DOI: 10.32615/ps.2019.131 PHOTOSYNTHETICA 58 (SI): 194-204, 2020

Special issue in honour of Prof. Reto J. Strasser

Plant biomass in salt-stressed young maize plants can be modelled
with photosynthetic performance

V. GALIC’, M. MAZUR"*, D. SIMIC*, Z. ZDUNIC", and M. FRANIC™

Agricultural Institute Osijek, Department of Maize Breeding and Genetics, Juzno predgrade 17,
31000 Osijek, Croatia®

Institute of Agriculture and Tourism, Department of Agriculture and Nutrition, Karla Huguesa 8,
52440 Porec, Croatia™

Abstract

Predicting responses to stressful conditions is very important. Chlorophyll a fluorescence (ChlIF) can be used to assess
effects of various stresses on photosynthetic performance. We tested the responses of five 10-d old maize hybrids to
salinity stress by measuring ChlF parameters, fresh (FM) and dry mass (DM). ChlIF data were incorporated into a penalized
regression model to predict biomass traits. The values of FM and DM significantly decreased under salt stress by 42
and 25%, respectively. Strong responses in ChlF parameters assessing the absorption dissipation and trapping fluxes to
NaCl treatment were detected. In penalized regression models, 118 transients showed greater (R*> = 0.663 for FM and
R?=0.678 for DM), although comparable, predictive abilities as 18 selected JIP-test parameters (R> = 0.597 for FM and
R* = 0.636 for DM). Genetic assessment of developed models is needed, as they efficiently predict biomass traits and
provide physiological context to the obtained predictions.
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Introduction

Maize (Zea mays L.) is one of three most important cereal
crops used as a human food, feed for livestock, and raw
material in many industries. Abiotic stress is one of the
main causes of yield loss worldwide and soil salinity is
very common abiotic factor in the crop production which
negatively affects plant growth at multiple stages in the
form of both hyperosmotic and hyperionic stresses (Munns
2002, James et al. 2011, Gupta and Huang 2014, Kan et al.
2017). In general, maize is considered moderately sensitive
to salt stress (Zorb et al. 2004, Farooq et al. 2015), a
category which comprises plants that maintain growth in

saline soils with an electrical conductivity between 3 and
6 dS m™! (Hasanuzzaman et al. 2013). A saline level of more
than 0.25 M NaCl may inhibit maize growth and cause
severe wilting (Menezes-Benavente ef al. 2004). Moderate
soil salinity in the range of 8 to 10 dS m™' results in yield
losses up to 55% in maize (Satir and Berberoglu 2016). As
the salinity increases, growth decreases until plants become
chlorotic and die (Dikilitas and Karakas 2010). A saline
soil can be defined as the one with electrical conductivity
of'the saturation extract in the root zone exceeding 4 dS m™
at 25°C with exchangeable sodium of 15%, which appro-
ximates 40 mM NaCl (Shrivastava and Kumar 2015).
Different factors, such as long drought periods, high surface
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Abbreviations: ABS/RC — absorption per active reaction center; Area — complementary area above the fluorescence induction curve;
ChIF — chlorophyll a fluorescence; CGM — crop growth model; DI/RC — dissipation per active reaction center; DM — dry mass;
ETy/RC — electron transport per active reaction center; Fo — minimal fluorescence intensity; Fy — maximal fluorescence intensity;
Fy — maximal variable fluorescence; G2P — genotype-to-phenotype; PC — principal component; PCA — principal component analysis;
Plags — performance index on absorption basis; Pl — performance index (potential) for energy conservation from photons absorbed
by PSII to the reduction of PSI end acceptors; PLS — partial least squares (regression); RC — reaction center; RC/ABS — Qx-reducing
RCs per PSII antenna chlorophyll; RE/RC — electron flux reducing the end electron acceptors at the PSI acceptor side per reaction
center; RMSEP — root mean square error of prediction; ROS — reactive oxygen species; S,, — normalized complementary area above the
fluorescence induction curve; SNP — single nucleotide polymorphisms; Try — time needed to reach Fy; TR¢/RC — trapping per active
reaction center; Or, — efficiency/probability with which an electron from the intersystem electron carriers transferred to reduce end
acceptors at the PSI acceptor side; @i, — quantum yield of electron transport; ¢p, — maximum quantum yield of primary photochemistry;
@ro — quantum yield for reduction of end electron acceptors at the PSI acceptor side; ye, — efficiency/probability that an electron moves
further than Q4.
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evaporation, using saline water for irrigation, excessive
use of water in dry climates with heavy soils, and practice
of waterlogging without adequate drainage, lead to soil
salinization (Mateo-Sagasta and Burke 2011, Tomescu
et al. 2017). According to FAO, estimates around 800
million hectares of land worldwide is affected by either
salinity (397 million ha) or sodicity (434 million ha) (FAO
2005) which accounts for more than 6% of the world's
total land area (Munns 2005).

