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PSII photochemistry responses to drought stress in autochthonous  
and modern sweet cherry cultivars
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Abstract
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Abbreviations: ABS/RC – absorption flux (of PSII antenna Chl) per RC; Chl – chlorophyll; DAS – days after stress (drought 
application); ET0/ABS (φE0) – quantum yield of electron transport from QA

– to PQ; DI0/RC – dissipation flux per RC; DM – dry mass;  
ET0/RC – electron transport flux per RC; ET0/TR0 (ψE0) – probability that a trapped exciton moves an electron into the electron 
transport chain beyond QA; F0 – minimum fluorescence, when all PSII RCs are open; FM – fresh mass; Fm – maximum fluorescence, 
when all PSII RCs are closed; Fv – maximal variable fluorescence; Fv/F0 – the ratio between the trapping flux and energy dissipation 
flux of PSII; Fv/Fm – maximum quantum yield of PSII photochemistry; M0 – approximated initial slope of the fluorescence transient;  
MDA – malondialdehyde content; OEC – oxygen-evolving complex; PIABS – performance index for energy conservation from photons 
absorbed by PSII until the reduction of intersystem electron acceptors; PItotal – performance index for energy conservation from 
photons absorbed by PSII until the reduction of PSI end acceptors; PQ – plastoquinone; PQH2 – plastoquinol; RC – reaction centre;  
RE0/ABS (φR0) – quantum yield of electron transport from QA

– to final PSI acceptors; RE0/ET0 (δR0) – efficiency with which an electron 
can move from the reduced intersystem electron acceptors to the PSI end electron acceptors; RE0/RC – electron flux reducing end 
electron acceptors at the PSI acceptor side per reaction centre; ROS – reactive oxygen species; Sm – normalized total complementary 
area above the OJIP transient (reflecting single-turnover QA reduction events); TR0/RC – trapping flux per PSII RC; VI – relative variable 
fluorescence at 30 ms (I-step); VJ – relative variable fluorescence at 2 ms (J-step); VOP – relative variable fluorescence between O- and 
P-steps; WC – water content; WOJ – relative variable fluorescence between O- and J-steps; WOK – relative variable fluorescence between 
O- and K-steps. 
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In this study, the JIP test was used to assess the drought tolerance of two sweet cherry cultivars (Prunus avium L.) 
(modern and autochthonous). Plants were exposed to progressive drought by withholding water and their fast (< 1 s) 
chlorophyll fluorescence kinetics was evaluated. JIP test analysis showed that drought stress caused a greater decrease 
in performance indices (PIABS and PItotal) in a modern cultivar, as compared to an autochthonous one. Our results suggest 
that limited reoxidation of primary quinone electron acceptor (QA), higher amount of secondary quinone electron 
acceptor (QB

−) nonreducing reaction centres, or inhibition of the electron transport between QA and QB, decreased more 
seriously the photosynthetic performance of the modern cultivar. Further, higher positive L- and K-bands observed for 
the modern cultivar also suggest lower energetic connectivity between PSII units and increased inhibition of oxygen-
evolving complex over autochthonous cultivar. Our results suggest that the autochthonous cultivar Crveni hrušt had 
better photosynthetic performance under drought conditions, compared to the modern cultivar New Star.

Highlights

● The photosynthetic performance was higher in the autochthonous
    sweet cherry cultivar than in the modern
● Drought caused higher damage to PSII oxygen-evolving complex
    in the modern cultivar
● Higher oxidative damage was found in the modern cultivar

Introduction

Fruit productions are highly dependent on water availa
bility. In many agricultural areas, recent climate change 

