo) and quantum yield 
of electron transport (φEo) decreased while efficiency/
probability with which an electron from the intersystem 
electron carriers is transferred to reduce end electron 
acceptors at the PSI acceptor side (δRo) increased in NaCl 
treatment. Genotype 505 showed the largest decrease in 
ψEo and φEo compared with the control, while decrease in 
values of these parameters in other genotypes was similar. 

The largest increase in δRo was found in genotype Drava 
and the smallest in genotype Veli (Fig. 1). 

Performance indexes: Significant effect of NaCl treat-
ment was recorded for both PIABS and PItotal. In stressed 
plants, PIABS values were considerably lower than that 
in nonstressed plants. The largest deviation from the 
control was recorded for genotype 505, while the smallest 
deviation was recorded for genotype 444. Similarly, under 
the NaCl stress, PItotal values showed the highest drop in 
genotype 505, while the smallest decrease was recorded in 
Drava genotype (Fig. 1). 

Biomass-related traits: Under the NaCl stress, the values 
of FM and DM significantly decreased. Genotype 505 
showed the largest decrease of FM, while the lowest 
decrease was recorded in genotypes 378 and Drava. 
Genotype 378 also showed the smallest decrease of DM, 
while the largest deviation from the control was recorded 
in genotypes 444 and Veli (Fig. 1). 

Principal component analysis: The PCA explained 76.6% 
of the variance (Fig. 2) in the data in the first two principal 
components (PCs). Inspection of the biplot (Fig. 2) and 
Table 1 showed that PC1 is mainly correlated with φRo, φPo, 
and PItotal in positive direction and F0 in negative direction. 
The PC2 is mostly described with DM and FM in positive 
direction and δRo in negative direction. The genotype-
treatment combinations formed two distinct groups: 
control and NaCl along the PC2, although there were also 
interesting differences between genotypes within NaCl 
treatment and control. Namely, hybrid Veli was separated 
from other hybrids along PC1 in both treatments. The 
individual scores of other hybrids in the biplot showed an 

Fig. 1. Changes in JIP-test (for definitions, formulas, and 
abbreviations see Appendix) and biomass parameters 
induced by salinity in five maize hybrids. Values 
represent the means (n = 40). Significant differences 
between NaCl treatment and control at α=0.05 level 
were detected for all parameters except TFM, ET0/RC, 
φPo, and φRo. Significant differences between genotypes 
at α=0.05 level were detected in control and NaCl 
treatment for all examined parameters. Full list of 
values and statistics is available in Table 1S.
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overlapping pattern, especially in the control, positioning 
them around the origin of the PC1 and on the positive 
side of PC2. Grouping of variants was similar in the NaCl 
treatment with hybrids 444 and Drava positioned around 
the origin of PC1 and on the negative side of PC2 and 
hybrids 378 and 505 positioned in the negative quadrant 
in both PCs showing the largest decrease in performance. 
The drop in performance was mostly visible through the 
increase in F0 and dissipation per RC and decrease in 
performance indexes and biomass traits.

Model predicting the plant biomass traits from ChlF 

data: The PLS models predicting the young plant FM 
and DM were set to examine the usability of ChlF data 
in abiotic stress quantification and to test the predictive 
potential of the data. First two models were set with 18 
biophysical parameters of JIP-test (Appendix), some of 
which were also used for PCA, as independent variables (x) 
and FM and DM as dependent variables (y). The models 
explained 59.7% of the variance for FM (Fig. 3A) and 
63.6% of variance for DM (Fig. 3B) with low RMSEP 
indicating fairly high precision of the predictions. The 
other two models were set with all 118 ChlF transient data 
points measured through the initial 1 s upon illumination 
with saturating pulse of light as independent variables. 
The models explained 66.3% of the variance for FM  
(Fig. 3A) and 67.8% variance for DM (Fig. 3B) with lower 
but comparable values of RMSEP indicating comparable 
predictive abilities as the models using JIP-test parameters as 
independent variables. Generally, transients showed greater 
but comparable prediction accuracy for both examined 
traits. 

Predictive abilities of the models were further tested 
in an independent scenario which was a replicate of the 
control experiment. Correlation coefficients between pre-
dicted and observed values were lower compared to initial 
estimates, and ranged from 0.496 to 0.641 (Table 2).