Soil salinity causes accumulation of toxic Na“ and
CI” concentrations in plant tissues (Munns 2002) which
is particularly damaging during germination and at the
early stages of growth (Park et al. 2016). Exposure to
NacCl induces hyperosmotic and hyperionic stress and an
ion toxicity (particularly caused by CI") when plants are
exposed to high concentrations of this salt for long periods
(Kalaji and Pietkiewicz 1993, Munns 2002, Chaves et al.
2009). The accumulation of Na* and CI” in the cells causes
ion imbalance and excess uptake might cause significant
physiological disorders (Gupta and Huang 2014). At the
plant level, salt stress can reduce growth in an early
phase of plant development which significantly reduces
the yield (Zorb et al. 2018). At the cellular level, a high
Na“ concentration inhibits uptake of K* ions, which is an
essential element for growth and development, resulting
in reduced productivity or even death (James et al. 2011).
High concentrations of Na* in the soil cause hyperosmotic
stress due to a rapid change in the osmotic potential
between the plant and the environment which reduces
water absorption capacity of plants (Munns 2002, Fricke
et al. 2006, Schleiff 2008) triggering plant responses
similar to drought stress (Kalaji et al. 2018). At high
salinity levels, salts accumulate in leaf tissues to excessive
concentrations. Salts may accumulate in the apoplast and
dehydrate the cell, they may accumulate in the cytoplasm
inhibiting enzymes involved in carbohydrate metabolism,
or they may accumulate in the chloroplast and exert a direct
toxic effect on photosynthetic processes (Munns and Tester
2008). At the initial stage of salinity stress, osmotic stress
causes changes in various physiological processes, such as
decreased photosynthetic efficiency of both photosystems,
PSI and PSII (Liska et al. 2004, Stepien and Klobus 2006,
Qu et al. 2012, Gao et al. 2016), although photochemical
activity of PSII in maize is more sensitive to salt stress than
that of PSI (Kan et al. 2017). The effects of salt stress have
been already investigated by the measurements of ChlF
emitted by plants. ChlF measurements are informative in
assessment of structure and function of the photosynthetic
apparatus (Strasser et al. 2010) and the JIP-test (Strasser et
al. 2000) has become widely used for large-scale screening
of stress effects (Kalaji ef al. 2016). The JIP-test was proven
to be a very useful tool for the in vivo investigations of
the adaptive behavior of the photosynthetic apparatus to a
wide variety of stressors, as it translates the shape changes
of the O-J-I-P transient curve to quantitative changes of
the several parameters (Strasser ef al. 2004) and provides
assessment of the cascade of chloroplast redox reactions
at microsecond or millisecond scales (Kalaji et al. 2016).
Particularly, the JIP-test and ChIF transients have been
used so far to assess the effects of salt stress in many
species, such as barley (Kalaji ef al. 2011), wheat (Mehta
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et al. 2010), sunflower (Umar et al. 2019), maize (Kan et
al. 2017), Tilia cordata Mill. (Kalaji et al. 2018), sorghum
(Sayyad-Amin et al. 2016, Zhang et al. 2018), and rocket
(Hnilickova et al. 2017).

With the advent of the mass availability of the geno-
typing data, such as single nucleotide polymorphisms
(SNP) from genotyping diversity arrays or sequencing
efforts, the crop genomic prediction models were deve-
loped (i.e., genomic/genome-wide selection models). The
next step towards obtaining more accurate predictions
would be the integration of the new phenotypes that are
easy to measure, highly heritable, and correlated with
traits of interest into the models. Subsequently, these
relevant variables have to be integrated into the genotype-
to-phenotype (G2P) models to improve the model
prediction accuracy (van Eeuwijk et al. 2018). Technow
et al. (2015) developed a crop growth model (CGM),
which integrates the physiological variables into the
genome-wide prediction models. The aim of CGMs is not
only to increase prediction accuracy, but also to provide
the biological framework in plant breeding to increase the
understanding of plant adaptation to environments and
stresses (Cooper et al. 2016, Messina ef al. 2018). Since
ChlIF kinetics is highly informative tool used for studying
effects of different environmental stresses, including salt
stress on photosynthesis (Kalaji et al. 2011), it might serve
as a new, adequate high-throughput phenotyping tool in
CGM and G2P models, especially, because some ChlF
parameters are affected by similar genetic regions as grain
yield in stressful environments (Gali¢ et al. 2019).

Here, we provided a first step towards the use of ChIF
data in prediction models by incorporating the measured
transients and calculated parameters into a penalized
regression model aiming to predict biomass responses
in terms of FM and DM to salinity. Additionally, the
photosynthetic responses of young plants of five maize
hybrids to salinity stress were analyzed by the means of
biomass accumulation and JIP-test.