is a serious threat and drought is a major limitation for 
tree growth and productivity worldwide. Previous research 
demonstrated that drought stress inhibits vegetative 
growth (Tsuchida et al. 2011, Blanco et al. 2020) and 
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reduces fruit yield and quality (Pérez-Pérez et al. 2008). 
Under drought stress conditions, many morphological 
and physiological processes in plants, such as water 
content, membrane stability, and photosynthetic activity, 
are negatively affected (Abid et al. 2018). Plant stress 
responses are usually accompanied by changes in structure 
and function of the photosynthetic apparatus where PSII 
plays an important role in the response of photosynthesis 
to abiotic stress (Gururani et al. 2015). Drought stress 
limits the photosynthetic activity by closing the stomata, 
thereby decreasing CO2 fixation (Stirbet et al. 2018). 
According to Flexas and Medrano (2002), under moderate 
drought conditions, the decrease in photosynthesis is 
caused by stomatal limitation, while severe drought 
reduces photosynthetic rates by decreasing the ribulose-
1,5-bisphosphate (RuBP) synthesis, Rubisco activity 
thereby inhibits CO2 assimilation. Previous studies have 
shown that drought causes damage to the oxygen-evolving 
complex (OEC) (Gupta 2020), a decrease in electron 
transport rate, degradation of D1 protein (Batra et al.  
2014), leading to the inactivation of the PSII reaction 
centre and inhibition in PSII activity. According to Ma 
et al. (2015), progressive drought provokes an imbalance 
between the energy absorbed by the source and the energy 
consumed by the metabolic sinks, leading to the formation 
of reactive oxygen species (ROS), where xanthophyll 
cycle-dependent thermal dissipation and the Mehler 
reaction are the most important pathways for dissipation 
excess energy from apple leaves. The photosynthetic 
efficiency of the plants, under stress conditions, can 
be estimated by the analysis of the polyphasic fast Chl 
fluorescence transient. The different steps of the polyphasic 
fluorescence transient are labelled as O, J, I, and P, and the 
shape of the transient reflects plant sensitivity to changes 
in different environmental conditions (Kalaji et al. 
2016). Some authors reported the use of the so-called  
L- and K-bands, calculated from the OJIP transient, which 
can be used as indicators of stress (Yusuf et al. 2010, 
Redillas et al. 2011, Paunov et al. 2018). The JIP test 
analysis of the OJIP transient, developed by Strasser and 
Strasser (1995), is often used as a tool for detection and 
evaluation of plant tolerance to various abiotic stresses, 
e.g., salt stress (Zushi and Matsuzoe 2017), heat stress 
(Jedmowski and Brüggemann 2015), cold (Franić et al. 
2020), and drought stress (Dąbrowski et al. 2019). Earlier 
studies have demonstrated that drought stress has negative 
effects on the efficiency of PSII, as indicated by changes 
in Chl fluorescence parameters, thus this method is useful 
for screening genotypes for the selection of drought-
tolerant cultivars (Guha et al. 2013, Arslan et al. 2020). 
Since the drought will become more frequent and severe 
in the future, due to climate changes, many efforts have 
been made to alleviate its impact on food production and 
to increase crop stability (Cattivelli et al. 2008). One of the 
strategies to reduce the impact of drought on production 
is a selection of drought-tolerant cultivars. Sweet cherry 
is an important fruit growing worldwide, with many 
health benefits (Kelley et al. 2018). Over the past decades, 
much work has been done for the revitalization of old 

autochthonous fruit cultivars and the popularization of 
their products in the local area. These autochthonous 
varieties have been cultivated for a long time and they 
have been adapted to the local conditions very well. They 
contribute to the preservation of biological and genetic 
diversity as well as the stability of the agroecosystems 
(Radoš et al. 2017). Therefore, they are very important 
for breeding programs as a source of genetic diversity 
(Mondini et al. 2009), because of their good biological  
and economic characteristics, which should be used in 
breeding and creation of new varieties. Since they represent 
a very important genetic potential for future breeding 
programs, it is necessary to evaluate their commercial 
and agronomic traits. Although pomological and chemical 
characteristics (Radoš et al. 2017), as well as molecular 
identification of these autochthonous sweet cherry 
cultivars (Krmpot et al. 2020) were already performed, 
there is still a lack of studies on autochthonous varieties, 
particularly mechanisms of tolerance to abiotic stress. 
Knowledge about the adaptation to specific environmental 
conditions is essential for the selection of suitable varieties 
for future fruit production. Thus, the objective of the 
present study was to investigate the performance of PSII 
photochemistry in one-year-old trees of two contrasting 
sweet cherry cultivars (autochthonous and modern) under 
drought stress. We studied the parameters derived from the  
fast Chl a fluorescence kinetics, lipid peroxidation, as well 
as Chl and water content to evaluate drought stress response 
of sweet cherry trees and distinguish differences in drought 
tolerance of PSII function between the autochthonous and 
modern cultivars. Photosynthesis and photoprotective 
mechanisms are still not well understood for cherry trees 
(Prunus avium L.) during the drought period, and PSII 
photochemistry of the investigated autochthonous sweet 
cherry has not been previously studied. Thus, this work 
on sweet cherry leaves will provide information on the 
functional status of PSII in selected sweet cherry cultivars 
exposed to the drought.

Materials and methods

Plant material and experimental design: Two sweet 
cherry (Prunus avium L.) cultivars, one autochthonous 
(Crveni hrušt), and one commercial (New Star), were 
used for our experiment. Crveni hrušt is an autochthonous 
variety of unknown origin that is grown for a long time in 
Croatia (Požega Valley) and surrounding countries under 
the similar name (Crveni hrušt, Hrušt, Hrust). Despite 
the dominance of new, high-yielding cultivars, Crveni 
hrušt is still keeping its importance and is often grown in 
Croatia, but mostly in the backyards, as individual trees. 
New Star is a modern cultivar, one of the best mid-season 
cherry varieties, as well as one of the most represented in 
production in Croatia. One-year-old sweet cherry trees, 
grafted into rootstock Gysela 6, were grown in pots (25 L, 
one plant per pot). The potted substrate was composed of 
soil mixture: 65% white peat, 35% black peat, 150 L of clay 
per m3, 1,500 g of nitrogen, phosphorous, and potassium 
fertilizer per m³. The pots were placed in a greenhouse 
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located at the Agricultural Institute Osijek, Osijek, Croatia 
under semi-controlled conditions (mean air temperature 
on 3, 5, 7 d after stress (DAS): 25/16°C, 26/16°C, 25/15°C 
day/night; mean relative air humidity of 70/85%, 68/82%, 
70/80% day/night; natural irradiance). Ten potted plants of 
each cultivar were normally irrigated until the experiment 
onset. In the experiment, five potted plants served as a 
control treatment and they were continually irrigated 
with 2 L of water every day. Another five plants were 
set as drought treatment and we stopped watering them 
to impose drought conditions. The experiment ended 
when wilting symptoms appeared on nonirrigated plants 
(drought treatment). All measurements and samplings 
were performed at 3, 5, and 7 d after drought application 
(DAS).

