

# Parameterization of the Farquhar-von Caemmerer-Berry C<sub>3</sub> photosynthesis model for oil palm

S.S. CHEAH<sup>\*,†</sup> and C.B.S. TEH<sup>\*\*</sup>

*Sime Darby Plantation Research Sendirian Berhad, Banting, Malaysia<sup>\*</sup>*

*Faculty of Agriculture, University Putra Malaysia, Serdang, Malaysia<sup>\*\*</sup>*

## Abstract

The Farquhar-von Caemmerer-Berry C<sub>3</sub> photosynthesis (FvCB) model is used to model photosynthesis of oil palm. However, some model parameters and their temperature dependencies are not known for oil palm. Hence, the aim of this study was to determine the intercellular photocompensation point ( $C_i^*$ ), rate of leaf day respiration in the light ( $R_d$ ), the chloroplastic photocompensation point ( $\Gamma^*$ ), mesophyll conductance ( $g_m$ ), maximum rates of Rubisco carboxylation ( $V_{cmax}$ ) and electron transport ( $J_{max}$ ), triose phosphate utilization (TPU) and their temperature dependencies between 25 and 40°C in oil palm. Using leaf gas-exchange and chlorophyll fluorescence measurements, parameters such as  $R_d$ ,  $C_i^*$ ,  $\Gamma^*$ ,  $g_m$ ,  $V_{cmax}$ ,  $J_{max}$ , and TPU were determined for oil palm. The parameters  $C_i^*$ ,  $R_d$ ,  $\Gamma^*$ ,  $g_m$ , and  $V_{cmax}$  responded to temperature exponentially without thermal deactivation. In contrast,  $J_{max}$  and TPU responded to temperature exponentially up to 38°C before decreasing slightly at 40°C. Taken altogether, this study determined some key FvCB model parameters and their temperature dependencies for oil palm. This paves the way for more accurate modelling of photosynthetic carbon assimilation in oil palm particularly under future elevated temperatures and CO<sub>2</sub> concentrations.

*Additional key words:* carbon assimilation; chlorophyll; climate change; leaf respiration; maximum electron transport rate.

## Introduction

The oil palm (*Elaeis guineensis* Jacq.) is an important oil crop cultivated extensively in the tropical regions, especially in Indonesia, Malaysia, Thailand, and Papua New Guinea (Padfield *et al.* 2019). Its oil is the most consumed vegetable oil in the world, accounted for 35% of total global demand of vegetable oil in 2016 (Chong *et al.* 2017). Due to its increasing importance as global major oil crop, many crop models of oil palm have been developed such as OPSIM (van Kraalingen 1989), SIMPALM (Dufrêne *et al.* 1990), OPRODSIM (Henson 2009), ECO-PALM (Combres *et al.* 2013), PALMSIM (Hoffmann *et al.* 2014), APSIM-Oil Palm (Huth *et al.* 2014), CLM-Palm (Fan *et al.* 2015), CLIMEX-Oil Palm (Paterson *et al.* 2015), and PySawit (Teh and Cheah 2018), among others, to predict effect of climate change on oil palm. But such models require a more precise and mechanistic photosynthesis model.

The C<sub>3</sub> photosynthesis model developed by Farquhar

*et al.* (1980), otherwise also widely known as Farquhar-von Caemmerer-Berry model (FvCB) model and later modified by Harley and Sharkey (1991), is commonly used to predict the responses of net CO<sub>2</sub> assimilation rate to rising ambient air temperature and atmospheric CO<sub>2</sub>. The FvCB model predicts that the rate of net CO<sub>2</sub> assimilation is limited by the smallest of three rates: (1) the maximum rate of Rubisco catalyzed carboxylation (Rubisco-limited); (2) the regeneration of ribulose-1,5-bisphosphate (RuBP), controlled by electron transport rate (RuBP-limited), and (3) the regeneration of RuBP, controlled by the rate of triose-phosphate utilization (TPU-limited).

Recently, the FvCB model was used to model CO<sub>2</sub> assimilation rate of oil palm leaves (Meijide *et al.* 2017, Teh and Cheah 2018, Nugroho 2018). The key FvCB model parameters, such as maximum rate of Rubisco carboxylation ( $V_{cmax}$ ) and maximum rate of electron transport ( $J_{max}$ ) used to estimate Rubisco-limited and RuBP-limited rate of CO<sub>2</sub> assimilation of oil palm, were derived differently. Meijide *et al.* (2017) and Nugroho

Received 6 July 2019, accepted 27 February 2020.

<sup>\*</sup>Corresponding author; phone: +(603) 3120-2311, fax: +(603) 3120-1197, e-mail: cheah.see.siang@simedarbyplantation.com

*Abbreviations:*  $C_a$  – reference CO<sub>2</sub> concentrations;  $C_c$  – CO<sub>2</sub> concentrations at the sites of carboxylation;  $C_i$  – intercellular CO<sub>2</sub> concentrations;  $C_i^*$  – intercellular photocompensation point;  $F_m'$  – maximum fluorescence during a saturating light pulse;  $F_s$  – the steady-state fluorescence; FvCB – Farquhar-von Caemmerer-Berry model;  $g_m$  – mesophyll conductance;  $g_{se}$  – stomatal conductance to CO<sub>2</sub>;  $g_{sw}$  – stomatal conductance to water vapour;  $J$  – rate of electron transport;  $J_F$  – electron transport rate estimated from chlorophyll fluorescence;  $J_{max}$  – maximum rate of electron transport;  $P_N$  – net CO<sub>2</sub> assimilation rate;  $Q$  – photosynthetic photon flux density;  $R_d$  – rate of leaf day respiration in the light; TPU – maximum rate of triose phosphate utilization;  $V_{cmax}$  – maximum rate of Rubisco carboxylation;  $\Gamma^*$  – chloroplastic photocompensation point in the absence of leaf day respiration;  $\Phi_{PSII}$  – electron transport efficiency of PSII.

*Acknowledgements:* The authors wish to thank Sime Darby Plantation Berhad for their kind permission to publish this paper and for funding the research on photosynthesis in oil palm. Assistance from Siti Aishah Abdul Wahid, Premkumar Tamilarasan, and Lai Guan Yi is gratefully acknowledged. This study was funded by Sime Darby Plantation Berhad (grant number: IO no. 100200079000).

(2018) estimated  $V_{\text{cmax}}$  and  $J_{\text{max}}$  by assuming infinite mesophyll conductance ( $g_m$ ), while Teh and Cheah (2018) estimated  $V_{\text{cmax}}$  by allowing  $g_m$  to vary between 0 and 30 mol(CO<sub>2</sub>) m<sup>-2</sup> s<sup>-1</sup> MPa<sup>-1</sup>, following Sharkey (2015). These differences in methodology increase the uncertainties in the estimated values of  $V_{\text{cmax}}$  and in turn the modelled rates of CO<sub>2</sub> assimilation in oil palm because the accuracy of the FvCB model in predicting responses of net CO<sub>2</sub> assimilation rate depends strongly on how accurately its model parameters are parameterized (Harley *et al.* 1992a, Bernacchi *et al.* 2001, 2002, 2003; Walker *et al.* 2013).

Among the model parameters required to estimate  $V_{\text{cmax}}$  and  $J_{\text{max}}$ , the parameter  $g_m$  has the greatest influence because  $g_m$  affects the CO<sub>2</sub> concentration at the carboxylation site ( $C_c$ ) (von Caemmerer and Evans 1991). If  $g_m$  is overestimated,  $C_c$  will be higher, and this will underestimate  $V_{\text{cmax}}$  and  $J_{\text{max}}$  (Manter and Kerrigan 2004, Sun *et al.* 2014, Weise *et al.* 2015). Thus, the accurate estimation of  $g_m$  is required to determine  $V_{\text{cmax}}$  and  $J_{\text{max}}$ . The accurate estimation of  $g_m$  requires values of  $R_d$  (rate of leaf day respiration in the light) and  $\Gamma^*$  (CO<sub>2</sub> photocompensation point in the absence of leaf day respiration) for the species under consideration (Di Marco *et al.* 1990, Harley *et al.* 1992b, Pons *et al.* 2009). If reported values of  $R_d$  and  $\Gamma^*$  from other species were used, this will likely increase errors in estimating  $g_m$  because estimation of  $g_m$  is sensitive to  $R_d$  and  $\Gamma^*$  (Harley *et al.* 1992b, Weise *et al.* 2015).  $\Gamma^*$  is known to vary within (Walker *et al.* 2013, Weise *et al.* 2015) and between species (Betti *et al.* 2016) and  $R_d$  varies between different ages of leaves and between species (Warren and Dreyer 2006, Gong *et al.* 2018). Thus, for the purpose of modelling CO<sub>2</sub> assimilation rate of oil palm, it is clear that actual estimations of  $\Gamma^*$ ,  $R_d$ , and  $g_m$  for oil palm should be used to parameterize the FvCB model.