Materials and methods

Plant material and experimental design: The experi-
ments were carried out with five commercial maize (Zea
mays L.) hybrids of Agricultural Institute Osijek, Croatia.
Hybrids were chosen in a way to represent the maturity
variations frequently observed in the farmers' fields in
South-Eastern Europe. Hybrid pedigrees, FAO maturity
classifications, and parental components with their respec-
tive genetic backgrounds were:

Hybrid FAO Q parent @ back- & parent & back-
maturity ground ground

378 370 0OS 2340-8 Todent OS 27488 Oh43

444 450 OS 3-48 Iodent OS 135-88 Lancaster

505 510 0S 23-48 Todent OS 942 Oh43

Drava 420 OS 84-28A lodent OS 942 Oh43

Veli 590 OS 024445 Todent OSKLT14 Stiff Stalk
Synthetic
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Experiments were set under controlled conditions with
temperature of 25°C, 16/8-h day/night regime, and light
intensity of 200 pmol(photon) m? s™!. Soil properties were
70 mg(NH; + NO5") L, 80 mg(P,0s) L, 90 mg(K,O) L,
70% organic matter, and pH = 5.7 (CaCl;). Seeds of the
five maize hybrids were planted in trays filled with organic
soil substrate in two treatments (control and NaCl) and
four replicates. Briefly, 15 seeds of each hybrid planted
in each tray for each genotype in both control and NaCl
treatment were considered a single biological replicate
(totally eight trays per genotype). Soil for the NaCl
treatment was treated with dilution of 50 mM of NaCl per
kilogram of soil. The mentioned concentration was chosen
according to the results by Yang and Lu (2005) as the
middle concentration which affects the PSII and is feasible
to find in field-growing scenarios. Plantlets were grown
for 10 d and watered with spray bottle every second day
before the ChlIF measurements.

ChIF measurements and weighting: ChlF was measured
with hand-held fluorimeter Handy-PEA (Hansatech, King's
Lynn, UK) in the middle of the first fully developed leaf. In
each replicate of each treatment ten uniformly developed
plants were measured, comprising totally 40 measurements
per genotype per treatment. After the dark adaptation of
30 min, ChlF transients were induced by a red light satura-
tion pulse [650 nm; 3,200 mmol m2 s7'] on the leaf surface
exposed by the leaf clip (12.56 mm?). The light pulse
induces ChIF increase from minimal fluorescence (F,),
when all reaction centers are open, to maximal fluorescence
(Fum), when all reaction centers are closed. During the 1-s
measurement, 118 data points are collected. ChlF data
were processed with PEA Plus software (V1.10) provided
with the fluorimeter. The JIP-test (Strasser and Strasser
1995, Strasser et al. 2000, 2004) was used to analyze each
ChlF transient. JIP-test is a mathematical model based on
the theory of ‘energy flow’ across thylakoid membranes
(Strasser et al. 2000) developed as a biophysical tool for
assessment of the cascade of chloroplast redox reactions at
microsecond or millisecond scales (Kalaji ef al. 2016). The
formulas in Appendix illustrate how each of the mentioned
biophysical parameters can be calculated from the original
fluorescence measurements. JIP-test data were used to
perform principal component analysis (PCA). Parameters
for further analyses and statistical modelling were chosen
according to the series of the PCAs to represent best the
variation existing among hybrids and their reactions to
salinity.

Aboveground biomass of each measured plant was
weighed on the four decimal laboratory scale and desig-
nated as FM. Plants were oven dried for 24 h in an open
15-ml falcon tube at 80°C before weighting for DM. DM
was expressed as percentage of FM.

Statistical analyses and model validation: All statistical
analyses were carried out in R programming environment
(R Core Team 2018). Analysis of variance and the post-hoc
tests were performed in package agricolae (Mendiburu
and Simon 2015) after Shapiro-Wilk's test of normality.
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According to the p values from Shapiro-Wilk's test, it was
chosen between ordinary least-squares-based Fisher's
LSD test and Kruskal-Wallis test for multiple comparisons.
Analysis of variance was performed with mean values of
replicates (trays), n = 40. For PCA, the R base function
prcomp was used with log-transformed centered variables.
The plots were constructed with the ggbiplot2 library (Vu
2011). Only the components explaining more than 10%
of the variance were analyzed. Only parameters with
correlation coefficients < 0.9 were analyzed in this manner.