Chl fluorescence measurements were conducted on 
two leaves per plant on five plants for each cultivar and 
treatment. Measurements were made in vivo, using a 
Handy PEA (Hansatech Instruments Ltd., Norfolk, UK), 
on the 5th and 6th fully expanded leaves, which were not 
overlapping each other, on sunny days (between 08:00 to 
10:00 h). After 30-min adaptation to darkness, leaves were 
illuminated with a 1-s pulse of saturating light intensity of 
3,000 μmol(photon) m–2 s–1. The fluorescence data were 
analyzed according to the JIP test, see reviews by Strasser 
et al. (2004), Stirbet and Govindjee (2011), Goltsev et al. 
(2016). Twenty JIP parameters were selected to monitor 
the changes that occurred in the photosynthetic apparatus. 
Definitions and calculations of the JIP test parameters 
used in the present study are given in the Appendix. OJIP 
transients in plants exposed to drought treatment and 
control unstressed plants were measured and analyzed. To 
compare the Chl fluorescence transients from two sweet 
cherry cultivars, we double normalized data between F0 
and Fm (O–P steps). These normalized OJIP transients 
represent the kinetics of the relative variable fluorescence 
[VOP = (Ft − F0)/(FP − F0)] and were plotted on a logarithmic 
time scale. For the analysis of drought-induced changes 
in the OJIP curve, two differential curves were calculated 
separately to compare changes occurring during O–P 
transients: the L- and K-bands. The curves for these bands 
were obtained by subtracting the normalized fluorescence 
values between O–K, and respectively, O–J, recorded 
in control plants from those recorded in plants under  
drought stress. Normalization between the O- and K-steps 
[WOK = (Ft − F0)/(FK − F0)] was used to calculate the L-band 
(~ 150 μs): △WOK = WOK(drought) – WOK(control). Normalization 
between the O- and J-steps [WOJ = (Ft − F0)/(FJ − F0)]  
was used to calculate the K-band (~ 300 μs): △WOJ = 
WOJ(drought) – WOJ(control) (Yusuf et al. 2010). 

Chl content: After the measurement of the Chl fluo
rescence of sweet cherry leaves at 3, 5, and 7 DAS, 
individual leaves were sampled and used for further 
analyses of the Chl content. Photosynthetic pigments were 
extracted from about 0.1 g of liquid-nitrogen-powdered 
leaves with absolute acetone in the presence of magnesium 
hydroxide carbonate. Spectrophotometrically (Specord 
200, Analytik, Jena, Germany) recorded absorbances at 

470, 647, and 663 nm were used for total chlorophyll  
[Chl (a+b)] calculation according to Lichtenthaler (1987).

Water content (WC): The fraction of the same leaves 
used for measuring Chl fluorescence were sampled from 
control and drought-treated plants of each cultivar and 
weighed to obtained fresh leaves mass (FM). The samples 
were then oven-dried at 75°C overnight and weighed again 
to determine the dry mass (DM). The water content was 
measured by using the following equation: WC [%] = 
[(FM − DM)/FM] ×100 (Kumar et al. 2017). Each sample 
was measured in biological triplicate.

MDA content: Lipid peroxidation was expressed as the 
MDA content and determined as 2-thiobarbituric acid 
(TBA)-reactive metabolites using the method of Verma 
and Dubey (2003). Leaves were harvested after measuring 
Chl a fluorescence and a bulk sample of the same leaves 
for each cultivar and treatment was used for the analysis. 
Fresh tissue leaf powder (0.20 g) was homogenized in 1 ml 
of 0.1% (w/v) trichloracetic acid (TCA). The homogenate 
was centrifuged at 12,000 rpm for 15 min at 4°C.  
The reaction mixture was prepared by mixing 0.5 mL 
of the supernatant and 1 mL of 0.5% thiobarbituric acid 
(TBA) in 20% TCA. The reaction mixture was heated at 
95°C for 30 min in a heating block and then cooled in an 
ice bath. The samples were then centrifuged at 14,000 × g 
for 15 min. The absorbance of the supernatant was read at 
532 and 600 nm (Specord 200, Analytik, Jena, Germany). 
An extinction coefficient of 155 mM–1cm–1 was used to 
calculate the amount of MDA.

Statistical analysis: Statistical differences between control 
and drought-treated plants and cultivars, at three time 
points (3, 5, and 7 DAS), were compared by analysis of 
variance with post-hoc Fisher's least significant difference 
test (LSD). Differences were considered statistically 
significant when p<0.05. Data are means ± SE of ten 
biological replicates for parameters, five for chlorophyll 
content and MDA, and three for water content.