The FvCB model was originally parameterized for a leaf temperature of 25°C (Farquhar *et al.* 1980). Using tobacco plants, the *in vivo* temperature response functions of FvCB model parameters were later developed by Bernacchi *et al.* (2001, 2002, 2003) to allow for more accurate prediction of net CO<sub>2</sub> assimilation rate at a wider range of leaf temperatures. They suggested that the derived temperature response functions would improve accuracy of predicting net CO<sub>2</sub> assimilation rate of other C<sub>3</sub> species considering the properties of Rubisco kinetics are conserved among higher plants (von Caemmerer 2000). However, recent experimental evidence suggests that temperature dependencies of Rubisco kinetics are species-specific and could result in significantly different modelled rates of leaf CO<sub>2</sub> assimilation (Walker *et al.* 2013). These findings highlight the importance of parameterizing FvCB model for the species under study when modelling the plant's temperature response of net CO<sub>2</sub> assimilation. To our best knowledge, the temperature dependencies of FvCB model parameters specifically for oil palm, such as  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ ,  $g_m$ ,  $R_d$ , and  $\Gamma^*$ , have not been determined.

This study was undertaken (1) to estimate intercellular CO<sub>2</sub> photocompensation point ( $C_i^*$ ),  $\Gamma^*$ ,  $R_d$ , and  $g_m$  and their temperature responses and (2) to use these parameters to estimate  $V_{\text{cmax}}$ ,  $J_{\text{max}}$  and triose-phosphate utilization rate (TPU) and their temperature responses for oil palm.

## Materials and methods

**Plant material:** A total of 18 germinated oil palm seeds (*Elaeis guineensis* Jacq., Deli Dura × AVRROS) were planted in black polybags (38 cm wide × 51 cm deep), filled with *Rengam Series* soil (Typic Kandiudults), at Ulu Remis Oil Palm Nursery, Layang (1.844°N 103.446°E). One germinated seed was planted per one polybag. Oil palm seedlings were raised according to standard nursery practices up to the seven months of planting. Six healthy seedlings of a similar size were then selected for leaf gas-exchange and chlorophyll (Chl) fluorescence measurements. The selected six seedlings represent six replicates used for estimating  $R_d$ ,  $C_i^*$ ,  $\Gamma^*$ ,  $g_m$ ,  $V_{\text{cmax}}$ ,  $J$ , and TPU.

**Gas-exchange and Chl fluorescence measurements:** All gas-exchange and Chl fluorescence measurements were performed using a LI-6800-01A portable photosynthesis system equipped with *Multiphase Flash*<sup>TM</sup> fluorometer (Li-Cor Inc., Lincoln, NE, USA). All measurements were conducted on the third bifoliate leaf of each seedling.

**Measurements of  $C_i^*$ ,  $\Gamma^*$ , and  $R_d$ :** The Laisk method (Laisk 1977) was followed to estimate  $C_i^*$  and  $R_d$ . Net CO<sub>2</sub> assimilation rates ( $P_N$ ) and intercellular CO<sub>2</sub> concentrations ( $C_i$ ) were measured at four different light intensities [250, 150, 100, and 50 μmol(photon) m<sup>-2</sup> s<sup>-1</sup>] at seven reference CO<sub>2</sub> concentrations,  $C_a$ , *i.e.*, 400, 400, 200, 150, 100, 75, 50, and 0 μmol(CO<sub>2</sub>) mol<sup>-1</sup>(air). All  $P_N$ - $C_i$  measurements were made at five different leaf temperatures of 25, 28, 30, 35, and 40°C. For each leaf temperature,  $P_N$ - $C_i$  data collected from gas-exchange measurements made at four different light intensities were used to determine  $C_i^*$  and  $R_d$  by the slope-intercept regression approach (Walker and Ort 2015).

Two approaches were used to determine  $\Gamma^*$ . In the first approach,  $\Gamma^*$  was determined from  $C_i^*$  and  $R_d$  by solving iteratively with  $g_m$  using Eq. 1 and 7 because  $\Gamma^*$  can be related to  $C_i^*$ ,  $R_d$ , and  $g_m$  according to von Caemmerer *et al.* (1994) as

$$\Gamma^* = C_i^* + R_d/g_m \quad (1)$$

For this,  $C_i^*$  was used as a proxy for  $\Gamma^*$  to solve for  $g_m$  using Eq. 7. The resulting  $g_m$  was then used to solve for  $\Gamma^*$  using Eq. 1. This iteration process was continued until constant values of  $g_m$  and  $\Gamma^*$  were attained (Pons *et al.* 2009).

The second approach used an empirical equation derived from carbon isotopic disequilibrium method (Gong *et al.* 2018) to estimate independent  $g_m$  since the range of stomatal conductance to CO<sub>2</sub> ( $g_{sc}$ ) being studied in oil palm and that in Gong *et al.* (2018) was similar and the relationship between  $g_{sc}$  and  $g_m$  was linear (Fig. 1S, *supplement*). Thus  $g_m$  can be estimated from  $g_{sc}$  as

$$g_m = 1.3343g_{sc} - 0.003 \quad (2)$$

$$g_{sc} = g_{sw}/1.6 \quad (3)$$

where  $g_{sw}$  is stomatal conductance to water vapour which

can be obtained from leaf gas-exchange measurements. Using  $g_m$  calculated from Eq. 2,  $C_c$  was calculated using Eq. 4 and subsequently  $P_N-C_i$  curves were converted to  $P_N-C_c$  curves to determine  $R_d$  and  $\Gamma^*$  following the slope-intercept regression approach:

$$C_c = C_i - (P_N/g_m) \quad (4)$$

**Measurements of  $g_m$ ,  $V_{cmax}$ ,  $J$ , and TPU:** Combined gas-exchange and Chl fluorescence measurement was used to determine  $g_m$ ,  $V_{cmax}$ ,  $J$ , and TPU. All  $P_N-C_c$  measurements were conducted at 400, 300, 200, 100, 50, 400, 400, 500, 600, 800; 1,000; 1,200; 1,400; 1,600; and 1,800  $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}(\text{air})$  under saturating light conditions of 1,500  $\mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$ . Concurrently, Chl fluorescence measurements were performed using the multiphase flash (MPF) approach (Loriaux *et al.* 2013). All measurements were made at seven different leaf temperatures of 25, 28, 30, 33, 35, 38, and 40°C.

**Estimating mesophyll conductance:** Eq. 2 (Gong *et al.* 2018) and the variable  $J$  method were used to estimate  $g_m$  for each step of the  $P_N-C_i$  curves. Following the variable  $J$  method,  $g_m$  was estimated by first computing the electron transport rate ( $J_F [\mu\text{mol}(\text{e}^-) \text{ m}^{-2} \text{ s}^{-1}]$ ) from Chl fluorescence measurements following Genty *et al.* (1989) as

$$J_F = \alpha \times \beta \times Q \times \Phi_{PSII} \quad (5)$$

where  $\alpha$  is the fraction of incoming irradiance absorbed by photosystems which varies between 0.5 and 0.95 (Bauerle *et al.* 2004).  $\beta$  is the partitioning fraction of photons between PSI and PSII which varies between 0.45 and 0.6 (Laisk and Loreto 1996).  $Q$  is the photosynthetic photon flux density incident on the leaf [ $\mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$ ]. The product  $\tau = \alpha\beta$  which represents the fraction of  $I_{inc}$  harvested by PSII was estimated for each  $P_N-C_i$  measurement using  $P_N-C_i$  curve fitting utility developed by Moualeu-Ngangue *et al.* (2017). The upper limit of  $\tau$  was set at 0.421 which is the default value used by LI-6800-01A. Using estimated  $\tau$  for each  $P_N-C_i$  measurement minimises uncertainties between  $J_F$  and  $J$  calculated from gas exchange. Hence increases the robustness in using  $J_F$  as a proxy of  $J$  for estimating  $g_m$  in oil palm.  $\Phi_{PSII} [\text{mol}(\text{e}^-) \text{ mol}^{-1}(\text{photon})]$  is the electron transport efficiency of PSII which can be estimated from Chl fluorescence measurements as

$$\Phi_{PSII} = (F_m' - F_s)/F_m' \quad (6)$$

where  $F_s$  is the steady-state fluorescence and  $F_m'$  is the maximum fluorescence during a saturating light pulse (Genty *et al.* 1989). Upon obtaining values of  $J$ ,  $A$ ,  $C_i$ , and  $R_d$ , the parameter  $g_m$  [ $\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$ ] was solved iteratively with  $\Gamma^*$  using Eqs. 1 and 7 (Harley *et al.* 1992) as discussed previously:

$$g_m = \frac{P_N}{C_i - \left[ \frac{(J + 8(P_N + R_d))}{J - 4(P_N + R_d)} \right]} \quad (7)$$

Since  $g_m$  declines with increasing  $C_i$  (Fig. 2S, *supplement*) and in order to minimize uncertainties associated with declining  $g_m$  as highlighted by Gu and Sun (2014),

$g_m$  was determined at reference  $\text{CO}_2$  concentration of 400  $\mu\text{mol} \text{ mol}^{-1}(\text{air})$  and  $g_m$  averaged over the reliable range of  $10 < dC_c/dP_N < 50$  (averaged  $g_m$ ) were compared. Averaged  $g_m$  was obtained following Harley *et al.* (1992b):

$$\frac{dC_c}{dP_N} = \frac{12 \Gamma^* J}{[J - 4(P_N + R_d)]^2} \quad (8)$$

**Estimating  $V_{cmax}$ ,  $J_{max}$ , and TPU:**  $P_N-C_i$  data obtained from gas-exchange measurements on 7-month-old oil palm at 25, 28, 30, 33, 35, 38, and 40°C were fitted to a Microsoft Excel-based  $P_N-C_i$  curve fitting utility (Sharkey 2015) to estimate  $V_{cmax}$ ,  $J$ , and TPU using  $R_d$ ,  $\Gamma^*$ ,  $g_m$  and their respective temperature response functions determined in oil palm.  $J_{max}$  was then calculated using Eq. 9 (Farquhar and Wong 1984) as

$$\theta J^2 - (\emptyset Q + J_{max})J + \emptyset Q J_{max} = 0 \quad (9)$$

where  $Q$  is the photosynthetic photon flux density,  $\emptyset$  is the photon yield of electron transport, and  $\theta$  is a dimensionless convexity parameter ( $\theta \leq 1$ ). Following Buckley and Diaz-Espejo (2015),  $\emptyset$  and  $\theta$  was taken as 0.331  $\text{mol}(\text{e}^-) \text{ mol}^{-1}(\text{photon})$  and 0.825, respectively.