Partial least squares (PLS) regression was used to
fit the models between the ChIF and biomass-related
data (FM, DM). PLS regression was chosen because the
method was designed to effectively solve the collinearity
problem often present among sequential measurements
and multiple predictor variables in the regression models.
The models were fitted with pls library (Mevik et al. 2018)
function plsr. After the model fitting, model calibration
was carried out with 10-fold cross validation procedure.
Namely, in this procedure, the data set was divided into ten
equal subsets, and the data from nine subsets were used to
predict a single subset, after which the correlation between
the predicted and observed values of the dependent variable
was calculated. The process was repeated (folded) until
the last single set was predicted. Mean correlation across
the folds was calculated in each step as the independent
variables were rearranged in all possible manners reducing
their dimensionality while explaining the highest possible
proportion of variance in both x and y directions. After the
cross-validation procedure, the number of components
(dimensions) was chosen according to the absolute
lowest calculated value of the root mean square error of
prediction (RMSEP). The model with absolute lowest
value of RMSEP was considered a calibrated model.
The dependent variables in the models were FM and DM
and two models per trait were constructed: first with the
selected 18 JIP-test parameters used for PCA chosen to
represent best the variation in the dataset, and second with
all 118 measured ChIF transients as independent variables
(predictors).

For further (independent) validation of the models, we
planted another independent experiment similar to the
control from the first experiment. The calculated models
for predicting FM and DM were employed and the corre-
lations between the observed and predicted values were
calculated, as well as the RMSEP values of the predictions.

Results

Effects of NaCl stress on selected ChlF and JIP-test
parameters are shown in Fig. 1. Values of parameters were
normalized to their respective controls in order to compare
genotypes. Significant differences were detected between
genotypes in control and NaCl treatment for all examined
parameters and both biomass-related traits. Effect of NaCl
treatment was significant for both biomass-related traits
and most ChlF parameters. Values of time to reach Fy (Trw),
electron transport per active reaction center (ET¢/RC),
@ro, and @r, did not show significant changes under the
NaCl stress (Table 1S, supplement).
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Fig. 1. Changes in JIP-test (for definitions, formulas, and
ORo ABS/RC . L. . K
abbreviations see Appendix) and biomass parameters
induced by salinity in five maize hybrids. Values
represent the means (n = 40). Significant differences
Dlo/RC between NaCl treatment and control at 0=0.05 level
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Data extracted from the recorded fluorescence
transient: Values of total complementary area between the
fluorescence induction curve and Fy (Area) and normalized
complementary area above the fluorescence induction
curve (Sn) decreased in NaCl treatment in all investigated
genotypes. The largest decrease in both parameters was
recorded in genotype 505, while genotype Drava showed
the lowest decrease. Drava, 378, and 444 values of Fy, Fy,
and Fy parameters increased under the NaCl stress (Fig. 1).

Specific fluxes per active reaction center: Values of
absorption (ABS/RC), dissipation (DI/RC), trapping
(TR/RC) per active reaction center (RC), and electron flux
reducing the end electron acceptors at the PSI acceptor
side per RC (RE¢/RC) increased under the NaCl treatment
in all investigated genotypes. The lowest increase was
recorded in genotype 444, while genotype 505 showed the
largest increase in ABS/RC, DIy/RC, and TR(/RC, while
the genotype Drava showed the largest increase in RE(/RC
in relation to their respective controls (Fig. 1).

Quantum yields and efficiencies/probabilities: Values of
maximum quantum yield of PSII (¢p,) and quantum
yield for reduction of end electron acceptors at the PSI
acceptor side (@ro) did not change significantly under the
NaCl treatment. In contrast, efficiency/probability that an
electron moves further than Qa~ (yg,) and quantum yield
of electron transport (¢g,) decreased while efficiency/
probability with which an electron from the intersystem
electron carriers is transferred to reduce end electron
acceptors at the PSI acceptor side (dr,) increased in NaCl
treatment. Genotype 505 showed the largest decrease in
W, and @, compared with the control, while decrease in
values of these parameters in other genotypes was similar.

were detected for all parameters except Trm, ETo/RC,
®ro, and Qr,. Significant differences between genotypes
at a=0.05 level were detected in control and NaCl
treatment for all examined parameters. Full list of
values and statistics is available in Table 1S.

The largest increase in dg, was found in genotype Drava
and the smallest in genotype Veli (Fig. 1).

Performance indexes: Significant effect of NaCl treat-
ment was recorded for both Plsgs and Pliw. In stressed
plants, Plsgs values were considerably lower than that
in nonstressed plants. The largest deviation from the
control was recorded for genotype 505, while the smallest
deviation was recorded for genotype 444. Similarly, under
the NaCl stress, Pl values showed the highest drop in
genotype 505, while the smallest decrease was recorded in
Drava genotype (Fig. 1).

Biomass-related traits: Under the NaCl stress, the values
of FM and DM significantly decreased. Genotype 505
showed the largest decrease of FM, while the lowest
decrease was recorded in genotypes 378 and Drava.
Genotype 378 also showed the smallest decrease of DM,
while the largest deviation from the control was recorded
in genotypes 444 and Veli (Fig. 1).