Results

To understand the mechanisms and to trace changes in the 
photosynthetic electron transport chain, we used twenty 
parameters from the JIP test. Significant differences under 
drought conditions were found between investigated sweet 
cherry cultivars in most of the JIP test parameters, as well 
as between the days of measurement and cultivars.

Fast Chl fluorescence (OJIP) curves shape: There are 
clear differences in the shape of OJIP transient between 
cultivars in drought treatment but no differences between 
OJIP curves in control plants (Fig. 1A). The most 
pronounced changes were in the modern cultivar New 
Star, while in the autochthonous cultivar (Crveni hrušt) 
OJIP shape was only slightly changed. The J- and I-steps 
increased under increasing drought stress, and they were 
more pronounced in New Star cultivar compared to 
Crveni hrušt (Fig. 1B). The relative variable fluorescence 
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at 2 ms (VJ) and the variable fluorescence at 30 ms (VI) 
significantly increased under drought conditions in both 
cultivars from 5 DAS but significantly higher values were 
observed in plants of modern cultivar New Star than in 
plants of traditional cultivar Crveni hrušt. In this study, the 
kinetic difference ΔVOK and ΔVOJ made the L- and K-bands 
visible. Both investigated cultivars presented L-bands 
(obtained at ~ 0.15 ms) and K-band (obtained at ~ 0.3 ms) 
with positive amplitudes after submission to drought. 

Higher K-bands were obtained for the modern cultivar 
New Star and similarly, a higher positive amplitude of the 
L-bands was observed also for the modern cultivar New 
Star when compared to autochthonous cultivar Crveni 
hrušt, at all three times of measurement (Fig. 2).

Chl fluorescence parameters: Drought stress caused a 
significant increase in the initial fluorescence intensity (F0) 
in both investigated cultivars under drought conditions. 
The increase of F0 in modern cultivar New Star was 
observed earlier, from 5 DAS, and it was more pronounced 
than in autochthonous Crveni hrušt (Fig. 3A). Drought 
significantly reduced the values of parameter maximal 
fluorescence intensity (Fm), as well as the maximal 
variable fluorescence (Fv), only in modern cultivar New 
Star from the 5th day of drought treatment (Fig. 3B,C). 
The normalized total complementary area above the OJIP 
transient (Sm) in drought treatment significantly decreased  
compared with those of the controls in both cultivars at 
7 DAS but was significantly higher in autochthonous 
cultivar Crveni hrušt (Fig. 3F). A decrease in the values of 
the ratio between the trapping flux and energy dissipation 
flux of PSII (Fv/F0) was observed in modern cultivar 
New Star from 5 DAS, while in autochthonous cultivar 
Crveni hrušt the significant decrease was observed later at  
7 DAS. The decrease of this parameter was significantly 
higher in New Star compared to autochthonous Crveni 
hrušt (Fig. 3G). The initial slope of the fluorescence 
transient (M0) increased in the case of both cultivars 
from 5 DAS with significantly higher values in New Star  
(Fig. 3H). A significant decrease of the parameter evaluating 
maximum quantum yield of primary PSII photochemistry 
(Fv/Fm = TR0/ABS) between control and drought-stressed 
plants was observed in modern cultivar New Star from  
5 DAS, while the autochthonous cultivar Crveni hrušt 
showed a significant decrease at 7 DAS (Fig. 4A). The 
parameter expressing quantum yield for electron transport 
from QA

− to PQ (ET0/ABS; φE0) decreased under drought in 
both cultivars from 5 DAS but was significantly higher in  
modern cultivar New Star (Fig. 4B). The probability that 
a trapped exciton moves an electron into the electron 

Fig. 1. Chlorophyll a fluorescence curves (OJIP transients) of 
leaves of two sweet cherry cultivars after 3, 5, and 7 DAS. O, J, 
I, and P indicate the specific steps in chlorophyll a fluorescence 
transient in (A) control and (B) drought-treated sweet cherry 
plants.

Fig. 2. (A) L-band: changes in O–K phase relative variable fluorescence intensity [ΔWOK = VOK(drought) – VOK(control)], (B) K-band: changes 
in O–J phase relative variable fluorescence intensity [ΔWOJ = VOJ(drought) – VOJ(control)], in two sweet cherry cultivars on 3, 5, and 7 DAS. 
The difference kinetics were calculated from the comparisons of the drought-stressed and control plants.
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transport chain beyond QA
− (ET0/TR0; ψE0) decreased at  

3 DAS in cultivar New Star, while in cultivar Crveni hrušt 
at 5 DAS (Fig. 4C). We also observed that the parameter 
reflecting the efficiency with which an electron from  
PQH2 is transferred to final PSI acceptors (RE0/ET0; 
δR0) was constant in both cultivars with no significant  
differences between control and drought-treated plants 
(Fig. 4D). Furthermore, the parameter evaluating the 
quantum yield for reduction of end electron acceptors at 
the PSI acceptor side (RE0/ABS; φR0) of drought-treated 
plants significantly decreased at 7 DAS from control plants 
in both investigated cultivars, but without the significant 
difference between cultivars (Fig. 4E). The significant 
increase of parameters representing the absorption flux 
of PSII antenna per RC (ABS/RC) and the dissipation 
energy flux per RC (DI0/RC) was observed earlier in 
modern cultivar New Star at 5 DAS, while in Crveni 
hrušt it took place at 7 DAS. Also, the highest increase 
of these parameters was found in modern cultivar New 
Star compared to autochthonous Crveni hrušt (Fig. 5A,D). 
The trapping per RC (TR0/RC) increased in leaves of both 
cultivars at 5 DAS and prolonged at 7 DAS (Fig. 5B).  