The highest loadings in models with JIP-test parameters 
as independent variables and FM as dependent variable 
were observed for PItotal and δRo, followed by fluxes per 
RC, while near-zero loadings were assigned to the data 
extracted from recorded transients (Fig. 4A, Appendix). 
In a model with DM as dependent variable and JIP-test 
parameters as independent variables, the largest loading 
weight was observed for quantum yield of electron 
transport, followed by maximum quantum yield of PSII, 

Fig. 2. Principal component analysis of variation among reactions of five maize hybrids to elevated contents of soil NaCl. Arrows 
represent the eigenvalues of each of the eight selected chlorophyll a fluorescence parameters (for definitions, formulas, and abbreviations  
see Appendix) with correlation coefficients < 0.9, fresh mass (FM) and dry mass (DM). Ellipses around the groups are the calculated 
95% confidence intervals. c – control; NaCl – 40 mM NaCl soil treatment; PC – principal component.

Table 1. Loading weights, communalities, and eigenvalues 
from principal component analysis of JIP-test (for definitions, 
formulas, and abbreviations see Appendix) and biomass para-
meters for first two principal components (PC). FM – fresh mass, 
DM – dry mass.

Parameter Loading Communality
PC1 PC2 PC1 PC2

TFM   0.354 –0.238   0.743 –0.430
F0 –0.383 –0.076 –0.803 –0.137
FM –0.031 –0.324 –0.065 –0.584
ET0/RC   0.331 –0.246   0.694 –0.443
φPo   0.420 –0.176   0.883 –0.318
δRo   0.058 –0.503   0.121 –0.907
φRo   0.445 –0.092   0.935 –0.165
PItotal   0.404   0.262   0.848   0.472
FM [mg]   0.248   0.430   0.520   0.775
DM [% FM]   0.123   0.475   0.257   0.856
Eigenvalue   4.407   3.248 - -
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electron transport, and electron flux reducing the end 
electron acceptors at PSI side per active RC (Fig. 4C). 
In models with transient data as independent variables 
for both FM and DM as dependent variables, the most 
pronounced loading weights (both positive and negative) 
were observed in the transient areas corresponding to J-I 
and P parts of the O-J-I-P band (Fig. 4B,D). 

Discussion

Salt stress is manifested in two ways: as osmotic stress 
causing dehydration and ionic stress causing ionic imba- 
lance. Both effects, osmotic and ionic, affect the photosyn-
thesis process and many factors can lead to the decrease 
in photosynthetic performance under the salt stress. 
Namely, Na+ ions, which enter the maize cells, inhibit the 
development, increase the reactive oxygen species (ROS) 
production, result in decrease of stomatal conductance, 

etc. Consequently, these metabolic alterations reflect in 
photosynthetic performance (Farooq et al. 2015). The 
physiological response in maize is expected to be genotype 
specific, as there is a variation present in everything from 
Na+ ion uptake and accumulation to expression of the genes 
included in antioxidative response and protein synthesis 
(Soares et al. 2018). The parameter φPo is often used to 
express the physiological condition of a plant, but proved to 
be very stable under some stressful conditions, especially 
osmotic stress (Shabala et al. 1998, Kocheva et al. 2004, 
Deng et al. 2010, Akram et al. 2011), corroborated with 
reduced water absorption capacity of plants under the NaCl 
stress (Fricke et al. 2006, Schleiff 2008). Stable values of 
φPo under the salt stress in our study indicate that NaCl 
treatment did not irreversibly damage PSII functioning, 
as the values were kept above critical levels (Woo et al. 
2011). Other ChlF parameters, giving information on the 
heterogeneity of electron transport, PSII RCs, and overall 
photosynthetic performance showed significant effects of 
the NaCl stress along with both biomass-related traits. 

Lowest reduction in biomass parameters, FM and DM, 
observed in hybrids Drava and 378 compared to their 
respective controls might indicate higher tolerance to salt 
stress. Accumulation of DM is an excellent indicator of 
stress tolerance and changes relative to control conditions 
can be used to discriminate cultivars that are tolerant 
to osmotic stress from the susceptible ones (Chen et al. 
2016). Fresh biomass partitioning to water and dry matter 
is affected by salt stress in such way that the maintenance 
of the water fraction cannot be maintained, inducing the 
reduction of leaf expansion, thus lowering the amount of 
photosynthetic tissues (Sultana et al. 1999, Negrão et al. 
2017). Drop in FM in our study was more pronounced than 
the drop in DM possibly indicating lowering in relative 
water content due to the NaCl-induced osmotic stress 
(Živčák et al. 2008). 