Principal component analysis: The PCA explained 76.6%
of the variance (Fig. 2) in the data in the first two principal
components (PCs). Inspection of the biplot (Fig. 2) and
Table 1 showed that PC1 is mainly correlated with @g,, @ro,
and Pl in positive direction and F, in negative direction.
The PC2 is mostly described with DM and FM in positive
direction and dg, in negative direction. The genotype-
treatment combinations formed two distinct groups:
control and NaCl along the PC2, although there were also
interesting differences between genotypes within NaCl
treatment and control. Namely, hybrid Veli was separated
from other hybrids along PCI in both treatments. The
individual scores of other hybrids in the biplot showed an
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Fig. 2. Principal component analysis of variation among reactions of five maize hybrids to elevated contents of soil NaCl. Arrows
represent the eigenvalues of each of the eight selected chlorophyll a fluorescence parameters (for definitions, formulas, and abbreviations
see Appendix) with correlation coefficients < 0.9, fresh mass (FM) and dry mass (DM). Ellipses around the groups are the calculated
95% confidence intervals. ¢ — control; NaCl — 40 mM NaCl soil treatment; PC — principal component.

Table 1. Loading weights, communalities, and eigenvalues
from principal component analysis of JIP-test (for definitions,
formulas, and abbreviations see Appendix) and biomass para-
meters for first two principal components (PC). FM — fresh mass,
DM — dry mass.

Parameter Loading Communality
PCl1 PC2 PC1 PC2

Tem 0.354 —0.238 0.743 —-0.430
Fo —0.383 -0.076 —-0.803 -0.137
Fu —-0.031 —0.324 —0.065 —0.584
ETy/RC 0.331 -0.246 0.694 —0.443
@ro 0.420 —-0.176 0.883 -0.318
Sro 0.058 —0.503 0.121 —0.907
@ro 0.445 —0.092 0.935 —0.165
Pl 0.404 0.262 0.848 0.472
FM [mg] 0.248 0.430 0.520 0.775
DM [% FM] 0.123 0.475 0.257 0.856
Eigenvalue 4.407 3.248 - -

overlapping pattern, especially in the control, positioning
them around the origin of the PC1 and on the positive
side of PC2. Grouping of variants was similar in the NaCl
treatment with hybrids 444 and Drava positioned around
the origin of PC1 and on the negative side of PC2 and
hybrids 378 and 505 positioned in the negative quadrant
in both PCs showing the largest decrease in performance.
The drop in performance was mostly visible through the
increase in Fo and dissipation per RC and decrease in
performance indexes and biomass traits.

Model predicting the plant biomass traits from ChIF
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data: The PLS models predicting the young plant FM
and DM were set to examine the usability of ChlF data
in abiotic stress quantification and to test the predictive
potential of the data. First two models were set with 18
biophysical parameters of JIP-test (Appendix), some of
which were also used for PCA, as independent variables (x)
and FM and DM as dependent variables (y). The models
explained 59.7% of the variance for FM (Fig. 34) and
63.6% of variance for DM (Fig. 3B) with low RMSEP
indicating fairly high precision of the predictions. The
other two models were set with all 118 ChlIF transient data
points measured through the initial 1 s upon illumination
with saturating pulse of light as independent variables.
The models explained 66.3% of the variance for FM
(Fig. 34) and 67.8% variance for DM (Fig. 3B) with lower
but comparable values of RMSEP indicating comparable
predictiveabilities asthe modelsusing JIP-test parameters as
independent variables. Generally, transients showed greater
but comparable prediction accuracy for both examined
traits.

Predictive abilities of the models were further tested
in an independent scenario which was a replicate of the
control experiment. Correlation coefficients between pre-
dicted and observed values were lower compared to initial
estimates, and ranged from 0.496 to 0.641 (Table 2).

The highest loadings in models with JIP-test parameters
as independent variables and FM as dependent variable
were observed for Pli, and Oro, followed by fluxes per
RC, while near-zero loadings were assigned to the data
extracted from recorded transients (Fig. 44, Appendix).
In a model with DM as dependent variable and JIP-test
parameters as independent variables, the largest loading
weight was observed for quantum yield of electron
transport, followed by maximum quantum yield of PSII,
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electron transport, and electron flux reducing the end
electron acceptors at PSI side per active RC (Fig. 4C).
In models with transient data as independent variables
for both FM and DM as dependent variables, the most
pronounced loading weights (both positive and negative)
were observed in the transient areas corresponding to J-1
and P parts of the O-J-I-P band (Fig. 4B,D).