In order to assess the effects of palm age on  $V_{cmax}$ ,  $J_{max}$ , and TPU, additional gas-exchange and Chl fluorescence measurements were made on 1-, 2-, 7-, and 12-year-old palms under field conditions with measuring temperature ranges between 30 and 36°C. The parameter  $g_m$  was estimated at a reference  $\text{CO}_2$  of 400  $\mu\text{mol} \text{ mol}^{-1}(\text{air})$  for each oil palm leaf following the iterative approach using fitted  $R_d$  and  $C_i^*$  determined in this study. The resulting  $g_m$  was then used to estimate  $V_{cmax}$ ,  $J$ , and TPU using  $P_N-C_i$  curve fitting utility (Sharkey 2015).  $J_{max}$  was then calculated using Eq. 9. Since  $g_m$ ,  $V_{cmax}$ ,  $J_{max}$ , and TPU were estimated at different leaf temperatures, all values were normalized to 25°C using their respective temperature response function developed in this study.

**Temperature response function:** The temperature response of  $R_d$ ,  $g_m$ , and  $V_{cmax}$  was modelled using a best fit of the data to Eq. 10 while the temperature response of  $C_i^*$  and  $\Gamma^*$  was modelled using Eq. 11.

$$(R_d, g_m, V_{cmax}) = \text{value at } 25^\circ\text{C} \times \exp(c - \Delta H_a/RT_k) \quad (10)$$

$$(C_i^*, \Gamma^*) = \exp(c - \Delta H_a/RT_k) \quad (11)$$

where  $c$  is a scaling constant,  $\Delta H_a$  is the energy of activation,  $R$  is the molar gas constant ( $8.314 \text{ JK}^{-1} \text{ mol}^{-1}$ ), and  $T_k$  is the leaf temperature in Kelvin (Tenhunen *et al.* 1976, Bernacchi *et al.* 2001, 2002). The temperature response of  $J_{max}$  and TPU was modelled using a best fit of the data to the equation:

$$(J_{max}, \text{TPU}) = \frac{\exp\left(c - \frac{\Delta H_a}{RT_k}\right)}{1 + \exp\left(\frac{\Delta S T_k - \Delta H_d}{RT_k}\right)} \quad (12)$$

where  $\Delta H_d$  is the energy of deactivation and  $\Delta S$  is the entropy for the temperature response of  $J_{max}$  and TPU (Bernacchi *et al.* 2003).

**Statistical analyses:** Paired Student's *t*-test was used to compare  $\Gamma^*$  estimated from iterative and slope-intercept regression approaches,  $g_m$  estimated from Eq. 2 and iterative approach, and  $g_m$  determined at reference  $\text{CO}_2$  concentration of 400  $\mu\text{mol mol}^{-1}$ (air) and averaged  $g_m$ . One-way analysis of variance (*ANOVA*) was performed on  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU estimated for different ages of palms. All *ANOVA* were followed with a *Tukey's* Studentized Range Test and all statistical analyses were performed using *JMP® Statistical software version 14* (*SAS Institute*, Cary, North Carolina, USA). The Solver add-in program in *Excel® 2016* (*Microsoft Corporation*, Washington, USA) was used to fit measured parameter values for  $R_d$ ,  $C_i^*$ ,  $\Gamma^*$ ,  $g_m$ ,  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU to their respective temperature response models. Coefficient of determination,  $r^2$ , was used to define goodness of fit between measured and modelled values and  $r^2$  was calculated using the *CORREL* function in *Excel® 2016*.

## Results

**$R_d$ ,  $C_i^*$ , and  $\Gamma^*$  estimated from slope-intercept regression approach:** The estimated  $C_i^*$  and  $\Gamma^*$  for oil palm averaged at  $4.32 \pm 0.19$  and  $4.56 \pm 0.23$  Pa( $\text{CO}_2$ ), respectively (Table 1). As expected,  $C_i^*$  estimated from  $P_{\text{N}}\text{-}C_i$  curves was lower than  $\Gamma^*$  estimated from  $P_{\text{N}}\text{-}C_c$  curves.  $R_d$  estimated either from  $P_{\text{N}}\text{-}C_i$  or  $P_{\text{N}}\text{-}C_c$  curves were similar, averaged between  $0.25 \pm 0.05$   $\mu\text{mol}(\text{CO}_2)$

Table 1. Leaf day respiration ( $R_d$ ), intercellular  $\text{CO}_2$  photocompensation point ( $C_i^*$ ), and chloroplastic  $\text{CO}_2$  photocompensation point in the absence of  $R_d$  ( $\Gamma^*$ ) determined from  $\text{CO}_2$  assimilation curves measured under four sub-saturating photosynthetic photon flux densities and six intercellular  $\text{CO}_2$  concentrations. The slope-intercept regression approach was used to determine  $R_d$ ,  $C_i^*$ , and  $\Gamma^*$ . Values of  $g_m$  derived from Eq. 2 were used to convert  $P_{\text{N}}\text{-}C_i$  curves to  $P_{\text{N}}\text{-}C_c$  curves. Values are means ( $\pm \text{SD}$ ) of six replicates. Measurements were made at a leaf temperature of 25°C.

| Derived from $P_{\text{N}}\text{-}C_i$ curves |                                                                      | Derived from $P_{\text{N}}\text{-}C_c$ curves |                                                                      |
|-----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|
| $C_i^*$ [Pa( $\text{CO}_2$ )]                 | $R_d$ [ $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ ] | $\Gamma^*$ [Pa( $\text{CO}_2$ )]              | $R_d$ [ $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ ] |
| $4.32 \pm 0.19$                               | $0.26 \pm 0.06$                                                      | $4.56 \pm 0.23$                               | $0.25 \pm 0.05$                                                      |

Table 2. Comparison of  $\Gamma^*$  determined by iterative and slope-intercept regression approaches. Values of  $g_m$  derived from Eq. 2 were used to convert  $P_{\text{N}}\text{-}C_i$  curves to  $P_{\text{N}}\text{-}C_c$  curves,  $\Gamma^*$  was subsequently determined using slope-intercept regression approach. Eqs. 1 and 7 were solved iteratively to determine  $g_m$  and  $\Gamma^*$ .  $g_m$  – mesophyll conductance;  $\Gamma^*$  – chloroplastic  $\text{CO}_2$  photocompensation point in the absence of leaf day respiration. Values are means ( $\pm \text{SD}$ ) of six replicates. Measurements were made at a leaf temperature of 25°C.

| Model parameter                  | Slope-intercept regression | Iterative approach | <i>p</i> -value |
|----------------------------------|----------------------------|--------------------|-----------------|
| $\Gamma^*$ [Pa( $\text{CO}_2$ )] | $4.56 \pm 0.23$            | $4.54 \pm 0.17$    | 0.695           |

Table 3. Mesophyll conductance ( $g_m$ ) determined in oil palm using iterative approach and Eq. 2. In iterative approach,  $g_m$  was determined by solving Eqs. 1 and 7 iteratively.  $g_m$  determined at reference  $\text{CO}_2$  concentration of 400  $\mu\text{mol mol}^{-1}$  ( $g_m[C_a]$ ) and averaged  $g_m$  (averaged over the reliable range of  $10 < dC_c/dP_{\text{N}} < 50$ ) are means ( $\pm \text{SD}$ ) of six replicates. All  $g_m$  values were determined at a leaf temperature of 25°C. na denotes not applicable.

| Method             | $g_m[C_a]$<br>[ $\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$ ] | Averaged $g_m$<br>[ $\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$ ] | $g_m[C_a] \times$ averaged $g_m$<br><i>p</i> -value |
|--------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Iterative approach | $1.25 \pm 0.25$                                                                            | $1.32 \pm 0.30$                                                                                | 0.661                                               |
| Eq. 2              | $1.25 \pm 0.27$                                                                            | $1.28 \pm 0.28$                                                                                | 0.835                                               |
| <i>p</i> -value    | 0.920                                                                                      | 0.825                                                                                          | na                                                  |

$\text{m}^{-2} \text{ s}^{-1}$  and  $0.26 \pm 0.06 \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$  (Table 1).

**Comparing  $\Gamma^*$  estimated from  $P_{\text{N}}\text{-}C_c$  curve and iterative approach:**  $\Gamma^*$  derived from  $P_{\text{N}}\text{-}C_c$  curve using independent  $g_m$  estimated by Eq. 2 was very close to the  $\Gamma^*$  estimated by iterative approach (Table 2). Iterative approach estimated  $\Gamma^*$  averaged at  $4.54 \pm 0.17$  Pa( $\text{CO}_2$ ) while  $\Gamma^*$  derived from  $P_{\text{N}}\text{-}C_c$  curve averaged at  $4.56 \pm 0.23$  Pa( $\text{CO}_2$ ), suggesting  $\Gamma^*$  estimated for oil palm is reliable.