The electron transport flux per RC (ET0/RC) of modern 
cultivar New Star decreased at 5 and 7 DAS, while values 
of that parameter in autochthonous cultivar Crveni hrušt 
did not significantly change (Fig. 5C). Electron flux 
reducing end electron acceptors at the PSI acceptor side 
per RC (RE0/RC) showed significant changes only in New 
Star after 7 d of exposure to drought relative to controls 
(Fig. 5E). Under drought treatment, the performance  
index on absorption basis (PIABS) decreased in both 
cultivars at 3 DAS, while the performance index for 
energy conservation from exciton to the reduction of PSI 
end acceptors (PItotal) significantly decreased after 3 DAS 
in Crveni hrušt while in New Star at 5 DAS. Values of 
these parameters decreased more for modern cultivar New 
Star than for autochthonous Crveni hrušt (Fig. 6).

Total Chl content: The mean values of total Chl content 
in drought-treated leaves were significantly lower than in 
control leaves only in modern cultivar New Star at 7 DAS. 
The concentration of total Chl content in autochthonous 
cultivar Crveni hrušt under drought conditions increased 
at 3 and 5 DAS, while at 7 DAS, Chl content remained 

Fig. 3. OJIP-derived parameters: (A) F0, (B) Fm, (C) Fv, (D) VJ, (E) VI, (F) Sm, (G) Fv/F0, and (H) M0 measured at 3, 5, and 7 DAS (day 
after stress) in control and drought-stressed sweet cherry cultivars (Crveni hrušt and New Star). The definition for these parameters is in 
the Appendix. Data in the figures indicate mean of ten replicates. Different letters indicate significant difference between cultivars and 
treatments at p<0.05.
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unchanged in drought-stressed leaves compared to control 
(Fig. 7A).

MDA content: Variations in the MDA content under 
drought stress were observed only in modern cultivar 

Fig. 4. OJIP-derived parameters: (A) Fv/Fm, (B) ET0/ABS, (C) ET0/TR0, (D) RE0/ET0, and (E) RE0/ABS, measured at 3, 5, and 7 DAS 
(day after stress) in control and drought-stressed sweet cherry cultivars (Crveni hrušt and New Star). The definition for these parameters 
is in the Appendix. Data in the figures indicate mean of ten replicates. Different letters indicate significant difference between cultivars 
and treatments at p<0.05.

Fig. 5. OJIP-derived parameters: (A) ABS/RC, (B) TR0/RC, (C) ET0/RC, (D) DI0/RC, and (E) RE0/RC, measured at 3, 5, and 7 DAS 
(day after stress) in control and drought-stressed sweet cherry cultivars (Crveni hrušt and New Star). The definition for these parameters 
is in the Appendix. Data in the figures indicate mean of ten replicates. Different letters indicate significant difference between cultivars 
and treatments at p<0.05.
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New Star visualized as an increase in drought treatment 
compared to control at 3 DAS. Moreover, the MDA content 

of modern cultivar New Star was significantly higher than 
that of autochthonous cultivar Crveni hrušt during the 
whole experiment even in control leaves (Fig. 7B).

Water content (WC): The water content in the leaves of 
the modern cultivar New Star decreased significantly from 
5 DAS. In the leaves of autochthonous cultivar Crveni 
hrušt, a significant increase in water content was recorded 
at 3 and 5 DAS. The significant decrease of water content 
in this cultivar was observed at 7 DAS (Fig. 7C).

Discussion

In our study, we used progressive drought stress in sweet 
cherry plants to induce changes in the light phase of 
photosynthesis. Obtained results showed that drought 
stress-induced changes, demonstrated by the JIP test, were 
different between two investigated sweet cherry cultivars. 
The effect of drought stress was reflected in the change  
of the OJIP curves of investigated cultivars and showed 
the differences between them. The J- (parameter VJ) and 
I-step (parameter VI) gradually increased along with the 
increasing duration of drought. Considerable changes in 
fluorescence occurred at J- and I-steps in modern cultivar 
New Star, whereas only minor changes in fluorescence at 
J- and I-steps occurred in autochthonous cultivar Crveni 
hrušt. The higher increase in the J-step of modern cultivar 
New Star indicates the stronger decrease of electron 
transport on the acceptor side of PSII (Strasser 1997) and 
a large accumulation of reduced QA

− in PSII RCs (Lopes  
et al. 2019). A higher increase at I-step of fluorescence 
transient curve observed in New Star at 7 DAS may be due 
to a higher accumulation of the amount of the QB