Discussion

Salt stress is manifested in two ways: as osmotic stress
causing dehydration and ionic stress causing ionic imba-
lance. Both effects, osmotic and ionic, affect the photosyn-
thesis process and many factors can lead to the decrease
in photosynthetic performance under the salt stress.
Namely, Na* ions, which enter the maize cells, inhibit the
development, increase the reactive oxygen species (ROS)
production, result in decrease of stomatal conductance,
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etc. Consequently, these metabolic alterations reflect in
photosynthetic performance (Farooq et al. 2015). The
physiological response in maize is expected to be genotype
specific, as there is a variation present in everything from
Na" ion uptake and accumulation to expression of the genes
included in antioxidative response and protein synthesis
(Soares et al. 2018). The parameter @p, is often used to
express the physiological condition of a plant, but proved to
be very stable under some stressful conditions, especially
osmotic stress (Shabala et al. 1998, Kocheva et al. 2004,
Deng et al. 2010, Akram et al. 2011), corroborated with
reduced water absorption capacity of plants under the NaCl
stress (Fricke et al. 2006, Schleiff 2008). Stable values of
@ro under the salt stress in our study indicate that NaCl
treatment did not irreversibly damage PSII functioning,
as the values were kept above critical levels (Woo et al.
2011). Other ChIF parameters, giving information on the
heterogeneity of electron transport, PSII RCs, and overall
photosynthetic performance showed significant effects of
the NaCl stress along with both biomass-related traits.

Lowest reduction in biomass parameters, FM and DM,
observed in hybrids Drava and 378 compared to their
respective controls might indicate higher tolerance to salt
stress. Accumulation of DM is an excellent indicator of
stress tolerance and changes relative to control conditions
can be used to discriminate cultivars that are tolerant
to osmotic stress from the susceptible ones (Chen et al.
2016). Fresh biomass partitioning to water and dry matter
is affected by salt stress in such way that the maintenance
of the water fraction cannot be maintained, inducing the
reduction of leaf expansion, thus lowering the amount of
photosynthetic tissues (Sultana et al. 1999, Negrao et al.
2017). Drop in FM in our study was more pronounced than
the drop in DM possibly indicating lowering in relative
water content due to the NaCl-induced osmotic stress
(Ziveak et al. 2008).

Significant changes in biophysical parameters suggest
that increased NaCl concentration alters the PSII RC
density, which can be seen from the increase in ABS/RC
values. Similar increases under the NaCl-stressed wheat
leaves have been reported by Mehta ef al. (2010). Increase
in ABS/RC indicated inhibition of electron transport
from Q™ to Qsp, and transformation of RCs to ‘silent’
RCs (Yusuf et al. 2010). Increase in dissipation energy
(DIy/RC) supports the change in RC functionality, as the
increase in dissipation could indicate that some of the RCs
have transformed to ‘heat sinks’ to dissipate excess energy
(Strasser et al. 2000). This is usually accompanied with
decrease of Qa-reducing RCs per PSII antenna chlorophyll
(RC/ABS). This is also in concordance with decreases in
¢ro under the NaCl stress, which corresponds to a decrease
in the efficiency of electron transport to the intersystem
electron acceptors (Strasser et al. 2010). Increase in
ABS/RC during drought stress is usually accompanied by
increased trapped energy flux (TR¢/RC) (Christen et al.
2007). Kalaji er al. (2018) showed that in terms of
distinguishing two types of stress affecting osmotic status
of the plant drought and salinity, absorption, trapping,
and dissipation energy fluxes show similar patterns of
reactions, making them indistinguishable by the means
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Table 2. Number of components used for predictions (ncomp), root mean square of prediction (RMSEP), and the correlations between the
predicted and observed values (R) for the validation of the partial least squares (PLS) models with independent data set. All correlation
coefficients are significantly different from zero at 0=0.001, » (independent data set) = 200. FM — fresh mass.
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Fig. 4. Loading weights of calibrated models with fresh mass [mg] as dependent and 18 selected ChlF parameters as independent
variables (4), fresh mass [mg] as dependent and 118 ChlIF transients as independent variables (B), dry mass [% FM] as dependent and
18 selected ChIF parameters as independent variables (C), and dry mass [% FM] as dependent and 118 ChlIF transients as independent

variables (D).

of ChlIF. The patterns observed in their study were also
confirmed in this present study, indicating the dissociation
of the light-harvesting complex from the PSII and the
loss of energy connectivity. Salt stress did not influence
the number of quanta absorbed per unit of time (based on
changes in @p,), but it did cause a decrease in the efficiency
of forward electron transport (yg,). Similar relations of
¢or, and g, were also presented by Mehta et al. (2010).
Concomitantly, values of Plsgs decreased under the NaCl
stress since @p, and i, are used in the calculation of Plags
(along with RC/ABS, which also decreased under the
NacCl stress). The decrease in the performance index under
the salt stress has been previously presented for various
plant species (Mehta ef al. 2010, Kalaji ef al. 2011, 2018;
Kan et al. 2017, Zhang et al. 2018). Decreasing trends of
Plaps and Pla were caused by the decrease in g, and
increase in absorption flux representing lower number of
RCs reducing Q, per PSII antenna chlorophyll. Lowest
decrease in performance in NaCl treatment recorded
in 444 was due to the lower increase in absorption flux
accompanied by the lowest increase in dissipation per
active RC and moderate decrease in g, The lowest
decrease in Pl recorded in hybrid Drava was, on the
other hand, caused by the near mean decrease in g, but
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largest increase in efficiency of reduction of end electron
acceptors on PSI side (dro). Similar decreases of Plags
and Pl were obtained by Zhang ef al. (2018). Increase
of dr, in the NaCl treatment is probably due to decrease
in redox balance of PSII electron acceptors due to lower
PSII activity. Furthermore, increased values of dr, might
be associated with higher resilience of PSI to salt stress
compared to PSII (Umar et al. 2019).