Significant changes in biophysical parameters suggest 
that increased NaCl concentration alters the PSII RC 
density, which can be seen from the increase in ABS/RC 
values. Similar increases under the NaCl-stressed wheat 
leaves have been reported by Mehta et al. (2010). Increase 
in ABS/RC indicated inhibition of electron transport 
from QA

– to QB, and transformation of RCs to ‘silent’ 
RCs (Yusuf et al. 2010). Increase in dissipation energy 
(DI0/RC) supports the change in RC functionality, as the 
increase in dissipation could indicate that some of the RCs 
have transformed to ‘heat sinks’ to dissipate excess energy 
(Strasser et al. 2000). This is usually accompanied with 
decrease of QA-reducing RCs per PSII antenna chlorophyll 
(RC/ABS). This is also in concordance with decreases in 
φEo under the NaCl stress, which corresponds to a decrease 
in the efficiency of electron transport to the intersystem 
electron acceptors (Strasser et al. 2010). Increase in  
ABS/RC during drought stress is usually accompanied by 
increased trapped energy flux (TR0/RC) (Christen et al. 
2007). Kalaji et al. (2018) showed that in terms of 
distinguishing two types of stress affecting osmotic status 
of the plant drought and salinity, absorption, trapping, 
and dissipation energy fluxes show similar patterns of 
reactions, making them indistinguishable by the means 

Fig. 3. Scatterplots of the partial least squares (PLS) regression 
model with fresh mass per plant [mg] as dependent variable (A), 
dry mass [% FM] as dependent variable (B), and 18 chlorophyll a 
fluorescence parameters/118 chlorophyll a fluorescence transients 
as predictors. Coefficients of determination (R2), root mean 
squares of prediction (RMSEP), and number of components used 
for prediction (ncomp) are shown for models calibrated using 
the 10-fold cross validation. Both R2 values are significant at 
α=0.001, n = 400. FM – fresh mass.



200

V. GALIĆ et al.

of ChlF. The patterns observed in their study were also 
confirmed in this present study, indicating the dissociation 
of the light-harvesting complex from the PSII and the 
loss of energy connectivity. Salt stress did not influence 
the number of quanta absorbed per unit of time (based on 
changes in φPo), but it did cause a decrease in the efficiency 
of forward electron transport (ψEo). Similar relations of 
φPo and ψEo were also presented by Mehta et al. (2010). 
Concomitantly, values of PIABS decreased under the NaCl 
stress since φPo and ψEo are used in the calculation of PIABS 
(along with RC/ABS, which also decreased under the 
NaCl stress). The decrease in the performance index under 
the salt stress has been previously presented for various 
plant species (Mehta et al. 2010, Kalaji et al. 2011, 2018; 
Kan et al. 2017, Zhang et al. 2018). Decreasing trends of 
PIABS and PItotal were caused by the decrease in ψEo and 
increase in absorption flux representing lower number of 
RCs reducing QA per PSII antenna chlorophyll. Lowest 
decrease in performance in NaCl treatment recorded 
in 444 was due to the lower increase in absorption flux 
accompanied by the lowest increase in dissipation per 
active RC and moderate decrease in ψEo. The lowest 
decrease in PItotal recorded in hybrid Drava was, on the 
other hand, caused by the near mean decrease in ψEo, but 

largest increase in efficiency of reduction of end electron 
acceptors on PSI side (δRo). Similar decreases of PIABS 
and PItotal were obtained by Zhang et al. (2018). Increase 
of δRo in the NaCl treatment is probably due to decrease 
in redox balance of PSII electron acceptors due to lower 
PSII activity. Furthermore, increased values of δRo might 
be associated with higher resilience of PSI to salt stress 
compared to PSII (Umar et al. 2019). 

As there were evident differences in responses of 
different cultivars in our study (Fig. 1), we aimed to test 
the relative importance of each variable to the clustering 
of five maize genotypes by the means of PCA. The results 
obtained in PCA indicate that the grouping of cultivars 
might have been caused by the differences in their res-
pective genetic backgrounds. The maternal line of hybrid 
Veli is of the same origin as the B73 line from the study by 
Soares et al. (2018). B73 was found to be among the more 
tolerant cultivars to the salt stress, as was the case in our 
study with hybrid Veli, rightmost positioned on PC1 axis in 
the PCA in both control and NaCl treatment (Fig. 1). The 
separation of hybrids along PC1 was mostly determined by 
quantum yields of primary photochemistry and reduction 
of end electron acceptors on PSI side, F0, time to reach 
FM, and electron transport per RC. A reason for hybrid 

Fig. 4. Loading weights of calibrated models with fresh mass [mg] as dependent and 18 selected ChlF parameters as independent 
variables (A), fresh mass [mg] as dependent and 118 ChlF transients as independent variables (B), dry mass [% FM] as dependent and 
18 selected ChlF parameters as independent variables (C), and dry mass [% FM] as dependent and 118 ChlF transients as independent 
variables (D).