**Comparing  $g_m$  estimated from Eq. 2 and iterative approach:** Averaged  $g_m$  estimated by iterative approach were slightly higher than averaged  $g_m$  determined by Eq. 2 but the differences were not significant while  $g_m$  determined at 400  $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$ (air) by both methods were identical (Table 3). Similarly, when comparing  $g_m$  estimated by the same method, either iterative approach or Eq. 2, no significant differences were observed between  $g_m$  determined at 400  $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$ (air) and averaged  $g_m$ . The results suggest that the estimated  $g_m$  is reliable and either  $g_m$  determined at 400  $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$ (air) or averaged  $g_m$  can be used to estimate  $V_{\text{cmax}}$ ,  $J$ , and TPU in oil palm.

**Temperature response of  $R_d$ ,  $C_i^*$ ,  $\Gamma^*$ , and  $g_m$  in oil palm:** All three parameters  $R_d$ ,  $C_i^*$ , and  $\Gamma^*$  responded to temperature exponentially without thermal deactivation even at high temperature of 40°C (Fig. 1) and all were

well described by the simple Arrhenius equation with  $r^2$  value of  $> 0.98$ .  $C_i^*$  and  $\Gamma^*$  were less temperature sensitive than  $R_d$  as indicated by their lower activation energy ( $\Delta H_a$ ) (Table 4).

Oil palm  $g_m$  increased exponentially with temperature up to  $40^\circ\text{C}$  without thermal deactivation (Fig. 1D). However, the response of  $g_m$  to temperature was rather insensitive. At the highest temperature of  $40^\circ\text{C}$ ,  $g_m$  only increased to  $1.60 \pm 0.24 \text{ mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$ , representing a small increase of  $0.35 \text{ mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$  despite a significant  $15^\circ\text{C}$  increase in temperature. The present study also demonstrated that the temperature responses of  $\Gamma^*$  and  $g_m$  in oil palm differed from tobacco (Bernacchi *et al.* 2002) and *Arabidopsis* (Walker *et al.* 2013) (Fig. 1), suggesting the temperature dependencies of oil palm  $\Gamma^*$  and  $g_m$  are likely species-specific.

**$V_{\text{cmax}}$ ,  $J_{\text{max}}$ , TPU and their temperature responses:** At  $25^\circ\text{C}$ ,  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU determined in 7-month-old oil palms averaged at  $74 \pm 12$ ,  $94 \pm 13$ , and  $6.7 \pm 0.7 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ , respectively.  $V_{\text{cmax}}$  increased exponentially with temperature up to  $226 \pm 32 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$  at  $40^\circ\text{C}$  without deactivation of Rubisco (Fig. 2A, Table 5).

However, inclusion of a thermal deactivation term improved its goodness of fit, indicating that  $V_{\text{cmax}}$  likely optimized at  $40^\circ\text{C}$ . Similarly,  $J_{\text{max}}$  and TPU increased exponentially with temperature but only up to  $38^\circ\text{C}$ , thereafter both parameters declined to lower values due to occurrence of thermal deactivation (Fig. 2B,C; Table 5). At  $38^\circ\text{C}$ ,  $J_{\text{max}}$  and TPU averaged at  $184 \pm 30$  and  $11.3 \pm 2 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$  but declined to  $177 \pm 17$  and  $10.4 \pm 1.2 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ , respectively, at  $40^\circ\text{C}$ . All three parameters were well described by the Arrhenius function except that  $J_{\text{max}}$  and TPU required a deactivation term ( $r^2 = 0.9971$ ,  $0.9885$ ,  $0.9352$  for  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU, respectively). In this study, temperature had a greater effect on  $V_{\text{cmax}}$  which increased about threefold between  $25$  and  $40^\circ\text{C}$  while  $J_{\text{max}}$  and TPU only increased about twofold over the same temperature range.

Using  $R_d$ ,  $\Gamma^*$ , and  $g_m$  determined in this study,  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU were estimated for 7-month-, 1-, 2-, 7-, and 12-year-old oil palms, respectively (Table 6). Field-grown palms (2-, 7-, and 12-year-old palms) had significantly higher  $V_{\text{cmax}}$  than the nursery-grown palms (7-month- and 1-year-old palms). Similarly,  $J_{\text{max}}$  and TPU estimated from field-grown palms were higher than that of nursery-grown

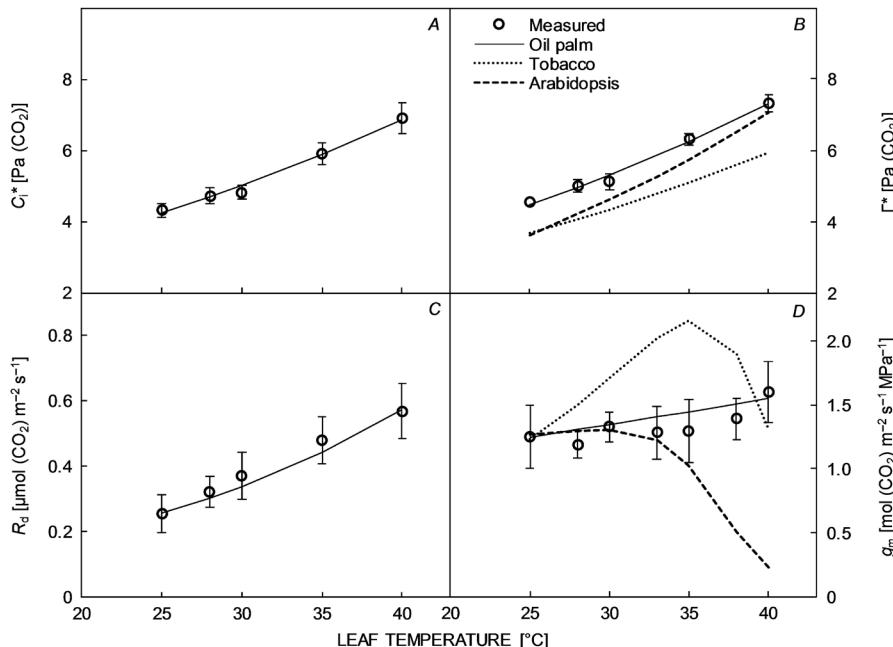



Fig. 1. Temperature response of intercellular  $\text{CO}_2$  photocompensation point ( $C_i^*$ ) (A), chloroplastic  $\text{CO}_2$  photocompensation point in the absence of  $R_d$  ( $\Gamma^*$ ) (B), leaf day respiration rate ( $R_d$ ) (C), and mesophyll conductance ( $g_m$ ) (D) in oil palm (open circles). Solid line represents best-fit temperature response of  $C_i^*$ ,  $\Gamma^*$ ,  $R_d$ , and  $g_m$  in oil palm. Dotted and dashed lines represent modelled  $\Gamma^*$  and  $g_m$  derived from tobacco (Bernacchi *et al.* 2002) and *Arabidopsis* (Walker *et al.* 2013). Temperature responses of oil palm  $C_i^*$ ,  $\Gamma^*$ ,  $R_d$ , and  $g_m$  were calculated using  $\Delta H_a$  and  $c$  given in Table 4. All measured values are means  $\pm$  SD of six replicates.  $\Gamma^*$  and  $g_m$  were determined by solving Eqs. 1 and 7 iteratively.

Table 4. The scaling constant ( $c$ ) and energy of activation ( $\Delta H_a$  [ $\text{kJ mol}^{-1}$ ]) for oil palm. Equation Parameter = value at  $25^\circ\text{C} \times \exp(c - \Delta H_a/RT_k)$  was used to estimate  $c$  and  $\Delta H_a$  for  $R_d$  and  $g_m$  while equation Parameter =  $\exp(c - \Delta H_a/RT_k)$  was used to estimate  $c$  and  $\Delta H_a$  for  $C_i^*$  and  $\Gamma^*$ . The scaling constant ( $c$ ) has been corrected to give partial pressure in term of Pa as determined in Sharkey *et al.* (2007).  $R_d$  and  $g_m$  were normalized to 1 at  $25^\circ\text{C}$ .  $\Gamma^*$  and  $g_m$  were determined by solving Eqs. 1 and 7 iteratively. na denotes not applicable.

|                             | $R_d$ [ $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ ] | $C_i^*$ [Pa( $\text{CO}_2$ )] | $\Gamma^*$ [Pa( $\text{CO}_2$ )] | $g_m$ [ $\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$ ] |
|-----------------------------|----------------------------------------------------------------------|-------------------------------|----------------------------------|------------------------------------------------------------------------------------|
| Value at $25^\circ\text{C}$ | 1.00                                                                 | 4.32                          | 4.54                             | 1.0                                                                                |
| $c$                         | 16.78                                                                | 11.43                         | 11.65                            | 4.5                                                                                |
| $\Delta H_a$                | 41.60                                                                | 24.75                         | 25.14                            | 11.2                                                                               |