– 
nonreducing centres (Lazár 2006), which are unable to 
transfer electrons efficiently from electron acceptor QA to 
QB (Lavergne 1982). These results are similar to previous 
findings which revealed a rise of VJ, which occurred in 
drought-stressed barley plants (Ghotbi-Ravandi et al. 
2016). Under drought, Chl a fluorescence analyses have 
shown positive values for L- and K-bands in both cultivars 
of sweet cherry. According to previous research (Strasser 
et al. 2004, Jedmowski et al. 2014) appearance of the 
K-band indicates that drought stress caused partial 
inactivation of the oxygen-evolving complex (OEC), 
while the appearance of the L-band indicates lower PSII 
energetic connectivity of antennae of PSII RC units 
(Oukarroum et al. 2007, Stirbet 2013). Higher positive 
L-band observed in the leaves of modern cultivar New Star 
suggests less connectivity within the PSII units compared 
to autochthonous cultivar Crveni hrušt, while higher 
positive K-band of that cultivar suggests the reduced 
efficiency of OEC due to slower electron flow between 
OEC and acceptor side of the RC (Yusuf et al. 2010). This 
result indicates that autochthonous cultivar Crveni hrušt 
maintained better utilization of excitation energy and 
greater stability of the system when exposed to progressive 
drought. Similar positive L- and K-bands occurred in the 
leaves of Passiflora edulis L. (Gomes et al. 2012) and in 
the leaves of rubber trees (Falqueto et al. 2017) under 
drought conditions. Sm represents the normalized area of 
the Chl fluorescence induction curve, it is proportional to 

Fig. 6. OJIP-derived parameters: (A) PIABS and (B) PItotal measured 
at 3, 5, and 7 DAS (day after stress) in control and drought-
stressed sweet cherry cultivars (Crveni hrušt and New Star). The 
definition for these parameters is in the Appendix. Data in the 
figures indicate mean of ten replicates. Different letters indicate 
significant difference between cultivars and treatments at p<0.05.

Fig. 7. (A) Total chlorophyll content [Chl (a+b)], (B) malon
dialdehyde content (MDA), and (C) water content (WC) 
measured at 3, 5, and 7 DAS (day after stress) in control and 
drought-stressed sweet cherry cultivars (Crveni hrušt and New 
Star). Data in the figures indicate mean of five replicates for 
chlorophyll content and malondialdehyde and three replicates 
for water content. Different letters indicate significant difference 
between cultivars and treatments at p<0.05.
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the pool size of electron carriers. This parameter was 
significantly lower in drought-stressed leaves of both 
cultivars at 7 DAS, indicating the reduced transport from 
QA

– to QB, as it was observed in the drought-stressed  
apple leaves (Yuan et al. 2013). Since more light energy 
was used to reduce QA, this resulted in an increase of M0. 
The significant increase in the net rate of RC closure 
observed in New Star suggested that the reduction of QA to 
QA

− was higher under drought treatment in the leaves of 
New Star cultivar than in autochthonous Crveni hrušt. This 
finding is supported by previous results that the net rate of 
RC closure increased in drought-sensitive mung bean 
plants after exposure to drought (Bano et al. 2021). 
Significantly higher values of F0 due to drought stress in 
New Star could occur because of a partial reduction of the 
PQ pool in darkness. Increased value of F0 was reported in 
drought-stressed mulberry plants (Guha et al. 2013). 
According to Kalaji et al. (2011), low values of Fm  
indicate the accumulation of inactive RC at PSII, which 
was confirmed in our study, only in the leaves of modern 
cultivar New Star. In previous research, a large increase 
was observed in the parameters ABS/RC, DI0/RC, and 
TR0/RC and a large decrease in ET0/RC and PIABS in 
drought-sensitive plants of potato subjected to drought 
(Plich et al. 2020). Similarly, we also noticed the increase 
in parameters ABS/RC, DI0/RC, and TR0/RC by drought in 
both cultivars, but these were more obvious in modern 
cultivar New Star. The higher values of ABS/RC in New 
Star implied that a fraction of active reaction centres was 
more inactivated because of higher inhibition of electron 
transport from QA

− to QB, and transformation of RCs to 
‘silent’ RCs (Yusuf et al. 2010). This corroborated with 
reduced values of ET0/RC in New Star under drought as it 
was observed in drought-stressed plants of Abies koreana 
(Je et al. 2018). Since the inactive centres could not trap 
photons, the increase in the rate of energy dissipation of 
untrapped excitations causes an increase of DI0/RC 
(Sousaraei et al. 2021). According to previous research,  
an increase in ABS/RC and TR0/RC indicates that some 
RCs were inactivated due to inactivation of OEC as well as 
the transformation of active RCs to silent (Liang et al. 
2019); an increase in TR0/RC can indicate impairment of 
the oxygen-evolving complex (Braga et al. 2020). In our 
study, we also observed higher increases of TR0/RC and 
higher K amplitude in cultivar New Star compared to 
Crveni hrušt. Significantly higher values of DI0/RC and 
decreased values of ET0/RC in modern cultivar New Star 
showed that excess energy was dissipated, which is 
indicated as an adaptive strategy to reduce photodamage  
to photosynthetic apparatus (Akhter et al. 2021). Further
more, a similar but more efficient strategy can be seen  
in cultivar Crveni hrušt, which resulted in untouched  
ET0/RC in drought-stressed leaves referring that this can 
be the base of its tolerance, implying that it could protect 
its photosynthetic apparatus through efficient utilizing 
absorbed light energy rather than through thermal 
dissipation. The parameter Fv/Fm describing the efficiency 
of energy trapping in PSII reaction centres is the most 
commonly analyzed Chl fluorescence parameter. The more 
pronounced decline in Fv/Fm ratio was observed in modern 