As there were evident differences in responses of
different cultivars in our study (Fig. 1), we aimed to test
the relative importance of each variable to the clustering
of five maize genotypes by the means of PCA. The results
obtained in PCA indicate that the grouping of cultivars
might have been caused by the differences in their res-
pective genetic backgrounds. The maternal line of hybrid
Veli is of the same origin as the B73 line from the study by
Soares et al. (2018). B73 was found to be among the more
tolerant cultivars to the salt stress, as was the case in our
study with hybrid Veli, rightmost positioned on PC1 axis in
the PCA in both control and NaCl treatment (Fig. 1). The
separation of hybrids along PC1 was mostly determined by
quantum yields of primary photochemistry and reduction
of end electron acceptors on PSI side, Fy, time to reach
Fu, and electron transport per RC. A reason for hybrid



Veli positioning on the positive side of PC1 might be its
later maturity and unrelated pedigree compared to other
hybrids examined in this study. The positions along PC2
of the respective controls of every hybrid were mostly
defined by higher values of biomass traits and higher
Pliow. Contrarily, plants in NaCl treatment showed higher
Oro representing higher tolerance of PSI to salt stress than
PSII (Umar et al. 2019).

According to the differences detected in both ChIF
and biomass traits and the eigenvalues of biomass and
complex correlation structure of traits ChlF, the predictive
ability of ChlF data was tested by designing the penalized
PLS models with raw transients and the selected JIP-test
parameters as predictors and biomass traits (FM, DM) as
response variables. Aims to develop predictive models
with ChlF data were reported before in predictions of
lemon fruit quality (Nedbal er al. 2000), relative water
content of drought stressed Phaseolus vulgaris cv. Cheren
Starozagorski (Goltsev et al. 2012), growth of Lactuca
sativa L. seedlings (Moriyuki and Fukuda 2016), mortality
from drought in various species (Guadagno et al. 2017),
and physiological dynamics of Acer platanoides (Artherton
et al. 2016).

The absolute highest loading weight in model with
FM as response and JIP-test parameters as predictors
obtained for Pl (Fig. 44) was in accordance with the
index complexity. The Pl is an index containing the
inference about several key photosynthetic processes from
dissipation, absorbance, and quantum yield of primary
photochemistry to the probability that electron from the
intersystem carrier reduces the end electron acceptor
on PSI side (Strasser et al. 2010, Appendix). Value of
performance indexes in assessment of plant biomass
accumulation was also confirmed in study of Sayyad-Amin
et al. (2016). Other important variable in model aiming to
predict response in FM was parameter g, indicating the
importance of PSI functionality in young plant formation
(Brestic et al. 2015). Moreover, the higher salt stress
tolerance of PSI implying the increase in efficiency with
which an electron from the intersystem electron carriers
is transferred to reduce end electron acceptors at the
PSI electron acceptor side would provide the biological
relevance to the obtained loading weights as PSI functioning
is very important in salt stress tolerance (Yamori and
Shikanai 2016). Near-zero loadings assigned to the data
extracted from O-J-I-P transient curve were caused by
better representation of the relationships of certain parts
of the transient curve by the calculated parameters and
multiparametric expressions. The inspection of loading
weights for model with DM as response (Fig. 4C) and JIP-
test parameters as predictors indicated that quantum yield
of electron transport, followed by maximum quantum
yield of PSII, electron transport, and electron flux reducing
the end electron acceptors at PSI side per active RC best
explain the variation in JIP-test parameters linked to DM.
Moreover, the higher loading values for quantum yield
of electron transport, maximum quantum yield of PSII,
electron transport, and electron flux reducing the end
electron acceptors at PSI side per active RC indicate that
finer differences might have been captured with these
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parameters compared to multivariate expressions such as
performance indexes. The same parameters were shown
to be important in predictions of relative water content in
beans using artificial neural networks (Goltsev et al. 2012)
indicating their importance in various species in context of
biomass prediction in osmotic stress conditions. The small
differences in prediction accuracies obtained between
the models indicate the robustness of the biophysical
interpretation of transients and efficient extraction of
information from the fluorescence transient OJIP curve.
Expectedly, performance indexes as complex and sensitive
indicators of plant status (Stirbet and Govindjee 2011)
were shown to contribute the most in describing growth
of young maize plants in terms of FM. The loading
weights in models with transients as predictor variables
varied according to the plateaus of the O-J-I-P curve
induction dynamics with peaks in J-I part in model with
FM as response, and I-P in model with DM as response
(Fig. 4B,D). Despite the small absolute difference in
predictive abilities of the models using biophysical
expressions compared to raw transients, the use of transients
might be a better option in the modelling approach where
ultimate goal is explained variance, as there are no
discernable differences in the computation process with
smaller or larger number of variables. The composite
variables are created in the PLS models and more variance
explained presents comparative advantage. However, in
the CGMs and models that appeal to human interpretation,
the biophysical parameters such as performance indexes
and their components provide physiological framework
to the predictions while explaining a fair proportion of
variance.