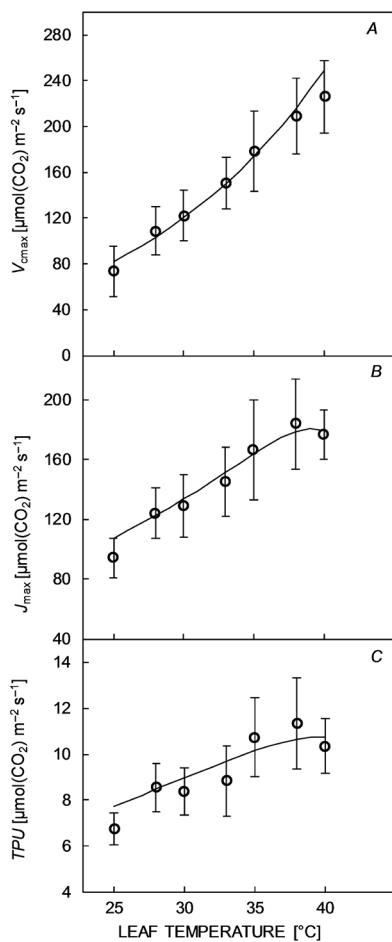



Fig. 2. Temperature response of maximum rate of Rubisco carboxylation ( $V_{\text{cmax}}$ ) (A), maximum potential electron transport rate ( $J_{\text{max}}$ ) (B), and triose phosphate utilization rate (TPU) (C) in oil palm (open circles). Solid line represents best-fit temperature response of  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU in oil palm. Measured values are means  $\pm$  SD of six replicates.

palms. However, no relationship was found between photosynthetic capacity ( $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU) and palm age in field-grown palms. On average,  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU were  $118 \pm 26$ ,  $118 \pm 16$ , and  $7.9 \pm 0.9 \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ , respectively, for field-grown palms aged between 2 and 12 years. Despite markedly different in  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU between nursery- and field-grown palms, it is interesting to note that  $g_{\text{m}}$  determined in both groups of palms was statistically similar except for the 7-year-old palms which have significantly higher  $g_{\text{m}}$ . The higher  $g_{\text{m}}$  values did not seem to affect estimation of  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU in the 7-year-old palms.

## Discussion

**$R_{\text{d}}$ ,  $C_{\text{i}}^*$ ,  $\Gamma^*$ , and  $g_{\text{m}}$  determined in oil palm:**  $\Gamma^*$  is most commonly determined using the Laisk's method by first having  $C_{\text{i}}^*$  and  $R_{\text{d}}$  determined, and then solve for  $\Gamma^*$  by accounting for  $g_{\text{m}}$  using equation  $\Gamma^* = C_{\text{i}}^* + R_{\text{d}}/g_{\text{m}}$  (von Caemmerer *et al.* 1994). The Laisk's method was, however,

criticised for estimating a biased  $\Gamma^*$  (Gu and Sun 2014, Gong *et al.* 2018). Using the slope-intercept regression approach, Walker and Ort (2015) demonstrated that biases associated with the Laisk's method could be minimized. Similar approach was used in this study to determine  $C_{\text{i}}^*$  and  $R_{\text{d}}$  at different temperatures which were then used to solve for  $\Gamma^*$  and  $g_{\text{m}}$  iteratively using equation  $\Gamma^* = C_{\text{i}}^* + R_{\text{d}}/g_{\text{m}}$  (Eq. 1) and variable  $J$  method (Eq. 7). At 25°C, the estimated  $\Gamma^*$  and  $g_{\text{m}}$  compares well with the  $\Gamma^*$  and  $g_{\text{m}}$  estimated using Eq. 2 (Tables 2, 3), an empirical equation relating stomatal conductance to  $g_{\text{m}}$  (Gong *et al.* 2018). Eq. 2 was used as an independent approach to check on  $\Gamma^*$  and  $g_{\text{m}}$  estimated from iterative approach. Both methods might compromise on the accuracy of  $g_{\text{m}}$  estimates and thus increases uncertainty in the estimates of  $\Gamma^*$ . The use of more reliable  $g_{\text{m}}$  estimates such as  $g_{\text{m}}$  estimated from the carbon isotope discrimination method (Walker *et al.* 2013, von Caemmerer and Evans 2015) or carbon isotope disequilibrium method (Gong *et al.* 2018) was believed to allow more accurate estimation of  $\Gamma^*$ . However, the same isotope discrimination method has yielded different  $g_{\text{m}}$  estimates in *Arabidopsis* (Walker *et al.* 2013, von Caemmerer and Evans 2015). Thus, oil palm  $\Gamma^*$  and  $g_{\text{m}}$  estimated in this study can be used as the first approximation.

The rate of oil palm leaf day respiration,  $R_{\text{d}}$ , was generally lower than that of other C<sub>3</sub> species. Peisker and Apel (2001) estimated  $R_{\text{d}}$  for *Nicotiana tabacum* varying between 0.37–1.22  $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$  while Gong *et al.* (2018) estimated  $R_{\text{d}}$  for six herbaceous C<sub>3</sub> species between 0.7–1.17  $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ .  $R_{\text{d}}$  has been shown to vary between different ages of leaves and between species (Warren and Dreyer 2006, Gong *et al.* 2018). It is thus possible that oil palm has low  $R_{\text{d}}$ . However, the low  $R_{\text{d}}$  observed might be attributed to palm age since 7-month-old seedlings instead of adult palms were used for measurements. Thus measurement on adult palms would be useful to confirm this finding. The estimates of  $C_{\text{i}}^*$  and  $\Gamma^*$  determined for oil palm were well within the range of C<sub>3</sub> species (Walker and Ort 2015) and  $C_{\text{i}}^*$  was slightly lower than  $\Gamma^*$  due to the effect of mesophyll conductance (von Caemmerer *et al.* 1994). Hence, it is biased to use  $C_{\text{i}}^*$  as a proxy of  $\Gamma^*$  for estimation of  $g_{\text{m}}$ . In this respect, using iterative approach to solve for  $\Gamma^*$  and  $g_{\text{m}}$  or using Eq. 2 to get an independent estimate of  $g_{\text{m}}$  which was subsequently used to estimate  $\Gamma^*$  appeared justifiable.

Mesophyll conductance estimated by the iterative approach and Eq. 2 was well within the range of woody C<sub>3</sub> species [0.05–1.89  $\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$ ] (Manter and Kerrigan 2004) but was much lower than that of herbaceous C<sub>3</sub> crops, such as paddy [3.9–5.0  $\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$ ], wheat [3.2–6.38  $\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$ ] (Ethier and Livingston 2004), and soybean [4.9  $\pm$  0.5  $\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$ ] (von Caemmerer and Evans 2015). The apparently low  $g_{\text{m}}$  observed in oil palm indicates that  $g_{\text{m}}$  would likely impose considerable limitation to CO<sub>2</sub> assimilation by the oil palm leaves.

**Temperature response of  $R_{\text{d}}$ ,  $C_{\text{i}}^*$ ,  $\Gamma^*$ , and  $g_{\text{m}}$ :** Given the highly variable nature of  $R_{\text{d}}$  between plant species, ages

Table 5. The scaling constant ( $c$ ), energies of activation ( $\Delta H_a$  [kJ mol $^{-1}$ ]) and deactivation ( $\Delta H_d$  [kJ mol $^{-1}$ ]) and entropy ( $\Delta S$ ) for the temperature response of maximum rate of Rubisco carboxylation ( $V_{cmax}$ ), maximum potential electron transport rate ( $J_{max}$ ), and triose phosphate utilization rate (TPU) in oil palm.  $V_{cmax}$  data was fitted to the equation Parameter =  $\exp(c - \Delta H_a/RT_k)$  while  $J_{max}$  and TPU data was fitted to the equation Parameter =  $\exp(c - \Delta H_a/RT_k)/1 + \exp(\Delta S \times T_k - \Delta H_d/RT_k)$ .  $V_{cmax}$ ,  $J_{max}$ , and TPU were all given in  $\mu\text{mol}(\text{CO}_2) \text{m}^{-2} \text{s}^{-1}$ . na denotes not applicable.

| Parameter  | Value at 25°C | $c$    | $\Delta H_a$ | $\Delta H_d$ | $\Delta S$ |
|------------|---------------|--------|--------------|--------------|------------|
| $V_{cmax}$ | 1             | 23.327 | 57.55        | na           | na         |
| $J_{max}$  | 1             | 13.405 | 32.81        | 443.6        | 1.40       |
| TPU        | 1             | 9.542  | 23.30        | 208.5        | 0.65       |

Table 6. Maximum rate of carboxylation of Rubisco ( $V_{cmax}$ ), maximum rate of electron transport ( $J_{max}$ ), and triose phosphate utilization rate (TPU) estimated from  $P_{N-C_c}$  curves. Mesophyll conductance ( $g_m$ ) at reference  $\text{CO}_2$  concentration of 400  $\mu\text{mol} \text{mol}^{-1}$  was estimated for each oil palm leaf by solving Eqs. 1 and 7 iteratively. Using the estimated  $g_m$ , parameters  $V_{cmax}$ ,  $J$ , and TPU were estimated using the  $P_{N-C_i}$  curve fitting utility (Sharkey 2015) with leaf day respiration ( $R_d$ ) and  $g_m$  entered as a constant for each oil palm leaf.  $J_{max}$  was then calculated using Eq. 9. Values of  $g_m$ ,  $V_{cmax}$ ,  $J_{max}$ , and TPU were normalized to 25°C using their respective temperature response function determined in this study. Values of  $g_m$ ,  $V_{cmax}$ ,  $J_{max}$ , and TPU are means ( $\pm$  SD) of six replicates for 7-month-old palm and four replicates for 1-, 2-, 7-, and 12-year-old palm. Oil palms are normally field planted after growing one year in the nursery. Mean values with different letters within a same column are significantly different at  $p < 0.05$  by Tukey's Studentized Range test.