cultivar New Star and similar reducing trends were also 
observed in the parameter Fv/F0. The parameter Fv/F0 is 
very sensitive due to water deficit (Pereira et al. 2000).  
A higher decrease of this parameter in the modern cultivar 
New Star indicates inactivity of the water-splitting 
complex at the PSII donor side in this cultivar as was 
observed in wheat under salinity stress (Maswada et al. 
2018). A decrease in Fv/Fm and Fv/F0 parameters has been 
reported earlier in cultivated barley compared to wild type 
under drought stress (Ghotbi-Ravandi et al. 2016). Drought 
stress inhibited the electron transport rates at the PSII 
acceptor side as evidenced by decreasing ET0/ABS and 
ET0/TR0. A higher decrease of these two parameters in 
modern cultivar New Star is in agreement with significantly 
higher values of VJ and VI of this cultivar. Liu et al. (2020) 
also reported that drought stress caused a decrease of these 
parameters in drought-sensitive maize plants. Values of 
parameter RE0/ET0 depend on the electrons transferred to 
PSI from PQH2 and the electron influx from the upper 
electron carrier (Yan et al. 2013). Unchanged values of 
parameter RE0/ET0 in both cultivars and a small decline of 
RE0/ABS at 7 DAS indicated that electron flow was still 
proceeding normally from PQH2 to the PSI end electron 
acceptors (Luo et al. 2016). Like in previous reports 
(Boguszewska-Mańkowska et al. 2018, Botyanszka et al. 
2020), our data also showed that PIABS and PItotal were 
found to be more sensitive to drought than Fv/Fm. Although 
the parameter fluorescence quantum yield (Fv/Fm) is the 
most widely used parameter for the efficiency of PSII, 
decreasing of this parameter was less pronounced 
compared to PIABS and PItotal in both cultivars. Particularly 
in autochthonous cultivar Crveni hrušt, where the decrease 
of this parameter was significantly lower only at 7 DAS. 
PIABS has been used by many researchers to evaluate  
plants' health status and identify cultivars' tolerance to 
various abiotic stresses including drought stress (Živčák  
et al. 2008, Boureima et al. 2012). In this study, drought 
caused a significant decrease of photosynthetic activity in 
both investigated cultivars where decreases in PItotal, as 
water deficit increased, were similar to those observed for 
PIABS. A stronger decline of these parameters during the 
drought period in modern cultivar New Star confirmed its 
higher drought sensitivity compared with autochthonous 
cultivar. In our previous research, we also observed that 
autochthonous apple cultivar had better photosynthetic 
efficiency compared to modern apple cultivar under 
drought conditions (Mihaljević et al. 2021).

In general, drought stress resulted in changes in Chl 
fluorescence parameters in both modern and autochthonous 
cultivars, but these alterations were more pronounced in 
modern cultivar New Star. A greater increase in the energy 
dissipation per active reaction centre (DI0/RC) revealed 
that RCs were inactivated under drought stress because the 
RCs dissipated most of the energy that was absorbed as 
heat and not used in the photochemistry of photosynthesis. 
Autochthonous cultivar Crveni hrušt is capable of better 
sustaining the photosynthetic electron transport machinery 
under drought conditions in comparison with the modern 
cultivar New Star, therefore it has less declining trends of 
PIABS and PItotal.
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Chl molecules are essential pigments for photosyn
thesis. A reduction in the Chl content is a common effect 
of different abiotic stress conditions including drought 
(Viljevac et al. 2013), therefore it is a reliable indicator of 
water stress, particularly in stress-sensitive varieties (Guo 
et al. 2016, Umar and Siddiqui 2018). The total amount 
of leaf Chl content [Chl (a+b)] directly influences the 
photosynthetic capacity of plants and high concentrations 
of Chl increase photosynthesis. According to our results, 
we can conclude that in the autochthonous cultivar Crveni 
hrušt which was the more stress-tolerant cultivar, Chl 
contents increased and it caused a better stress tolerance 
of this cultivars. A previous study also reported that Chl 
content in leaves of tolerant cultivar increased under 
drought conditions (Mensah et al. 2006) and that tolerant 
cultivars have a higher Chl content (Zaefyzadeh et al. 
2009). 