Table 2. Number of components used for predictions (ncomp), root mean square of prediction (RMSEP), and the correlations between the 
predicted and observed values (R) for the validation of the partial least squares (PLS) models with independent data set. All correlation 
coefficients are significantly different from zero at α=0.001, n (independent data set) = 200. FM – fresh mass.

Trait Model ncomp RMSEP [mg] RMSEP [%] R

Fresh mass [mg] Parameters 10 147.8 - 0.512
Transients 10 126.2 - 0.641

Dry mass [% FM] Parameters 13 - 1.97 0.496
Transients   9 - 2.20 0.528
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Veli positioning on the positive side of PC1 might be its 
later maturity and unrelated pedigree compared to other 
hybrids examined in this study. The positions along PC2 
of the respective controls of every hybrid were mostly 
defined by higher values of biomass traits and higher 
PItotal. Contrarily, plants in NaCl treatment showed higher 
δRo representing higher tolerance of PSI to salt stress than 
PSII (Umar et al. 2019). 

According to the differences detected in both ChlF 
and biomass traits and the eigenvalues of biomass and 
complex correlation structure of traits ChlF, the predictive 
ability of ChlF data was tested by designing the penalized 
PLS models with raw transients and the selected JIP-test 
parameters as predictors and biomass traits (FM, DM) as 
response variables. Aims to develop predictive models 
with ChlF data were reported before in predictions of 
lemon fruit quality (Nedbal et al. 2000), relative water 
content of drought stressed Phaseolus vulgaris cv. Cheren 
Starozagorski (Goltsev et al. 2012), growth of Lactuca 
sativa L. seedlings (Moriyuki and Fukuda 2016), mortality 
from drought in various species (Guadagno et al. 2017), 
and physiological dynamics of Acer platanoides (Artherton 
et al. 2016).

The absolute highest loading weight in model with 
FM as response and JIP-test parameters as predictors 
obtained for PItotal (Fig. 4A) was in accordance with the 
index complexity. The PItotal is an index containing the 
inference about several key photosynthetic processes from 
dissipation, absorbance, and quantum yield of primary 
photochemistry to the probability that electron from the 
intersystem carrier reduces the end electron acceptor 
on PSI side (Strasser et al. 2010, Appendix). Value of 
performance indexes in assessment of plant biomass 
accumulation was also confirmed in study of Sayyad-Amin 
et al. (2016). Other important variable in model aiming to 
predict response in FM was parameter δRo, indicating the 
importance of PSI functionality in young plant formation 
(Brestič et al. 2015). Moreover, the higher salt stress 
tolerance of PSI implying the increase in efficiency with 
which an electron from the intersystem electron carriers 
is transferred to reduce end electron acceptors at the 
PSI electron acceptor side would provide the biological 
relevance to the obtained loading weights as PSI functioning 
is very important in salt stress tolerance (Yamori and 
Shikanai 2016). Near-zero loadings assigned to the data 
extracted from O-J-I-P transient curve were caused by 
better representation of the relationships of certain parts 
of the transient curve by the calculated parameters and 
multiparametric expressions. The inspection of loading 
weights for model with DM as response (Fig. 4C) and JIP-
test parameters as predictors indicated that quantum yield 
of electron transport, followed by maximum quantum 
yield of PSII, electron transport, and electron flux reducing 
the end electron acceptors at PSI side per active RC best 
explain the variation in JIP-test parameters linked to DM. 
Moreover, the higher loading values for quantum yield 
of electron transport, maximum quantum yield of PSII, 
electron transport, and electron flux reducing the end 
electron acceptors at PSI side per active RC indicate that 
finer differences might have been captured with these 

parameters compared to multivariate expressions such as 
performance indexes. The same parameters were shown 
to be important in predictions of relative water content in 
beans using artificial neural networks (Goltsev et al. 2012) 
indicating their importance in various species in context of 
biomass prediction in osmotic stress conditions. The small 
differences in prediction accuracies obtained between 
the models indicate the robustness of the biophysical 
interpretation of transients and efficient extraction of 
information from the fluorescence transient OJIP curve. 
Expectedly, performance indexes as complex and sensitive 
indicators of plant status (Stirbet and Govindjee 2011) 
were shown to contribute the most in describing growth 
of young maize plants in terms of FM. The loading 
weights in models with transients as predictor variables 
varied according to the plateaus of the O-J-I-P curve 
induction dynamics with peaks in J-I part in model with 
FM as response, and I-P in model with DM as response  
(Fig. 4B,D). Despite the small absolute difference in 
predictive abilities of the models using biophysical 
expressions compared to raw transients, the use of transients 
might be a better option in the modelling approach where 
ultimate goal is explained variance, as there are no 
discernable differences in the computation process with 
smaller or larger number of variables. The composite 
variables are created in the PLS models and more variance 
explained presents comparative advantage. However, in 
the CGMs and models that appeal to human interpretation, 
the biophysical parameters such as performance indexes 
and their components provide physiological framework 
to the predictions while explaining a fair proportion of 
variance.