| Age of palm | $g_m$<br>[ $\text{mol}(\text{CO}_2) \text{m}^{-2} \text{s}^{-1} \text{MPa}^{-1}$ ] | $V_{cmax}$<br>[ $\mu\text{mol}(\text{CO}_2) \text{m}^{-2} \text{s}^{-1}$ ] | $J_{max}$<br>[ $\mu\text{mol}(\text{CO}_2) \text{m}^{-2} \text{s}^{-1}$ ] | TPU<br>[ $\mu\text{mol}(\text{CO}_2) \text{m}^{-2} \text{s}^{-1}$ ] |
|-------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|
| 7 months    | $1.25 \pm 0.25^b$                                                                  | $78 \pm 22^b$                                                              | $94 \pm 13^{bc}$                                                          | $6.7 \pm 0.7^{ab}$                                                  |
| 1 year      | $1.08 \pm 0.14^b$                                                                  | $72 \pm 20^b$                                                              | $82 \pm 15^c$                                                             | $5.8 \pm 1.0^b$                                                     |
| 2 years     | $1.09 \pm 0.17^b$                                                                  | $115 \pm 14^a$                                                             | $126 \pm 7^{ab}$                                                          | $8.4 \pm 0.7^a$                                                     |
| 7 years     | $1.78 \pm 0.13^a$                                                                  | $120 \pm 32^a$                                                             | $134 \pm 30^a$                                                            | $8.3 \pm 1.2^a$                                                     |
| 12 years    | $1.25 \pm 0.39^b$                                                                  | $119 \pm 33^a$                                                             | $115 \pm 15^{abc}$                                                        | $7.1 \pm 0.7^{ab}$                                                  |
| $p$ -value  | 0.004                                                                              | 0.018                                                                      | 0.002                                                                     | 0.002                                                               |

of leaves, and growth conditions (Villar *et al.* 1994, Ayub *et al.* 2011, Gong *et al.* 2018), many studies have found no consistent relationship between  $R_d$  and temperature (Villar *et al.* 1994, Atkin *et al.* 2000, Warren and Dreyer 2006, Walker *et al.* 2013). Thus, the close relationship between  $R_d$  and temperature observed in oil palm suggests that the rate of  $R_d$  measured in this study is reliable though the rate of  $R_d$  is challenging to measure (Hanson *et al.* 2016, Tcherkez *et al.* 2017). From the modelling perspective, this study revealed that  $R_d$  temperature response function determined in this study can be used to model temperature response of  $R_d$  in oil palm.

The marked differences in temperature response of  $\Gamma^*$  between oil palm, tobacco, and *Arabidopsis* was not all unexpected. Similar observations were reported by Warren and Dreyer (2006), Walker *et al.* (2013), and Weise *et al.* (2015) when compared  $\Gamma^*$  temperature response between *Q. canariensis* and tobacco; between tobacco and *Arabidopsis*, and between *Arabidopsis* itself. These differences in temperature response could be attributable to species-specific variation in photorespiratory efficiency with temperature, suggesting variation in stoichiometry of  $\text{CO}_2$  release per Rubisco oxygenation can cause  $\Gamma^*$  responds differently to temperature (Walker *et al.* 2017) even though  $\Gamma^*$  is relatively conserved among  $C_3$  species (von Caemmerer 2000). Thus, it is best using  $\Gamma^*$  determined in oil palm to estimate Rubisco kinetics,  $g_m$

and  $\text{CO}_2$  assimilation of oil palm particularly at elevated temperatures. Previous studies have shown that  $g_m$  (Harley *et al.* 1992b, Weise *et al.* 2015),  $V_{cmax}$ , and  $J$  (Weise *et al.* 2015) are very sensitive to changes in  $\Gamma^*$  thus its accuracy is critical.

Mesophyll conductance of oil palm is insensitive to temperature and responds to temperature differently compared to tobacco (Bernacchi *et al.* 2002) and *Arabidopsis* (Walker *et al.* 2013). These differences in the temperature response of  $g_m$  demonstrate variation in species-specific capacity to transfer  $\text{CO}_2$  from the intercellular airspace to the site of carboxylation at chloroplast stroma at elevated temperatures. Thus, the present findings suggest that it is best to use temperature response function of  $g_m$  derived from oil palm to estimate  $g_m$  or Rubisco kinetics of oil palm at elevated temperatures.

Temperature insensitivity of  $g_m$  has also been seen in *Arabidopsis* between 15 and 27°C (Bunce 2008) and between 15 and 35°C (Walker *et al.* 2013), *Quercus canariensis* between 20 and 35°C (Warren and Dreyer 2006), *Eperua grandiflora* between 28 and 38°C (Pons and Welschen 2003), and *Triticum aestivum*, *Quercus engelmannii*, *Lophostemon confertus*, and *Arabidopsis* all between 15 and 40°C (von Caemmerer and Evans 2015). Thus, it is no surprise that oil palm  $g_m$  is insensitive to temperature.

**$V_{\text{cmax}}$ ,  $J_{\text{max}}$ , TPU and their temperature responses:** The FvCB model of  $C_3$  photosynthesis has been used to scale  $\text{CO}_2$  assimilation in oil palm from leaf to canopy and ecosystem levels (Fan *et al.* 2015, Teh and Cheah 2018, Meijide *et al.* 2017). Modelling oil palm  $\text{CO}_2$  assimilation under natural environment requires that the temperature response of FvCB model parameters, such as  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU, are parameterized for oil palm since response of leaf  $\text{CO}_2$  assimilation to temperature is species-specific (Walker *et al.* 2013, von Caemmerer and Evans 2015). In this context, this study provides the first estimates of temperature response of  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU in oil palm. The temperature dependency of  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU observed in oil palm clearly showed that optimal temperatures for RuBP carboxylation, RuBP regeneration, and triose phosphate utilization were between 38 and 40°C, consistent with other studies on  $V_{\text{cmax}}$  and  $J_{\text{max}}$  (Díaz-Espejo *et al.* 2006, Warren 2008, Alonso *et al.* 2009, Greer and Weedon 2012) but the thermal optimum of oil palm TPU was higher than that of other species with thermal optimum varied between 33 and 35°C (Harley *et al.* 1985, 1992a; Wise *et al.* 2004, Yang *et al.* 2016).

In this study,  $V_{\text{cmax}}$  estimated from palms of different ages was much higher than the reported  $V_{\text{cmax}}$  for oil palms grown under field conditions. Teh and Cheah (2018) reported  $V_{\text{cmax}}$  declines with palm age, from a mean ( $\pm \text{SE}$ ) of  $91.1 \pm 3.7 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$  at 1-year-old to  $69.8 \pm 2.6 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$  at 19-year-old, while Meijide *et al.* (2017) estimated  $V_{\text{cmax}}$  for 1-year-old and 12-year-old palms to be  $51.97 \pm 9.43$  and  $42.00 \pm 2.42 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ , respectively. Nugroho (2018), on the other hand, estimated  $V_{\text{cmax}}$  for shaded and sunlit leaves from 13-year-old palms to be 28.1 and  $53.3 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ , respectively. The discrepancies observed are likely related to  $R_d$ ,  $\Gamma^*$ , and  $g_m$  and their temperature responses used to estimate  $V_{\text{cmax}}$ . In Teh and Cheah (2018), parameters, such as  $V_{\text{cmax}}$ ,  $J$ , TPU,  $R_d$ , and  $g_m$ , were estimated simultaneously using  $P_{\text{N}}-C_i$  curve fitting utility (Sharkey 2015). This approach tends to overestimate  $g_m$  and underestimate  $V_{\text{cmax}}$  because the  $P_{\text{N}}-C_i$  curve fitting utility allows  $V_{\text{cmax}}$  and  $g_m$  to complement each other as to obtain a very good fit to the observed data (Sharkey 2015). High  $g_m$  overestimates  $\text{CO}_2$  concentration at the site of carboxylation ( $C_c$ ) and leads to lower estimates of  $V_{\text{cmax}}$  (Manter and Kerrigan 2004, Sun *et al.* 2014) as in the case of Teh and Cheah (2018). In Meijide *et al.* (2017) and Nugroho (2018), an *R* (*R Core team* 2013) toolkit for leaf gas exchange called *Plantecophys* (Duursma 2015) was used to estimate  $V_{\text{cmax}}$  in oil palm. In both cases,  $C_i$  was used to estimate  $V_{\text{cmax}}$  instead of  $C_c$ . This approach assumed infinite  $g_m$  and as such underestimated  $V_{\text{cmax}}$ .

On the other hand,  $J_{\text{max}}$  estimated in this study is consistent with Nugroho (2018) but higher than that of Meijide *et al.* (2017). Nugroho (2018) estimated  $J_{\text{max}}$  for sunlit leaves of highly fertilised 13-year-old palms to be  $139 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ , while  $J_{\text{max}}$  reported by Meijide *et al.* (2017) were 81 and  $89 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$  for 1-year-old and 12-year-old palms, respectively. The present study provides the first estimates of TPU for oil palm and the estimated TPU were well within the range reported for woody plants (Wullschleger 1993), indicating that net  $\text{CO}_2$

assimilation in oil palm will be limited by the utilization of triose phosphates in the Calvin-Benson cycle, particularly under high  $\text{CO}_2$  partial pressure conditions.