It is known that drought stress in plants disturbs the 
photosynthetic electron transport, leading to a decrease 
in photosynthesis and causing excessive production of 
ROS (Takahashi and Murata 2008). Oxidative injuries 
caused by drought stress resulted in lipid peroxidation 
and MDA content is used to examine the oxidative 
damage in the cell membranes (Bandurska and Jόźwiak 
2010). Increases in the MDA content of the modern 
cultivar New Star suggest that drought stress induced 
oxidative damage of the membrane system in this cultivar. 
Unchanged MDA content in the leaves of autochthonous 
cultivar during drought treatment did not lead to lipid 
peroxidation, indicating better protection from oxidative 
damage. According to Xu et al. (2008), MDA is one of 
the best physiological components of drought tolerance 
in plants and low MDA content was associated with 
drought tolerance in previous research (Bhardwaj and 
Yadav 2012). It was reported that an increase in lipid 
peroxidation of the plants, under stress, may cause Chl 
degradation (Karimpour 2019). In our study, a significant 
reduction in Chl content observed in modern cultivar New 
Star (cultivar with lower photosynthetic performance) was 
accompanied by increased lipid peroxidation. 

Under drought conditions, the modern cultivar New 
Star showed a significant reduction in WC at an earlier 
period of drought applied, indicating that the water 
status in this cultivar was more sensitive to drought 
stress compared to autochthonous. The increase in WC 
at 3 and 5 DAS in autochthonous cultivar Crveni hrušt 
indicates the better acclimation of this cultivar to water 
stress conditions, probably because of better ability to 
mention water loss from the leaves. We presumed that 
higher water content in this cultivar was due to activation 
of some defense mechanisms and accumulation of some 
compounds, such as proline, causing a decrease of osmotic 
potential and increase leaf turgor (Bandurska and Jόźwiak 
2010). Our results are consistent with other reports which 
presented that drought-tolerant plants have higher water 
content and photosynthetic efficiency (Kumar et al. 2014, 
Braga et al. 2020).

Conclusion: The water deficit had a significant effect on 
the photochemical activity of investigated sweet cherry 

cultivars, reducing photosynthetic apparatus performance. 
The inhibition of electron transport rate, accompanied 
by increasing of MDA and decreasing of photosynthetic 
pigments content, is an indicator of limited photochemistry 
of PSII in modern cultivar New Star. The autochthonous 
cultivar Crveni hrušt maintained higher WC, Chl content, 
photosynthetic efficiency, and lesser oxidative damage 
during drought stress. Therefore, the autochthonous 
cultivar showed an advantage over modern in terms of the 
efficiency of PSII under progressive drought conditions.
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Appendix. Definitions and calculations of the JIP test parameters used in the present study. 

Technical fluorescence parameters  

F0 Initial fluorescence intensity at 50 μs, when all PSII RCs are open
Fm Maximal fluorescence intensity, when all PSII RCs are closed
Fv = Fm – F0 Maximal variable fluorescence
VJ = (FJ – F0)/(Fm – F0) Relative variable fluorescence at the J-step (2 ms)
VI = (FI – F0)/(Fm – F0) Relative variable fluorescence at the I-step (30 ms)
Sm = Area/(Fm – F0) Normalized total complementary area above the OJIP transient (reflecting single-

turnover QA reduction events)
Fv/F0 = kP/kN = TR0/DI0 The ratio between the trapping flux and energy dissipation flux of PSII; where kP and 

kN are the photochemical and nonphotochemical de-excitation rate constants of PSII 
antenna in dark-adapted samples 

M0 = 4(F300μs – F0)/(Fm – F0) Initial slope of the fluorescence transient
Quantum efficiencies or flux ratios
TR0/ABS = Fv/Fm = [1 – (F0/Fm)] Maximum quantum yield of primary PSII photochemistry
ET0/ABS = φE0 = (1 – F0/Fm)(1 – VJ) Quantum yield for electron transport from QA

− to PQ
RE0/ET0 = δ0 = (1 – VI)(1 – VJ) The efficiency with which an electron from PQH2 is transferred to final PSI acceptors
ET0/TR0 = ψE0 = 1 – VJ Probability that trapped exciton moves an electron into the electron transport chain 

beyond QA
−
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RE0/ABS = φR0 = φP0 × ψE0 × δR0 Quantum yield for reduction of end electron acceptors at the PSI acceptor side
Specific fluxes (per active PSII)
ABS/RC = M0(1/VJ)(1/φP0) Absorption flux (of antenna Chls) per RC
TR0/RC = M0(1/VJ) Trapped energy flux per RC
ET0/RC = M0(1/VJ) × ψ0 Electron transport flux per RC
DI0/RC = ABS/RC – TR0/RC  Dissipated energy flux per RC
RE0/RC = M0(1/VJ) ×ψE0 × δR0 Electron flux reducing end electron acceptors at the PSI acceptor side, per RC
Performance indexes
PIABS = (RC/ABS)(TR0/DI0)[ET0/(TR0 – ET0)] Performance index on absorption basis
PItotal = PIABS[(RE0/ET0)/(1 – RE0/ET0)] Performance index for energy conservation from exciton to the reduction of PSI end 
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