The predictive ability of the model was confirmed 
through the validation with independent data set (Table 2) 
although with lower accuracy than in cross-validation. 
Cause of the lower accuracies of predictions obtained is 
probably the lower amount of variation present in this set, 
as it is actually a reproduction of the control experiment. 

All hybrids examined in this study showed significant 
reactions to salinity stress in terms of photosynthetic 
performance and biomass traits. Hybrids 378 and Drava 
showed the lowest decrease in biomass traits compared 
to their respective controls which was accompanied in 
Drava by the highest values of PItotal and with increase 
in data extracted from fluorescence transient in 378. The 
similarity in responses of these two hybrids might be 
caused by the related pedigrees, as parental lines of these 
two hybrids are from same heterotic groups. The distinct 
reaction of hybrid Veli detected in PCA was probably 
due to its later maturity and distinct pedigree compared 
to other examined hybrids. Selected JIP-test parameters 
showed lower but comparable predictive abilities of FM 
and DM in regression models, although more information 
was captured when raw transients were used. As ChlF 
represents the method capable of detection of various 
stresses (Kalaji et al. 2016), with biophysical interpretation 
and physiological explanations (Strasser et al. 2000, 2004, 
2010) and high heritability of the obtained parameters 
(Šimić et al. 2014) it can be used as phenotype in CGM 
and G2P models, although higher number of the progenies 
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need to be tested and further assessment is needed with 
special emphasis on quantitative genetic approach to test 
the structure of variance in the obtained predictions and 
ability to predict various phenotypes. However, models 
using ChlF data shown in this study represent good 
guideline in further research, as they describe fair propor-
tions of variance in examined phenotypes, show predictive 
ability in independent scenario, and are contextualized in 
a biological framework provided by biophysical interpre-
tation and physiological relevance of ChlF parameters.  
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Appendix. Definition of terms and formulae of JIP-test parameters and expressions modified from Strasser et al. (2010).

Parameter Parameter 
index

Description

Data extracted from the recorded fluorescence transient
TFM 1 Time needed to reach FM

Area 2 Complementary area above the fluorescence induction curve
F0 3 Minimal fluorescence intensity [all PSII reaction centers (RCs) are open]
FM 4 Maximal fluorescence intensity (all PSII RCs are closed)
FV 5 Maximal variable fluorescence; FV = FM – F0

Sm 6 Normalized complementary area above the fluorescence induction curve; Sm = Area/(FM – F0)
Specific fluxes per active RC

ABS/RC 7 Absorption per active RC; ABS/RC = M0 × (1/VJ) × [1/(FV/FM)] = reciprocal of RC/ABS
DI0/RC 8 Dissipation per active RC; DI0/RC = (ABS/RC) – (TR0/RC)
TR0/RC 9 Trapping per active RC; TR0/RC = M0 × (1/VJ)
ET0/RC 10 Electron transport per active RC; ET0/RC = M0 × (1/VJ) × (1 – VJ)
RE0/RC 11 Electron flux reducing the end electron acceptors at the PSI acceptor side per RC; 

RE0/RC = M0 × (1/VJ) × (1 – VI)
Quantum yields and efficiencies/probabilities

φPo 12 Maximum quantum yield of PSII; φPo = FV/FM = [1 – (F0/FM)] 
ψEo 13 Efficiency/probability that an electron moves further than QA

–; ψEo = 1 – VJ  
φEo 14 Quantum yield of electron transport; φEo = [1 – (F0/FM)] × (1 – VJ) 
δRo 15 Efficiency/probability with which an electron from the intersystem electron carriers is transferred to reduce 

end electron acceptors at the PSI acceptor side; δRo = (1 – VI)/(1 – VJ)  
φRo 16 Quantum yield for reduction of end electron acceptors at the PSI acceptor side; φRo = [1 – (F0/FM)] × (1 – VI) 

Performance indexes
PIABS 17 Performance index on absorption basis; PIABS = (RC/ABS) × (TR0/DI0) × [ET0/(TR0 – ET0)]
PItotal 18 Performance index (potential) for energy conservation from photons absorbed by PSII to the reduction of 

PSI end acceptors; PItotal = PIABS × (δRo/1 – δRo)