No declining trend was found between photosynthetic capacity ( $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU) and palm age for field-grown palms. This is inconsistent with Teh and Cheah (2018) and Meijide *et al.* (2017). Many studies reported changes in  $V_{\text{cmax}}$  and  $J_{\text{max}}$  with stand age (McDowell *et al.* 2002, Law *et al.* 2003, Han *et al.* 2008, Kositsup *et al.* 2010) but many studies also reported  $V_{\text{cmax}}$  and  $J_{\text{max}}$  did not decline with the stand age (Hubbard *et al.* 1999, Barnard and Ryan 2003, Phillips *et al.* 2003, Delzon *et al.* 2005). Thus, the stand age alone could not explain the decline in  $V_{\text{cmax}}$  observed in Teh and Cheah (2018) and Meijide *et al.* (2017).

**Modelling net photosynthesis:** Leaf level  $\text{CO}_2$  response of net photosynthesis in oil palm was modelled at 25 and 35°C using the FvCB model and its parameters for oil palm (determined in this study) and for tobacco (determined in Bernacchi *et al.* 2001, 2002, 2003) in order to discern how species-specific model parameters impact net photosynthesis. At 25°C,  $\text{CO}_2$  assimilation rates were 5% higher when modelled using oil palm-specific parameters as compared with tobacco-specific parameters (Fig. 3S, *supplement*). At the higher temperature of 35°C, using oil palm-specific parameters produced higher assimilation rates by as much as 10% than that using tobacco-specific parameters (Fig. 3S). The differences in assimilation rates were most obvious at higher  $\text{CO}_2$  partial pressure, where regeneration of RuBP most limits  $\text{CO}_2$  assimilation. Similar species-specific responses of  $\text{CO}_2$  assimilation rates to increasing  $\text{CO}_2$  partial pressure at 25 and 35°C were reported by Walker *et al.* (2013) who compared  $\text{CO}_2$  assimilation rates between *Arabidopsis* and tobacco. However, the differences between *Arabidopsis* and tobacco were mostly at  $\text{CO}_2$  partial pressure close to the inflection point between Rubisco and RuBP-regeneration limited photosynthesis.

This simple simulation of  $\text{CO}_2$  assimilation demonstrates the importance of using oil palm-specific parameter values to model  $\text{CO}_2$  assimilation in oil palm at elevated temperature and atmospheric  $\text{CO}_2$  partial pressure. A 10% difference in  $\text{CO}_2$  assimilation rate at the leaf level is large enough to detrimentally affect the accuracy of estimating the photosynthetic carbon assimilation in oil palm at canopy and ecosystem levels.

**Conclusion:** Using leaf gas-exchange and chlorophyll fluorescence measurements, we were able to obtain estimates of  $R_d$ ,  $C_i^*$ ,  $\Gamma^*$ ,  $g_m$ ,  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU for oil palm. Their temperature responses were also determined. Temperature responses of oil palm  $\Gamma^*$  and  $g_m$  were found to be species-specific and therefore should be used to estimate  $V_{\text{cmax}}$ ,  $J_{\text{max}}$ , and TPU in oil palm.  $R_d$ ,  $C_i^*$ ,  $\Gamma^*$ ,  $V_{\text{cmax}}$ , and  $g_m$  were found to respond to temperature exponentially without thermal deactivation between 25 and 40°C, while  $J_{\text{max}}$  and TPU also responded to temperature exponentially but only up to 38°C, thereafter declined slightly at 40°C. Taken altogether, this study determined some key FvCB

model parameters and their temperature dependencies for oil palm. This is the way for more accurate modelling of photosynthetic carbon assimilation in oil palm particularly under future elevated temperatures and CO<sub>2</sub> concentrations.

## References

Alonso A., Pérez P., Martinez-Carrasco R.: Growth in elevated CO<sub>2</sub> enhances temperature response of photosynthesis in wheat. – *Physiol. Plantarum* **135**: 109-120, 2009.

Atkin O.K., Evans J.R., Ball M.C. *et al.*: Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance. – *Plant Physiol.* **122**: 915-923, 2000.

Ayub G., Smith R.A., Tissue D.T., Atkin O.K.: Impacts of drought on leaf respiration in darkness and light in *Eucalyptus saligna* exposed to industrial-age atmospheric CO<sub>2</sub> and growth temperature. – *New Phytol.* **190**: 1003-1018, 2011.

Barnard H.R., Ryan M.G.: A test of the hydraulic limitation hypothesis in fast-growing *Eucalyptus saligna*. – *Plant Cell Environ.* **26**: 1235-1245, 2003.

Bauerle W.L., Weston D.J., Bowden J.D. *et al.*: Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. – *Sci. Hortic.-Amsterdam* **101**: 169-178, 2004.

Bernacchi C.J., Pimentel C., Long S.P.: *In vivo* temperature response functions of parameters required to model RuBP-limited photosynthesis. – *Plant Cell Environ.* **26**: 1419-1430, 2003.

Bernacchi C.J., Portis A.R., Nakano H. *et al.*: Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitation to photosynthesis *in vivo*. – *Plant Physiol.* **130**: 1992-1998, 2002.

Bernacchi C.J., Singsaas E.L., Pimentel C. *et al.*: Improved temperature response functions for models of Rubisco-limited photosynthesis. – *Plant Cell Environ.* **24**: 253-259, 2001.

Betti M., Bauwe H., Busch F.A. *et al.*: Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. – *J. Exp. Bot.* **67**: 2977-2988, 2016.

Buckley T.N., Diaz-Espejo A.: Reporting estimates of maximum potential electron transport rate. – *New Phytol.* **205**: 14-17, 2015.

Bunce J.A.: Acclimation of photosynthesis to temperature in *Arabidopsis thaliana* and *Brassica oleracea*. – *Photosynthetica* **46**: 517-524, 2008.

Chong K.L., Kanniah K.D., Pohl C., Tan K.P.: A review of remote sensing applications for oil palm studies. – *Geo. Spat. Inf. Sci.* **20**: 184-200, 2017.

Combes J.C., Pallas B., Rouan L. *et al.*: Simulation of inflorescence dynamics in oil palm and estimation of environment-sensitive phenological phases: a model based analysis. – *Funct. Plant Biol.* **40**: 263-279, 2013.

Delzon S., Bosc A., Cantet L., Loustau D.: Variation of the photosynthetic capacity across a chronosequence of maritime pine correlates with needle phosphorus concentration. – *Ann. For. Sci.* **62**: 537-543, 2005.

Di Marco G., Manes F., Tricoli D., Vitale E.: Fluorescence parameters measured concurrently with net photosynthesis to investigate chloroplastic CO<sub>2</sub> concentration in leaves of *Quercus ilex* L. – *J. Plant Physiol.* **136**: 538-543, 1990.

Díaz-Espejo A., Walcroft A.S., Fernandez J.E. *et al.*: Modeling photosynthesis in olive leaves under drought conditions. – *Tree Physiol.* **26**: 1445-1456, 2006.

Dufrêne E., Ochs R., Saugier B.: [Oil palm photosynthesis and productivity linked to climatic factors.] – *Oleagineux* **45**: 345-355, 1990. [In French with English abstract]

Duursma R.A.: Plantcophys – An R package for analysing and modelling leaf gas exchange data. – *PLoS ONE* **10**: e0143346, 2015.

Ethier G.J., Livingston N.J.: On the need to incorporate sensitivity to CO<sub>2</sub> transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. – *Plant Cell Environ.* **27**: 137-153, 2004.

Fan Y., Roupsard O., Bernoux M. *et al.*: A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield. – *Geosci. Model Dev.* **8**: 3785-3800, 2015.

Farquhar G.D., von Caemmerer S., Berry J.A.: A biochemical model of photosynthetic CO<sub>2</sub> assimilation in leaves of C<sub>3</sub> species. – *Planta* **149**: 78-90, 1980.

Farquhar G.D., Wong S.C.: An empirical model of stomatal conductance. – *Aust. J. Plant Physiol.* **11**: 191-210, 1984.

Genty B., Briantais J., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – *BBA-Gen. Subjects* **990**: 87-92, 1989.

Gong X.Y., Tcherkez G., Wenig J. *et al.*: Determination of leaf respiration in the light: comparison between an isotopic disequilibrium method and the Laisk method. – *New Phytol.* **218**: 1371-1382, 2018.

Greer H.D., Weedon M.M.: Modelling photosynthetic responses to temperature of grapevine (*Vitis vinifera* cv. Semillon) leaves on vines grown in a hot climate. – *Plant Cell Environ.* **35**: 1050-1064, 2012.

Gu L.H., Sun Y.: Artefactual responses of mesophyll conductance to CO<sub>2</sub> and irradiance estimated with the variable *J* and online isotope discrimination methods. – *Plant Cell Environ.* **37**: 1231-1249, 2014.

Han Q., Kawasaki T., Nakano T., Chiba Y.: Leaf-age effects on seasonal variability in photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen concentration within a *Pinus densiflora* crown. – *Tree Physiol.* **28**: 551-558, 2008.

Hanson D.T., Stutz S.S., Boyer J.S.: Why small fluxes matter: the case and approaches for improving measurements of photosynthesis and (photo)respiration. – *J. Exp. Bot.* **67**: 3027-3039, 2016.

Harley P.C., Loreto F., Di Marco G., Sharkey T.D.: Theoretical considerations when estimating the mesophyll conductance to CO<sub>2</sub> flux by analysis of the response of photosynthesis to CO<sub>2</sub>. – *Plant Physiol.* **98**: 1429-1436, 1992b.