The predictive ability of the model was confirmed
through the validation with independent data set (Table 2)
although with lower accuracy than in cross-validation.
Cause of the lower accuracies of predictions obtained is
probably the lower amount of variation present in this set,
as it is actually a reproduction of the control experiment.

All hybrids examined in this study showed significant
reactions to salinity stress in terms of photosynthetic
performance and biomass traits. Hybrids 378 and Drava
showed the lowest decrease in biomass traits compared
to their respective controls which was accompanied in
Drava by the highest values of Pl and with increase
in data extracted from fluorescence transient in 378. The
similarity in responses of these two hybrids might be
caused by the related pedigrees, as parental lines of these
two hybrids are from same heterotic groups. The distinct
reaction of hybrid Veli detected in PCA was probably
due to its later maturity and distinct pedigree compared
to other examined hybrids. Selected JIP-test parameters
showed lower but comparable predictive abilities of FM
and DM in regression models, although more information
was captured when raw transients were used. As ChlF
represents the method capable of detection of various
stresses (Kalaji et al. 2016), with biophysical interpretation
and physiological explanations (Strasser ef al. 2000, 2004,
2010) and high heritability of the obtained parameters
(Simi¢ et al. 2014) it can be used as phenotype in CGM
and G2P models, although higher number of the progenies
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need to be tested and further assessment is needed with
special emphasis on quantitative genetic approach to test
the structure of variance in the obtained predictions and
ability to predict various phenotypes. However, models
using ChlF data shown in this study represent good
guideline in further research, as they describe fair propor-
tions of variance in examined phenotypes, show predictive
ability in independent scenario, and are contextualized in
a biological framework provided by biophysical interpre-
tation and physiological relevance of ChlF parameters.
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Appendix. Definition of terms and formulae of JIP-test parameters and expressions modified from Strasser et al. (2010).

Parameter ~ Parameter  Description

index
Data extracted from the recorded fluorescence transient
Trum 1 Time needed to reach Fy
Area 2 Complementary area above the fluorescence induction curve
Fo 3 Minimal fluorescence intensity [all PSII reaction centers (RCs) are open]
Fum 4 Maximal fluorescence intensity (all PSII RCs are closed)
Fv 5 Maximal variable fluorescence; Fy=Fy — Fy
S 6 Normalized complementary area above the fluorescence induction curve; S,, = Area/(Fy — Fo)
Specific fluxes per active RC
ABS/RC 7 Absorption per active RC; ABS/RC =M, x (1/V;) x [1/(Fv/Fu)] = reciprocal of RC/ABS
DI/RC 8 Dissipation per active RC; DIy/RC = (ABS/RC) — (TR¢/RC)
TRy/RC 9 Trapping per active RC; TR(/RC = M, x (1/V))
ETy/RC 10 Electron transport per active RC; ETo/RC = M, x (1/V)) X (1 —Vy)
REy/RC 11 Electron flux reducing the end electron acceptors at the PSI acceptor side per RC;
RE()/RC = Mo X (l/VJ) X (1 *V])
Quantum yields and efficiencies/probabilities
Oro 12 Maximum quantum yield of PSII; @p, = Fv/Fy = [1 — (Fo/Fum)]
VEo 13 Efficiency/probability that an electron moves further than Qa; Wy =1-V,
Oro 14 Quantum yield of electron transport; @g, = [1 — (Fo/Fum)] x (1 —V))
Sro 15 Efficiency/probability with which an electron from the intersystem electron carriers is transferred to reduce
end electron acceptors at the PSI acceptor side; dro, = (1 — Vi)/(1 —V))
Oro 16 Quantum yield for reduction of end electron acceptors at the PSI acceptor side; @ro =[1 — (Fo/Fum)] % (1 = V)
Performance indexes
Plags 17 Performance index on absorption basis; Plags = (RC/ABS) x (TRo/DIy) % [ETo/(TRy — ETy)]
Pl 18 Performance index (potential) for energy conservation from photons absorbed by PSII to the reduction of

PSI end acceptors; Plia = Plags X (3ro/1 — Oro)
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