Harley P.C., Sharkey T.D.: An improved model of C<sub>3</sub> photosynthesis at high CO<sub>2</sub>: reversed O<sub>2</sub> sensitivity explained by lack of glycerate reentry into the chloroplast. – *Photosynth. Res.* **27**: 169-178, 1991.

Harley P.C., Thomas R.B., Reynolds J.F., Strain B.R.: Modelling photosynthesis of cotton grown in elevated CO<sub>2</sub>. – *Plant Cell Environ.* **15**: 271-282, 1992a.

Harley P.C., Weber J.A., Gates D.M.: Interactive effects of light, leaf temperature, CO<sub>2</sub> and O<sub>2</sub> on photosynthesis in soybean. – *Planta* **165**: 249-263, 1985.

Henson I.E.: Modelling dry matter production, partitioning and yield of oil palm. OPRODSIM: A mechanistic simulation model for teaching and research. Technical manual and users' guide. Pp. 92. Malaysian Palm Oil Board, Kuala Lumpur, 2009.

Hoffmann M.P., Castaneda Vera A., van Wijk M.T. *et al.*: Simulating potential growth and yield of oil palm (*Elaeis guineensis*) with PALMSIM: Model description, evaluation and application. – *Agr. Syst.* **131**: 1-10, 2014.

Hubbard R.M., Bond B.J., Ryan M.G.: Evidence that hydraulic conductance limits photosynthesis in old *Pinus ponderosa* trees. – *Tree Physiol.* **19**: 165-172, 1999.

Huth N.I., Banabas M., Nelson P.N., Webb M.: Development of an oil palm cropping systems model: lessons learned and future directions. – *Environ. Modell. Softw.* **62**: 411-419, 2014.

Kositup B., Kasemsap P., Thanisawanyangkura S. *et al.*: Effect of leaf age and position on light-saturated  $\text{CO}_2$  assimilation rate, photosynthetic capacity, and stomatal conductance in rubber trees. – *Photosynthetica* **48**: 67-78, 2010.

Laisk A.: [Kinetics of Photosynthesis and Photorespiration in  $\text{C}_3$  Plants.] Nauka, Moscow 1977. [In Russian]

Laisk A., Loreto F.: Determining photosynthetic parameters from leaf  $\text{CO}_2$  exchange and chlorophyll fluorescence (ribulose-1,5-bisphosphate carboxylase/oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. – *Plant Physiol.* **110**: 903-912, 1996.

Law B.E., Sun O.J., Campbell J. *et al.*: Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. – *Glob. Change Biol.* **9**: 510-524, 2003.

Loriaux S.D., Avenson T.J., Welles J.M. *et al.*: Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. – *Plant Cell Environ.* **36**: 1755-1770, 2013.

Manter D.K., Kerrigan J.:  $A/C_i$  curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. – *J. Exp. Bot.* **55**: 2581-2588, 2004.

McDowell N.G., Phillips N., Lynch C. *et al.*: An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. – *Tree Physiol.* **22**: 763-774, 2002.

Mejjide A., Röll A., Fan Y. *et al.*: Controls of water and energy fluxes in oil palm plantations: Environmental variables and oil palm age. – *Agr. Forest Meteorol.* **239**: 71-85, 2017.

Moualeu-Ngangue D.P., Chen T.W., Stützel H.: A new method to estimate photosynthetic parameters through net assimilation rate-intercellular space  $\text{CO}_2$  concentration ( $A-C_i$ ) curve and chlorophyll fluorescence measurements. – *New Phytol.* **213**: 1543-1554, 2017.

Nugroho B.: Leaf gas exchange measurement under land use changes in Jambi, Indonesia. Dissertation. Georg-August-Universität, Göttingen 2018.

Padfield R., Hansen S., Davies Z.G. *et al.*: Co-producing a research agenda for sustainable palm oil. – *Front. For. Glob. Change* **2**: 13, 2019.

Paterson R.R.M., Kumar L., Taylor S., Lima N.: Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. – *Sci. Rep.-UK* **5**: 14457, 2015.

Peisker M., Apel H.: Inhibition by light of  $\text{CO}_2$  evolution from dark respiration: comparison of two gas exchange methods. – *Photosynth. Res.* **70**: 291-298, 2001.

Phillips N., Bond B.J., McDowell N.G. *et al.*: Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees. – *Funct. Ecol.* **17**: 832-840, 2003.

Pons T.L., Flexas J., von Caemmerer S. *et al.*: Estimating mesophyll conductance to  $\text{CO}_2$ : methodology, potential errors, and recommendations. – *J. Exp. Bot.* **60**: 2217-2234, 2009.

Pons T.L., Welschen R.A.: Midday depression of net photosynthesis in the tropical rainforest tree *Eperua grandiflora*: contributions of stomatal and internal conductances, respiration and Rubisco functioning. – *Tree Physiol.* **23**: 937-947, 2003.

R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: <http://www.R-project.org/>, 2003.

Sharkey T.D.: Commentary: what gas exchange data can tell us about photosynthesis. – *Plant Cell Environ.* **39**: 1161-1163, 2015.

Sharkey T.D., Bernacchi C.J., Farquhar G.D., Singsaas E.L.: Fitting photosynthetic carbon dioxide response curves for  $\text{C}_3$  leaves. – *Plant Cell Environ.* **30**: 1035-1040, 2007.

Sun Y., Gu L., Dickinson R.E. *et al.*: Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. – *Plant Cell Environ.* **37**: 978-994, 2014.

Tcherkez G., Gauthier P., Buckley T.N. *et al.*: Leaf day respiration: low  $\text{CO}_2$  flux but high significance for metabolism and carbon balance. – *New Phytol.* **216**: 986-1001, 2017.

Teh C.B.S., Cheah S.S.: Modelling crop growth and yield in palm oil cultivation. – In: Rival A. (ed.): Achieving sustainable cultivation of oil palm. Vol. 1. Introduction, breeding and cultivation techniques. Pp.1-45. Burleigh Dodds Science Publishing, London 2018.

Tenhunen J.D., Weber J.A., Yocom C.S., Gates D.M.: Development of a photosynthesis model with an emphasis on ecological applications. II. Analysis of a data set describing the  $P_M$  surface. – *Oecologia* **26**: 101-119, 1976.

van Kraalingen D.W.G., Breure C.J., Spitters C.J.T.: Simulation of oil palm growth and yield. – *Agr. Forest Meteorol.* **46**: 227-244, 1989.

Villar R., Held A.A., Merino J.: Comparison of methods to estimate dark respiration in the light in leaves of two woody species. – *Plant Physiol.* **105**: 167-172, 1994.

von Caemmerer S.: Biochemical Models of Leaf Photosynthesis. Vol. 2. Pp. 42. CSIRO, Collingwood 2000.

von Caemmerer S., Evans J.R.: Determination of the average partial pressure of  $\text{CO}_2$  in chloroplasts from leaves of several  $\text{C}_3$  plants. – *Aust. J. Plant Physiol.* **18**: 287-305, 1991.

von Caemmerer S., Evans J.R.: Temperature responses of mesophyll conductance differ greatly between species. – *Plant Cell Environ.* **38**: 629-637, 2015.

von Caemmerer S., Evans J.R., Hudson G.S., Andrews T.J.: The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase *in vivo* inferred from measurements of photosynthesis in leaves of transgenic tobacco. – *Planta* **195**: 88-97, 1994.

Walker B.J., Ariza L.S., Kaines S. *et al.*: Temperature response of *in vivo* Rubisco kinetics and mesophyll conductance in *Arabidopsis thaliana*: comparisons to *Nicotiana tabacum*. – *Plant Cell Environ.* **36**: 2108-2119, 2013.

Walker B.J., Orr D.J., Carmo-Silva E. *et al.*: Uncertainty in measurements of the photorespiratory  $\text{CO}_2$  compensation point and its impact on models of leaf photosynthesis. – *Photosynth. Res.* **132**: 245-255, 2017.

Walker B.J., Ort D.R.: Improved method for measuring the apparent  $\text{CO}_2$  photocompensation point resolves the impact of multiple internal conductances to  $\text{CO}_2$  to net gas exchange. – *Plant Cell Environ.* **38**: 2462-2474, 2015.

Warren C.R.: Does growth temperature affect the temperature response of photosynthesis and internal conductance to  $\text{CO}_2$ ? A test with *Eucalyptus regnans*. – *Tree Physiol.* **28**: 11-19, 2008.

Warren C.R., Dreyer E.: Temperature response of photosynthesis and internal conductance to  $\text{CO}_2$ : results from two independent approaches. – *J. Exp. Bot.* **57**: 3057-3067, 2006.

Weise S.E., Carr D.J., Bourke A.M. *et al.*: The *arc* mutants of *Arabidopsis* with fewer large chloroplasts have a lower mesophyll conductance. – *Photosynth. Res.* **124**: 117-126, 2015.

Wise R.R., Olson A.J., Schrader S.M., Sharkey T.D.: Electron transport is the functional limitation of photosynthesis in field grown Pima cotton plants at high temperature. – *Plant Cell Environ.* **27**: 717-724, 2004.

Wullschleger S.D.: Biochemical limitations to carbon assimilation in C<sub>3</sub> plants – a retrospective analysis of the A/C<sub>i</sub> curves from 109 species. – *J. Exp. Bot.* **44**: 907-920, 1993.

Yang J.T., Preiser A.L., Li Z. *et al.*: Triose phosphate use limitation of photosynthesis: short-term and long-term effects. – *Planta* **243**: 687-698, 2016.

© The authors. This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence.