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Abstract

The occurrence of shade and drought stress either individually or simultaneously causes altered morphophysiological
and molecular responses in crops. Nevertheless, responses of crop plants to combined shade and drought stress are
unique as compared to those of individually occurring stress which urges need to study and identify distinctions,
commonalities, and the interaction between responses of plants to these concurrent stress factors. In the present review,
we outlined currently available knowledge on responses of plants to shade and drought stress on a shared as well as
the unique basis and tried to find a common thread potentially underlying these responses. Then, we briefly described
some plausible mitigation strategies to cope with these stresses along with future perspectives. A deeper insight into
plant responses to co-occurring shade and drought stress will help us to generate crops with broad-spectrum stress
tolerance and increased resilience to such stresses in high planting densities or intercropping systems, thus, ensuring
food security.
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RESPONSES OF CROP PLANTS TO COMBINED SHADE AND DROUGHT STRESS

Introduction

In the present era of global warming and climate change,
plants on Earth are continuously being challenged by their
surrounding environment, forcing them to acclimate for
the sustenance of their survival. In addition, the continuous
deterioration of limited available arable land area by
humans is further threatening global food security. As there
is a rapid increase in the world population, the demand
for food is also increasing likewise, which necessitates the
need to grow more resilient plants to feed the increasing
population. Under such critical circumstances, one alter-
native is to grow crop plants at higher densities or in
intercropping systems, while keeping intact the individual
plant productivity (Courbier and Pierik 2019). However,
this option is not as straightforward as it seems to be,
as various challenges come with this option, the most
important being the shade stress characterized by low
red:far-red (R:FR) ratio and low light intensity, as a result
of which plants compete with each other for light (Hussain
et al. 2019a).

R and FR light are perceived by plants via a family
of phytochrome (PHY) photoreceptors that exist in
two interconvertible forms; Pfr — which is active FR
light-absorbing form and Pr — which is inactive R light-
absorbing form. Five different phytochromes (PHYA-E)
have been characterized so far in Arabidopsis thaliana.
PHY B is considered as the main modulator of low
R:FR-mediated shade avoidance responses (SARs) along
with PHY D and E. FR light inactivates phytochromes,
reduces phytochrome-mediated degradation of phyto-
chrome interacting factors, leads to rapid induction of
gene expression, and triggers biosynthesis and signal
transduction of numerous plant hormones, such as auxin,
gibberellin, brassinosteroid, and ethylene ultimately
promoting elongation growth which is a characteristic of
SARs (Keuskamp et al. 2010). SARs involve regulation
of metabolic and transcriptional networks which
facilitates elongated growth but at the cost of enhanced
apical dominance and that of leaf development, thus
enabling young growing tissues to get away from shade
(Franklin 2008). In general, shade inhibits leaf growth
as the proportion of biomass distributed to leaves in
comparison to stem decreases under shade stress (Wu et al.
2017). Reduced stomatal conductivity and density are
also typical of shade conditions that lead to poor transport
of CO; (Tan et al. 2021). Furthermore, the movement of
electrons from PSII to PSI is blocked and the number and
activity of enzymes participating in Calvin cycle changes
(Shafiq et al. 2021), ie., decreased level of reduced
thioredoxins in chloroplast stroma is associated with an
increased level of oxidized CP12 (chloroplast peptide: a
small nuclear-encoded chloroplast protein), which forms
PRK/DAPH/CP12 complex leading to reduced activity of
glyceraldehyde-3-phosphate dehydrogenase and phospho-
ribulokinase, thereby affecting carbon fixation rate in
Calvin—Benson cycle under shade conditions (Lopez-
Calcagno ef al. 2014).

With higher planting densities or cultivation of crops in
intercropping systems, the challenge of water deficit stress

or drought comes, which severely restricts crop growth
(Igbal et al. 2019). Drought stress is usually represented
by the reduction of plant leaf water potential (y.), closure
of stomata, reduced cell growth and enlargement, reduced
turgor pressure, and reduced relative water content (RWC)
(Soltys-Kalina et al. 2016). It is well documented that
drought alters numerous physiological and biochemical
processes, i.e., photosynthesis, chlorophyll biosynthesis,
metabolism of various nutrients, uptake of ions and
translocation of elements, respiration, and carbohydrates
metabolism (Ashraf and Harris 2013). Additionally,
it results in the production of reactive oxygen species
(ROS), further damaging the normal functioning of
the photosynthetic machinery, leading to serious yield
reductions (Green-Tracewicz ef al. 2011). At a molecular
level, it modulates the production of various genes,
transcription factors, heat-shock proteins, aquaporins, late
embryogenesis abundant (LEA) proteins, dehydrins, efc.
(Kaur and Asthir 2017).

When shade and drought stress co-occur simultaneously,
physiological, structural, and biochemical changes occur
in plants at the leaf as well as the whole plant level
(Holmgren 2000). Such stresses might result in different
plant responses, i.e., additive, synergistic or antagonistic
(Zhang et al. 2011), that may or may not hamper plant
growth and vary from species to species. Research work
on shade (Chen ez al. 2019, 2020; Ferroni et al. 2021) and
drought (Lawlor and Tezara 2009, Zivcak et al. 2014a,
Anjum et al. 2017), occurring as individual stress factors
in several crops, is well cited in the literature. However, not
much attention has been given to their combined effects
and whether the crop responses to both of these stresses
are shared or unique also remains ambiguous (Shafiq et al.
2020). An understanding of the responses of plants to
cooccurring stress factors is necessary to enhance plants'
adaptation under field conditions. The present review is
an effort to comprehend the current understanding of the
effect of shade and drought stress, individually on crop
plants. Furthermore, it sheds light on the shared and unique
responses of crop plants to shade and drought stress and
discusses some feasible alleviation strategies to survive
these stresses and to minimize the harm caused by these
stresses to the crop plants.

Plant responses to shade stress

The incidence of shade stress at any stage of plant growth
negatively affects the growth and development of the
plant. The intensity of injury owing to the stress, however,
depends on the magnitude of the stress and its duration as
well as the plant growth stage. The consequences of shade
stress on plant's morphophysiological, biochemical, as
well as molecular processes are elicited below.

Plant phenotypes
Shade negatively affects various morphological and
growth parameters in crops, such as winter wheat (Triticum

aestivum; Li et al. 2010), rice (Oryza sativa; Liu et al.
2014), soybean (Hussain et al. 2019a), and maize (Gao et al.
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2017). Shade results in a smaller leaf area by administering
the proliferation and enlargement of cells and reduces the
number and size of the cell, hence, decreasing the size of
the plant leaf (Wu ez al. 2017). It results in thinner leaves
with thinner palisade tissues (Valladares and Niinemets
2008), leading to a structure that is not conducive to the
dissolution and transport of CO, (Terashima et al. 2001).
Smaller and thinner leaves in response to shade stress is
a common characteristic observed in many plant species,
such as soybean (Wu et al. 2017), sunflower (Helianthus
annus; Granier and Tardieu 1999), Chenopodium album
(Yano and Terashima 2004), rice (Murchie et al. 2005),
Arabidopsis (Kozuka et al. 2005), Eurya japonica (Mishio
and Kawakubo 2015), Juglans regia (Atanasova et al.
2003), Carya illinoinensis (Lombardini et al. 2009), and
tomato (Solanum lycopersicum; Fan et al. 2013). Such
leaf structure results in lower harvesting of light (Yang
et al. 2014, Wu et al. 2017). The low R:FR ratio under
shade also affects leaf angle as shade on the adaxial side
promotes the elongation of the cells on that side through
adjustment of Pfr content, thus changing the leaf angle to
increase the light interception in leaf (Fujita ez al. 2008).

Leaf cuticle and epidermal appendages like trichomes
play an important protecting role against light interception
(Karabourniotis ef al. 2021). In comparison to sun leaves,
shade leaves have a thinner cuticle membrane (Wu ef al.
2020). Non-glandular trichomes form dense layers on plant
organ surfaces and have distinct optical characteristics
(Werker 2000). Liakoura et al. (1997) found that
trichome density and its UV-B protective potential are
affected by shading. Under low irradiance or low angles
of incidence, trichome layers may limit light harvesting
for photosynthesis. Trichomes may thus influence light
propagation into the mesophyll, thereby influencing the
characteristic of the internal light microenvironment and
the extent of light-saturated photosynthesis in the internal
cell layers (Gorton and Vogelmann 1996).

Low R:FR ratio causes stem elongation as it enhances
the expression of flavin monooxygenase which increases
the content of auxin that is then transported from leaves
to stem, thus leading to extension of internodes as well
an increase in plant height (Liu ef a/. 2019). Furthermore,
a low R:FR ratio also increases gibberellin content which
accelerates the cell division and cell elongation of the
stem, thus leading to increased plant height (Kamiya
and Garcia-Martinez 1999). It decreases the diameter of
the stem since more carbon is allocated to the stem and
petiole elongation thus impairing the development of roots
and leaves (Gommers et al. 2013). Shade also decreases
stem strength by reducing the biosynthesis of lignin which
is a major component of the cell walls, resulting in weak
and elongated stems having poor mechanical strength and
susceptibility to lodging leading to loss of yield (Hussain
et al. 2020a).

Shade also affects the root morphology; it reduces
the root length, surface area, and volume (Hussain et al.
2019b). Generally, under shade conditions, the growth of
roots is reduced more than the growth of the aerial parts as
the photosynthates are distributed preferentially to shoots
during leaf extension to increase the interception of light
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(Hébert et al. 2001, Gommers et al. 2013, Gundel et al.
2014). This ultimately leads to a decrease in the root/shoot
ratio (Zhou et al. 2020). Light not only influences root
morphology by regulating the synthesis and partitioning of
photosynthates but also acts as a signal to directly regulate
root growth (van Gelderen et al. 2018a). For example, far-
red light detection in the shoot of Arabidopsis regulates
lateral root growth via the HY5 transcription factor (van
Gelderen et al. 2018D).

Shade reduces the growth of plants along with its
metabolic activities which influence the agronomic and
yield parameters of the plants. During the rice filling stage,
it causes a decrease in yield and degrades the grain quality
(Chen et al. 2019). In another study, shade increased the
chalkiness by delaying the development of caryopsis and
disturbing the characteristics of starch in rice grains thus
reducing the market price and quality of rice grain (Deng
et al. 2018). In winter wheat, a shade between jointing
and maturity stage caused yield reduction (Li ef al. 2010).
Similarly, in cotton (Gossypium hirsutum), shade stress
between flowering and boll-opening stage resulted in
the decrease of cotton boll's number and mass, strength
of the fiber, and the micronaire that led to poor yield and
quality of cotton (Chen et al. 2017). However, the effect of
shade on yield parameters of crops may differ based on the
shade's duration and magnitude, crop growth stage, and
local ecological environment.

Photosynthetic performance

Shade is well reported to influence the performance
of plant photosynthesis and other leaf gas-exchange
parameters. Under shade stress, light-intercepting and
utilization ratio as well as the activity of PSII increases,
but the photosynthetic capacity is inhibited as transport of
energy from PSII to PSI is hindered (Zivcak et al. 2014b)
(Fig. 1). Shade stress in soybean, during the vegetative
growth phase, disrupted the normal photosynthetic rate
due to decreased energetic pressure generation at PSII,
thus minimizing electron transport rate, reducing the
amount of ATP produced as well as the Rubisco activity.
It affected the photochemical activity, assimilation of
CO, and decreased the quantum efficiency of PSII and
quantum yield (Hussain et al. 2019b). Poor photosynthetic
rates in crop plants grown under shade are also attributed
to (/) poor mesophyll and stomatal conductance of CO,,
(2) impaired chloroplast development, and (3) hindered
photosynthesis due to inhibited leaf growth caused by
controlled cell multiplication (Wu et al. 2017).

Shade results in lower leaf and canopy temperature
together with decreased transpiration rate and stomatal
conductance. It might also reduce stomatal opening
(Knapp and Smith 1990) as in guard cells the content
of abscisic acid increases and binds to soluble receptors
triggering the closing of stomata (McCourt and Creelman
2008). Activation of abscisic acid receptor enhances the
activity of respiratory burst oxidases due to increased
phosphorylation (Mustilli et al. 2002) which leads to a
brief outbreak of ROS in the stomatal guard cells (Pei
et al. 2000) that open calcium ion influx channels (Mittler
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Fig. 1. Effect of shade stress on net photosynthetic rate.

and Blumwald 2015), thus activating cell membrane's
ion efflux channels. Such alterations in the concentration
of ions cause water efflux, increasing the flaccidity of
guard cells which causes stomata to close (Chen et al.
2010). Shade also affects the Chl antenna size. Under
low light conditions, when Chl a/b ratio decreases and
the light-harvesting center to PS-core ratio increases, the
Chl antenna size increases, and this serves as a dynamic
compensation response to shade conditions (Leong and
Anderson 1984, Melis 1991).

Reactive oxygen species and antioxidant activity

When plants experience shade, they undergo oxidative
stress and enhanced ROS production. The stress leads
to increased levels of photorespiration and enhances the
activity of the mitochondrial electron transport chain
(mETC) (Blokhina et al. 2003, Lawlor and Tezara 2009).
Earlier research reports the enhanced ROS production in
plants under shade stress (Apel and Hirt 2004, Volkov
et al. 2006, Zhu et al. 2017). Shade results in increased
auxin contents and auxin-regulated ROS production has
also been reported; it plays a role in root gravitropism
(Joo et al. 2001). To mitigate the oxidative damage and
maintain cellular homeostasis, plants produce an elaborate
arsenal of enzymatic (superoxide dismutase, ascorbate
peroxidase, peroxidase, catalase, glutathione reductase,
glutathione S-transferase, guaiacol peroxidase, etc.) and
nonenzymatic (reduced and oxidized glutathione, ascorbic
acid, o-tocopherol, and carotenoids) antioxidants under
unfavourable conditions such as shade and drought stress

(Shafiq et al. 2021). These antioxidants not only interrupt
the cascades of uncontrolled oxidation by ROS but also
help in the maintenance of an appropriate balance between
their production and removal that allows an optimum
functioning of photosynthesis (Foyer 2018). Various
enzymatic and nonenzymatic antioxidants have been
known for inducing shade tolerance as reported in pine
needles (Anderson ez al. 1992), ginger (Ghasemzadeh et al.
2010), spruce (Polle and Rennenberg 1992, Doulis ef al.
1993), olive (Mohammad et al. 2019), Taxus x media
cv. Tauntonii (Verhoeven et al. 2005), etc. The high
contents of antioxidants in response to stresses show that
they contribute towards stress tolerance in plants.

Plant-related gene and protein expression

Shade modulates plant responses at the molecular level as
well. Under shade stress, phytochromes perceive altered
R:FR light while cryptochromes sense changes in light
to control the adaptive developmental approaches (Casal
2012). This is followed by signal transduction which is then
cascaded through phytochrome interacting factors (PIFs),
circadian clock protein TOC1, circadian clock basic helix-
loop-helix protein PIL1, and various transcription factors
belonging to DELLA families to activate the alterations
of gene expression (light signal genes, hormone-related
genes, and stress-induced genes), and prompt series of
shade-avoidance syndrome responses (Salter et al. 2003,
Wang et al. 2011, Gendron et al. 2012, Gallemi et al. 2016).
The end-of-day far-red treatment induces many auxin or
brassinosteroid responsive genes and both auxin [big and
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shade avoidance 3 (sav3)/tryptophan aminotransferase of
Arabidopsis 1 (taal)] and brassinosteroid [rotundifolia3
(rot3)] mutant showed decreased shade-induced expres-
sion of genes as well as the petiole elongation (Kozuka
et al. 2010). Li et al. (2017) reported that shaded
conditions downregulated the expression of gibberellin
biosynthesis genes in a shade-tolerant mutant of perennial
ryegrass compared to wild type which demonstrated the
function of gibberellin in dwarfism and tolerance to shade.
The microarray analysis disclosed that shade regulated
the expression of genes that were involved in cell wall
carbohydrate metabolism, responses of auxin, and the
flavonoids in the stem of tomato (Cagnola e al. 2012).
Similarly, RNA-Seq based transcriptome analysis of the
conifers grown under shade stress showed gene regulations
on the signalling of hormones and biosynthesis of pigments
(Ranade ef al. 2019). Shade stress in peanut (Arachis
hypogaea) downregulated the expression of various
genes for photosynthesis pathways, and the key genes in
the metabolism of sucrose and starch, and the hormonal
signal pathways (Chen ef al. 2020). Heavy shade in
soybean lead to expressional downregulation of key genes
participating in the lignin biosynthesis which reduced the
lodging resistance (Wen et al. 2020). To conclude, shade
profoundly alters a plant's genetic expression.

Plant responses to drought stress

Similar to shade stress, the incidence of drought stress
at any stage of plant growth also negatively affects the
growth and development of plants. The consequences of
drought stress on morphophysiological, biochemical, as
well as molecular processes in plants are elicited below.

Morphological parameters

The key crop phenotypic indicators of drought stress
include plant height and leaf area. Drought results in
shorter plants and restricted leaf growth (Paredes e al.
2014). It hampers the flow of water from the xylem to
other elongating cells as well as causes reduced turgor
pressure that results in a reduction of cell division, cell
elongation, and cell expansion leading to a smaller leaf
area in crop plants (Pereyra-Irujo et al. 2008, Skirycz
et al. 2010). Reduced leaf expansion is helpful for plants
under such stress, as it reduces the area of leaf exposed,
which results in reduced rates of transpiration, thus
preventing water loss. Drought increases the endogenous
abscisic acid content which accelerates the leaf senescence
process as observed in rice (Ray ef al. 1983). Similarly,
increased concentrations of ethylene under water stress
were correlated with increased senescence and abscission
of leaves in Vicia faba (El-Beltagy and Hall 1974). This
mechanism of accelerated senescence and abscission in
old leaves of mature plants under water deficit stress is
called leaf area adjustment (Mahajan and Tuteja 2005).
Water deficit stress also alters root morphology and
architecture and causes a reduction in root to shoot ratio
(Shietal. 2015, Anjum ef al. 2016a). It has multiple effects
on root growth, for example, Catharanthus roseus and
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sunflower enhanced their root length when exposed to water
deficit stress (Tahir et al. 2002, Jaleel et al. 2008) while
no effect was observed in maize and wheat. The increase
in root length under water deficit might be attributed to
increased root abscisic acid content (Manivannan et al.
2007). However, drought effects on root architecture vary
between drought-tolerant and sensitive plants (Manschadi
et al. 2006). In general, extensive and prolific root system
enhances the ability of plant in sustaining growth and
yield in a drought environment (Chandra Babu et al
2001). Nevertheless, at regular but lower amounts of
precipitation, the moisture is not sufficient enough to
make deeper fractions of soil wet, hence a subsurface root
architecture is more desirable under such conditions.

Drought in legumes limits flower and pod production,
enhances flower and pod abortion rate, reduces seed size,
thus, causing a dramatic loss of seed yield (Fang et al.
2010). Water deficit in soybean greatly reduces branch
number and the total yield of seed (Frederick ef al. 2001).
A 33% drought-induced reduction in global chickpea
(Cicer arietinum) production is expected (Kashiwagi et al.
2015). In comparison to legume or root crops (such as
Dioscorea alata, Beta vulgaris, etc.), cereals had lower
drought-induced yield reduction (Daryanto et al. 2017).
Drought caused a yield reduction in other crops, such as
cotton, peanut, sunflower, wheat, and maize (Tahir et al.
2002, Kamara et al. 2003, Pettigrew 2004, Vasantha ef al.
2005, Barnabas et al. 2008, Furlan et al. 2012).

C; and C, plant photosynthesis

Lack of water availability affects various metabolic
processes including photosynthesis. It causes a significant
reduction in C; and C, photosynthesis (Fig. 2). The core
processes of C; and C, photosynthesis are the same,
including light-harvesting complexes, electron transport
components, and the C; cycle. As a result, C; and C,4
plants are expected to respond similarly to drought stress;
nevertheless, the two photosynthetic types are significantly
different, which may result in differing responses. Cs
plant leaves have a CO,-concentrating mechanism that
provides them with greater water-use efficiency (WUE)
contrary to C; plants. However, it is still debatable if C4
plants having higher WUE can withstand more drought
stress in comparison to C3 plants. Similarly, though the
CO,-concentrating mechanism provides better-buffering
capacity to Cs; photosynthesis against CO, shortages
due to limited closing of stomata during drought, yet Cs4
photosynthesis biochemistry is considered to be at least
as sensitive or even more sensitive as compared to C;
photosynthesis (Ghannoum 2009). Generally, drought
reduces the leaf area and causes the closing of stomata
that lowers the leaf intercellular CO, concentration, thus
imposing limitations on CO, assimilation. Drought stress
also lowers mesophyll conductance (Genty et al. 1989,
Flexas et al. 2004). The mesophyll conductance refers
to the flow of CO, from the intercellular air spaces to the
carboxylation site in the chloroplasts of mesophyll cells,
and it takes into account the intricate routes of the cell
wall, plasma membrane, chloroplast envelope, and stromal
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Fig. 2. Effect of drought stress on photosynthesis. ABA — abscisic acid; ATP — adenosine 5'-triphosphate; FBPase — fructose-
1,6-bisphosphatase; ME — malic enzyme; NAD — nicotinamide adenine dinucleotide phosphate; PEPcase — phosphoenol/pyruvate
carboxylase; PPDK — pyruvate phosphate dikinase; ROS — reactive oxygen species.

thylakoids (Ethier et al. 2006). Recent research suggests
that mesophyll conductance plays an important function
in photosynthetic regulation (Fleck et al. 2010, Ferroni
et al. 2021). Reduced mesophyll conductance values
during water stress may lead to a delayed restoration
of net photosynthetic rate, making it a critical limiting
factor in net photosynthetic rate recovery (Olsovska
et al. 2016). It is assumed that mesophyll conductance
accounts for up to 40% of the CO, diffusional constraints
on entire photosynthesis (Warren 2008). Stomatal closure
in response to drought stress results in a disproportion of
photochemical activity at PSII and electron requirement
for the process of photosynthesis (Runion et al. 1997,
Zivcak et al. 2014a), hence increasing the vulnerability
to photodamage (He ef al. 1995, Guo et al. 2018). It
damages and reduces the synthesis of photosynthetic
pigments (Oneto et al. 2016) and declines the Rubisco
activity (Lawlor and Tezara 2009), thus, limiting the
plant photosynthesis. Another reason for the reduced
net photosynthetic rate in response to water deficit is
the generation of ROS. Water deficit limits intercellular
CO, concentration. This accumulates the components
of reduced photosynthetic electron transport which can
potentially reduce the molecular oxygen. This generates
ROS which damage the photosynthetic apparatus (Hussain
et al. 2019¢). To conclude, drought has detrimental effects
on the light-harvesting mechanism and photosynthetic
apparatus in plants.

Plant water and nutrient relations

Water deficit significantly lowers the RWC, turgor
pressure, W, and £ which is well documented in various
crop species (Siddique et al. 2000, Liu et al. 2004, Reddy
et al. 2004, Nayyar and Gupta 2006, Yang and Miao 2010,

de Campos et al. 2011). It also hinders mineral nutrient
uptake and translocation from roots to shoots (Suriyagoda
et al. 2014). It reduces the growth of root per unit of root
length and root biomass, as well as the rate of inflow of the
nutrients (Kuchenbuch ef al. 1986). Water scarcity affects
the cation active transport and membrane permeability
which reduces the cation absorption through roots (Hu and
Schmidhalter 2005). Drought also affects the metabolism
of the nutrients, for instance, it hinders the functioning
of enzymes that take part in the assimilation of nutrients
(Ashraf and Iram 2005). It might also cause micronutrient
deficiency for manganese, iron, and molybdenum (Hu and
Schmidhalter 2005), however, as soon as the soil is well
watered, these micronutrients are converted into more
soluble and reduced forms to be used by plants (Havlin
et al. 2016). In conclusion, the occurrence of drought
stress in plants decreases nutrient availability, uptake,
translocation, and their metabolism.

Reactive oxygen species, antioxidants, organic solutes,
and phytohormones

Drought results in excessive ROS generation which serves
as an adaptive mechanism in stressed plants (Hossain ez al.
2021). Excessive ROS generation causes oxidative injury
in plant cells (Sgherri e al. 1993, Boo and Jung 1999). It
enhances the ROS generation through various ways, e.g.,
limited CO, fixation reduces the NADP* production via
the Calvin cycle which lessens the photosynthetic electron
transport chain (Cruz de Carvalho 2008). It enhances
the photorespiratory pathway, particularly when RuBP
oxygenation is at maximum because of the restrictions
on CO, fixation. Furthermore, under conditions of water
deficit, photorespiration contributes to more than 70%
of total H,O, production (Noctor et al. 2002). Various
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enzymatic and nonenzymatic antioxidants have been
known for inducing drought tolerance as reported in rice
(Sharma and Dubey 2005), transgenic rice, and tobacco
(Nicotiana tabacum) (Badawi et al. 2004, Prashanth et
al. 2008), in wheat (Keles and Oncel 2002), transgenic
wheat, soybean, and petunia (Petunia hybrida; Yamada
et al. 2005, Simon-Sarkadi et al. 2006, Vendruscolo et
al. 2007), transgenic tobacco (Yan et al. 2003), cotton
(Ratnayaka et al. 2003), beans (Tiirkan et al. 2005),
etc. Plants also produce enzymatic and nonenzymatic
antioxidants to inhibit ROS accumulation. Drought-
tolerant wheat genotypes can reduce O, oxidative damage
by maintaining higher contents of carotenoids during
drought stress, according to a previous study by Balouchi
(2011). Under drought stress, Ma et al. (2014) found that
the amount of flavonoids in wheat leaves is increased due
to the higher expression of flavonoid biosynthesis genes.
Apart from ROS and antioxidants, plants produce a variety
of compatible organic solutes in response to drought
stress (Boscaiu and Fita 2020). Plant cells use osmotic
adjustment to preserve water status in their tissues during
drought stress. The biosynthesis of osmotically dynamic
substances, such as proline (Farooq ef al. 2017), glycine
betaine (Gupta et al. 2014), sugar alcohols, soluble sugars,
organic acids (Farshadfar e al. 2008), chloride ions,
calcium, and potassium, is involved in osmotic adjustment
(Farshadfar et al. 2008). Moreover, plants produce
phytohormones such as abscisic acid to control stomatal
opening through guard cells and protect plants from
excessive water loss thus facilitating plant acclimatization
to drought stress (Schachtman and Goodger 2008).

Responses at the molecular level

Molecular alterations in response to environmental
stresses negatively affect the growth and development of
crops. Several genes are upregulated or downregulated
by water deficit conditions. Water deficit alters the level
of expression of LEA (dehydrin-type genes) as Sivamani
et al. (2000) found; tolerance to drought was enhanced
in rice roots and wheat leaves by overexpression of
barley group 3 LEA gene HVAI. Furthermore, synthesis
of the molecular chaperone (Close 1997, Bhargava and
Sawant 2013), dehydration-responsive element (having
A/GCCGAC as a core sequence) (Seki et al. 2001),
homeodomain leucine zipper protein's expression (that
interacts with CaCBFIB) (Mahajan and Tuteja 2005), and
expression of H1-S (histone Hlvariant which is known
to function in regulating stress modulated genes and aid
closing stomata) (Scippa et al. 2004, Bhargava and Sawant
2013) are all reported to be regulated under drought
conditions. Abscisic acid production in roots is also
regulated under drought stress. It is transported to shoots
which causes the closure of stomata, thus restricting the
growth of plants (Mittler and Blumwald 2015). Likewise,
water scarcity and abscisic acid have been shown to rapidly
elevate calcium levels in plant cells, activating a signalling
pathway that activates a number of genes that help
maintain cellular homeostasis (Sanders et al. 1999, 2002).
Enhanced tolerance to drought stress was observed in rice
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by upregulation of Oryza sativa WRKY1I under control
of the heat-shock protein 101 (HSP101) promoter (Wu
et al. 2009). Drought stress upregulated miR398, whereas
it reduced the level of expression of Cu/Zn SOD isoforms
in peanut (Park and Grabau 2017). Similarly, drought
stress regulated the gene expression of transcription factors
associated to bZIP, MYB, bHLH, NF-Y, EAR, NAC, and
ZPT2, AP2/ERF, HD-ZIP families (Yang et al. 2010).

Plant responses to co-occurring shade and drought
stress

The morphological and physiological responses to shade
and drought, including structural and biochemical varia-
tion, have been well documented at the single-leaf and
whole-plant levels but what impact does the co-occurring
shade and drought stress have on the plant growth, it still
remains unclear. To date, there has been no consistent
conclusion on this issue, but several contrasting hypotheses
have been proposed. First, the trade-off hypothesis,
which predicts that shade increases the effect of drought
on plants. This is so as plants allocate more resources to
leaves and shoots in comparison to roots under shade stress
which eventually increases the light-capture capacity but
reduces water absorption in plants (Smith and Huston
1990). Additional mechanisms for a trade-off have also
been indicated in specific cases (Marshall 1986, Vance
and Zaerr 1991, Kubiske er al. 1996). By contrast, the
influential facilitation hypothesis predicts that shade might
reduce air and leaf temperature, leaf vapor-pressure deficit,
and oxidative stress. Thus, shading can help to alleviate
the negative effects of drought on plants (Holmgren 2000)
but the degree to which deep shade can be facilitative is
unclear. The third hypothesis is the interplay hypothesis
which suggests that drought has a relatively stronger
impact under high irradiance and deep shade, with
moderate shade alleviating the negative effects of drought
(because of facilitation) (Holmgren et al. 1997). Finally,
an independent-effects model predicts that the effects of
shade and drought are independent, i.e., orthogonal, as
drought reduces relative growth rate (RGR) by a given
proportion at any irradiance (Sack and Grubb 2002, Sack
2004). Some limited literature available (mostly on woody
seedlings) regarding the effect of co-occurring shade and
drought stress on plant growth is elicited below.

How plant morphophysiology responds to cooccurring
shade and drought stress

Carneiro et al. (2015) found that when shade (70%)
grown Jatropha curcas plants were subjected to long-term
water deficit conditions (irrigation withheld until signs of
stress, i.e., leaf tipping and wilting became evident), the
biomass allocated to roots was lowered by > 40% though
the root length did not change. However, the leaf size of
plants grown in co-occurring shade and drought stress
was considerably greater than those grown under full
sun and drought environment. The reduction in biomass
allocation to roots showed that exposure of Jatropha
plants to co-occurring shade and drought stress could
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hamper plant development whereas larger leaf area under
shade was probably due to reduced demand of evaporation
in the shaded environment that led to the maintenance
of leaf size in drought conditions. Amissah et al. (2015)
reported that seedlings of ten different Ghanaian trees
species under drought stress (withholding water for nine
weeks), survived better in shade (20% irradiance) than
those in full light as better microclimatic conditions in the
shaded environment under drought conditions (i.e., shade
lowered the temperature of air and leaves, thus hampering
overheating, and reduced the transpirational demands of
plants; also shaded plants exposed to drought have higher
relative water content in comparison to those plants
grown under full light) enhanced the plant performance
under drought conditions thus supporting facilitation
hypothesis. The facilitation hypothesis was also supported
by examples of red oak and yellow poplar seedlings grown
in a combination of shade and drought stress (Kolb et al.
1990). When discussing the yield components, shade
and drought stress occurring individually generally have
negative effects on plant yield, however, when both the
stresses occur simultaneously, the effect on yield is often
not the same. Shade stress, in some cases, may serve useful
to alleviate negative consequences of water deficit stress
on the yield of crops as reported earlier in soybean (Zhang
et al. 2011, Shafiq et al. 2020).

Plant photosynthetic response to co-occurring stresses
might also vary in comparison to individual stress.
Transpiration rate (E), stomatal conductance (g,), and net
photosynthetic rate (Py) in plants did not decrease when
exposed to drought stress (55 = 2% field capacity) and low
irradiance (PPFD = 500-600 umol m~ s™! at noon) whereas
adecrease was observed in plants that were kept in medium
or high irradiance which depicts a positive role of shade
under drought conditions (Shafiq e al. 2020) and supports
the facilitation hypothesis (Holmgren 2000). The results
of this research propose that the degree of influence of
drought stress on a plant's photosynthetic capacity depends
on the irradiance in the environment. In the co-occurrence
of shade and drought stress, the production of reductants,
such as glutathione reductase, thioredoxin reductase as
well as ascorbate, decreased due to shade. This decreased
reduction capacity is associated with increased ROS-driven
oxidative damages induced by drought (Ali er al. 2005,
Baier ef al. 2005, Ahmed et al. 2009). The damages caused
by ROS lead to numerous physiological and biochemical
dysfunction in plants. Contrastingly, Asghar et al. (2020)
reported lesser ROS production (under drought stress) in
soybean plants exposed to shade in comparison to those
grown under normal light; the possible explanation could
be that shade pretreatment enhanced the exogenous auxin
that played role in ROS detoxification. Furthermore,
they reported that drought stress in soybean seedlings
leads to increased proline content, soluble and reducing
sugars, however, the increase was greater in plants under a
pre-shade treatment in comparison to plants grown under
normal light. This increase in osmoprotectant accumulation
in shaded plants occurred due to the increment in abscisic
acid contents and the enhancement of auxin contents

which helped the plants in better survival under drought
conditions (Pardos and Calama 2018).

Which genes and proteins respond to co-occurring
shade and drought stress

In conditions of co-occurring drought and shade stress, the
molecular changes that occur may or may not be the same
as those which occur in response to individual stresses.
For instance, in drought conditions, DELLA proteins
enhance abscisic acid sensitivity in stomatal guard cells
due to the inhibition of gibberellic acid biosynthesis which
interferes with abscisic acid receptors, thus leading to
an earlier closure of stomata in tomato plants (Nir ez al.
2017). However, a beneficial function of phytochrome B
and DELLAs in the plant's drought tolerance may
reverse under shade stress where low R:FR ratio of light
causes phytochrome B inactivation and upregulation of
gibberellic acid signalling (resulting in increased bioactive
gibberellic acid) that eventually causes degradation of
DELLAs (Djakovic-Petrovic et al. 2007). Hence, drought
stress may lessen or diminish the advantages of shade
avoidance in a field environment (Huber ef al. 2004).
Contrastingly, (Asghar ez al. 2020) reported shade-induced
expressional upregulation of 4403 and NCED3 (abscisic
acid biosynthesis genes) and ABI4 and ABI5 (abscisic
acid signalling genes), which helped to overcome the
far-reaching implications of water deficit in soybean. The
increased synthesis of abscisic acid could be due to high
sugar contents which ultimately lead to the signalling
of abscisic acid. ABI4 transcription factor performs an
essential function in abscisic acid—sugar connection and
its expression is upregulated by the availability of higher
sugar content (Arenas-Huertero et al. 2000). Nevertheless,
this predicted association between abscisic acid and sugar
content together with the role of the studied genes needs
to be examined further under varying environmental
conditions. Most of the research available has been
conducted on plant morphophysiological and molecular
responses to individual stress, however, as it is obvious
from the above-cited literature, further studies on the
range of species (specifically field crops) are required for a
profound understanding of the changes in plant responses
under co-occurrence of simultaneous shade and drought
stress.

Management strategies for drought and shade

Drought and shade stress adversely affect plant growth and
productivity. Such effects can be managed and minimalized
by various efforts.

Selection and breeding strategies

A combination of traditional, molecular, and omics-based
techniques could be used to generate shade and drought-
tolerant genotypes (Magbool et al. 2017). The use of
molecular and biotechnological means for selecting
preferred materials (such as in conventional breeding),

671



I. SHAFIQ et al.

along with the production of genetically engineered
crops, helps assemble material for shade and water-deficit
tolerance (Fig. 3). Liu et al. (2017) used metabolomic
analysis of isoflavones based on the OPLS-DA (orthogonal
partial least-squares discriminant analysis) model for
predicting shade tolerance of soybean seedlings of
various germplasm without actually conducting tedious
field experiments. This provided an easier alternative
for evaluating and screening shade-tolerant soybean
germplasms. Yuan ef al. (2012) found two important
QTLs (quantitative trait loci) for plant height and ear
height; qPH4 and qEH4a simultaneously at two different
locations under shade and full-light treatments in maize.
These QTLs were found to be insensitive to shade stress in
maize cultivars, hence, it was suggested that these QTLs
could be used for selecting shade-tolerant and/or high
planting density-tolerant maize hybrids in maize breeding
programs. Li ef al. (2017) used transcriptome analysis to
identify differentially expressed genes (DEGs) of a shade-
tolerant mutant of perennial ryegrass (Lolium perenne)
called ‘shadow-1’ under shade stress. They found 329
DEGs that were unique to shadow-1 plants grown in a
shaded environment and also the gibberellin-biosynthesis
genes were downregulated compared to wild type.
The data provided could be used by breeders to develop
shade-tolerant dwarf ryegrass cultivars. Other physiolo-
gical and morphological characteristics used for screening
shade-tolerant crops include reduced elongation responses,
the longevity of leaf, specific leaf area, root/shoot
ratio, rate of dark respiration, and relative growth rate
(Gommers ef al. 2013).

In the case of drought stress conditions, the ‘final grain
yield’ is the most commonly used parameter for screening
drought-tolerant crops in the conventional breeding
approach (Verulkar ez al. 2010). Since yield (a quantitative
trait) has low heritability, this approach remains ineffective
(Ouk et al. 2006). However, a profound understanding of
physiological and molecular basis might aid in targeting
the key traits restricting the crop yield. QTL analysis and

segregation mapping provide us with the molecular basis
of tolerance to water deficit stress (Lanceras ef al. 2004).
Identifying QTLs involved in drought tolerance aid in
MAS (marker-assisted selection) of crops with preferred
characters (Rahman et al. 2011, Varshney et al. 2012).
Though, a considerable number of QTLs for numerous
drought-tolerant traits have already been reported, yet the
discovery of epistatic QTLs and epiQTLs in the future
could be potentially used for molecular breeding (Gupta
et al. 2017). Apart from conventional breeding, the
classical breeding approach is also in practice (Chandra
Babu et al. 2003). Selecting putative drought-adaptive
secondary traits in classical breeding is reported to be
useful for developing drought-tolerant cultivars. Earlier,
much research regarding the genetic analysis of secondary
traits (i.e., root system architecture, y,, panicle water
potential, osmotic adjustment, and RWC) has been
conducted, however, such traits have low heritability just
like yield under drought stress (Ludlow and Muchow
1990, Atlin and Lafitte 2002, Jongdee ef al. 2002).

Biological engineering technology

Atpresent, plants are commonly bioengineered for drought
tolerance using various transgenic approaches (Bahieldin
et al. 2005, Nakashima et al. 2014). The expression of
involvement of DREB2A and DREB2B (drought-induced
transcription factors) were found to be involved in the
expression of numerous genes involved in tolerance
against drought stress in crops (Cui et al. 2011, Ali et al.
2017). Responses of abscisic acid-responsive elements-
binding proteins (AREB) to water deficit at transcriptional
and post-transcriptional levels were found to be also the
determinants of plants' abilities to tolerate drought (Kaur
and Asthir 2017). Overexpression of AtWRKY57 induced
tolerance against drought stress in Arabidopsis (Li et al.
2013). Expression of AtWRKY63 and BdWRKY36
imparted tolerance against drought stress through the
abscisic acid-signalling pathway in transgenic tobacco

Fig. 3. Strategy for developing materials for shade and drought tolerance.
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(Sun et al. 2015). Drought tolerance was enhanced in rice
by overexpression of OsLEA3-1 and OsLEA3-2 genes
(Xiao et al. 2007, Duan and Cai 2012). The LEA group
protein gene HVAI which (during the maturation stage
of seed) accumulates in the aleurone layers and embryos
of barley, increased the transgenic rice plants' tolerance
against water deficit stress (Xu et al. 1996). Aquaporins
assist in the regulation of the plant—water relations, hence
can be used to develop drought-resistant plant genotypes
(Afzal et al. 2016). Considerable literature is available
and shows that the transgenic expression of specific stress
regulatory genes resulted in enhanced crop tolerance to
drought, but the enhanced expression of these genes is
also often related to growth retardation which limits its
practical applications. Therefore, developing water deficit-
resistant crops will necessitate a profound apprehension
of the genetic basis of drought tolerance along with the
recognition of transcriptions factors linked to resistance to
drought stress (Xiong et al. 2006).

Though much research has been conducted to identify
genes responsive to individual stress, further efforts are
required to identify genes expressed by both shade and
drought stress concurrently. The combination of tradi-
tional breeding with modern-day techniques, i.e., genetic
engineering, marker-assisted selection, and molecular
breeding, will assist in developing and improving crop
resistance against individual and concurrent environmental
stress factors (Fleury et al. 2010).

Induction of shade and drought resistance

Resistance to shade and water deficit could be imparted
in plants by taking several agronomic and physiological
measures. Of these, adjustment of row configuration in
the intercropping system and planting densities in the
monocropping system, exogenously applied various plant
growth regulators, osmoprotectants, mineral nutrients, seed
priming, etc., have proven to be beneficial in mitigation
of the negative implications of shade and drought stress.
An account of these measures is given below.

Optimum planting pattern

Shade is not just an issue for the growth of plants growing
in forest understoreys but also for the short-statured
crops growing in intercropping systems or the crops
growing at higher densities in the sole cropping system.
In high planting densities, erect leaves serve as a vital
adaption to obtain a higher leaf area index, enhancing
photosynthetic rate (Sinclair and Sheehy 1999). In the case
of intercropping systems, adjustment of row configuration
and use of appropriate planting patterns should be taken
into consideration to avoid shade stress (Maitra et al.
2021). Maize—soybean relay-intercropping has been
preferred over strip intercropping which helps the short-
statured soybean crop avoid shade for most of its growth
period and prevent lodging and thus yield loss (Yang et al.
2017, Fan et al. 2018). Feng et al. (2019) suggested that
selecting an optimum planting pattern could help increase
the interception of light and affect the distribution of light

between maize and soybean rows in relay-intercropping
thereby reducing the shade avoidance response in short-
statured soybean and leading to a significant improvement
in productivity of the intercrops. Likewise, Raza et al.
(2019a,b) also documented such results. Adjustment of
planting geometry in the intercropping system helped
in enhancing the water-use efficiency of the intercrops
(Rahman et al. 2017a,b). In the case of monocropping,
adjustment of planting densities should be taken into
account to prevent the shade from neighbouring plants
(Roig-Villanova and Martinez-Garcia 2016, Fiorucci and
Fankhauser 2017). Under drought stress, adjusting planting
densities can help in lowering the competition of water and
nutrients among plants. Higher planting densities under
drought conditions increase competition for water among
seedlings that can cause their death. It is preferable to use
lower planting density under such conditions that increase
distance among plant roots and ensure adequate water
availability for each plant (Cordero et al. 2021). Selecting
an optimum row to row and plant to plant distance can
also help in reducing competition for water and other
resources. Reduced row to row distance results in lower
canopy temperature and controlled transpiration via leaf
cooling pathways (Crawford et al. 2012). It will also lower
ROS production and photodamage caused by high light
and temperature that are usually accompanied by drought
stress (Cordero et al. 2021).

Application of plant growth regulators

Various natural or synthetic plant growth regulators have
been proven to have potential effects in increasing the ability
of plants to acclimatize against various abiotic stresses.
Pons et al. (2001) reported that shade caused a decline in
leaf expansion, but cytokinin application to shaded leaves
restored the leaf expansion. Tegg and Lane (2001) showed
that ‘Primo’ (trinexapac-ethyl), a plant growth regulator,
significantly improved the shade adaptation of several
turfgrass species commonly used in high-quality turf
surfaces. Similarly, paclobutrazol, a growth regulator and
an inhibitor of gibberellin biosynthesis, has been studied
in many crops to reduce stem elongation in a shaded
environment. Its application in tomato plants decreased
the seedling height (Seleguini et al. 2013) whereas, in
Schizolobium amazonicum, it provided compact seedlings
with larger dry root phytomass (Binotti ef a/. 2019). While
the exogenous application of plant growth regulators
has not been much explored in shade environments,
considerable literature is available regarding their role
in the amelioration of drought stress conditions. For
example, treating seeds with gibberellic acid improved
yield parameters in drought-stressed rapeseed (Brassica
napus) (Khan et al. 2020). Exogenously applied gibbe-
rellic acid led to improved tolerance in cotton against
water deficit stress (Kumar ef a/. 2001) and Sitka spruce
(Picea sitchensis; Philipson 1992). Foliar application of
various types of jasmonates enhanced drought tolerance
as reported by other reports (Alam ef al. 2014, Anjum
et al. 2016b, Zheljazkov et al. 2013). Benzyl adenine, an
active cytokinin, is documented to potentially enhance the
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droughtresistance of different crops (Prerostovaetal. 2018).
Similarly, exogenous application of 1-aminocyclopropane-
1-carboxylic acid improved the tolerance against drought
stress by hampering the process of ageing (Young et al.
2004), while salicylic acid imparted drought tolerance
in wheat by increasing its catalase activity (Horvath
et al. 2007). Under co-occurring drought and shade stress,
the use of plant growth regulators needs to be explored
yet. The possible use of gibberellins and auxin under
co-occurring shade and drought stress could be explored as
earlier research suggested that application of gibberellins
and auxin regulates soybean hypocotyl elongation under
co-occurring shade and high-temperature stress (which
is usually accompanied by drought stress in most cases)
(Bawa et al. 2020).

Application of osmoprotectants

Asghar et al. (2020) found that a pre-shaded environment
enhanced the accumulation of osmoprotectants, such as
proline, soluble sugars, and reducing sugars, in soybean
seedlings which later enhanced the drought tolerance
of the seedlings when exposed to drought stress. This
increase is likely because of an increase in abscisic acid
contents or an increase in auxin contents in pre-shaded
treatment. Similarly, numerous literature has documented
an increase in proline (Sperdouli and Moustakas 2012,
Cvikrova et al. 2013, Filippou ef al. 2014), soluble sugars
(Pinheiro and Chaves 2011, Anjum et al. 2017, Du et al.
2020), and glycine betaine (Quan et al. 2004, Zhang
et al. 2012) following water deficit stress. Ali et al. (2013)
reported that proline applied exogenously under water
stress conditions lead to improved composition, oil quality,
and oil antioxidant activity of maize seeds. Sakamoto
and Murata (2002) reported improved plant growth
in drought stress due to foliar-applied glycine betaine
as it maintained the leaf water status by improving
osmoregulation, g, and Rubisco activity, which resulted
in better photosynthesis. To conclude, it is evident from
the above-mentioned literature that osmoprotectants can
help impart resistance in plants against shade and drought
stress.

Application of mineral nutrients

The role of mineral nutrients in relieving crops has
been widely documented. Wu et al. (2018) found that
phosphorous and nitrogen application mitigated negative
effects of drought stress on Moso bamboo (Phyllostachys
edulis) through enhancing its membrane integrity, water-
use efficiency, and rate of photosynthesis. Phosphorous
application in Phoebe zhennan facilitated and improved
drought tolerance through physiobiochemical adjustments
(Tariq et al. 2017). Zahoor et al. (2017) found that the
potassium nutrient management strategy could diminish
the effects of drought stress in cotton as its application
regulated the translocation process and associated enzyme
activities together with the photoassimilation in cotton.
The foliar application of Ca* was found to be a pro-
mising fertilization strategy for the improvement of sugar
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metabolism, redox state, and the efficiency of mineral
nutrients, thereby, enhancing tolerance to water deficit in
sugar beet (Beta vulgaris; Hosseini et al. 2019). Sulfate
application in form of K,SO, mediated drought tolerance
in water-stressed maize plants by positively influencing
their leaf gas-exchange parameters, leaf water status, and
antioxidant mechanism (Usmani et al. 2020). Selenium,
though not considered essential for plant growth, improved
tolerance to drought in wheat seedlings (Yao et al. 2009)
and corn plants (Bocchini et al. 2018). Similarly, silicon,
which is the second most abundantly present element in
the soil, has not been yet considered an essential plant
nutrient mainly due to its poorly understood function
in plant biology (Epstein 1994). However, recently, the
improvement of crop resistance against water scarcity
due to the added silicon in the growth medium has been
studied extensively (Hattori et al. 2005, Zhu and Gong
2014, Coskun et al. 2016, Helaly et al. 2017, Thorne et al.
2020). The role of silicon in increasing lodging resistance
in shade-grown soybean has also been studied recently.
Silicon was found to affect the structural composition
of the various components of plant cell walls primarily
by changing linkages of noncellulosic polymers and
lignin, thus, enhancing lodging resistance and preventing
yield losses (Hussain ef al. 2020b). Similar to silicon,
researchers have looked into the vitality and function that
titanium plays in improving crop performance over the last
century, but it has not yet been recognized as an essential
phytonutrient. Hussain ef al. (2019b) reported that a
moderate foliar application of ionic titanium enhanced
the Chl pigments, biomass production, electron transport
rate, and photochemical efficiency of PSII in shade-grown
soybean. They suggested that titanium use could help
alleviate shade stress, especially in intercropping systems.
In conclusion, the above-mentioned data suggest the use
of plant mineral nutrients to be a potential source for the
achievement of better crop growth and productivity as
well as for alleviation of the deleterious impacts of shade
and water deficit stress.

Seed priming

Seed priming is considered one of the most pragmatic
approaches to improve the abiotic stress tolerance,
especially drought stress, in a range of plant species
(Chen and Arora 2013). It involves hydration of the seed
to activate the pregerminative metabolic and biochemical
activities without radical protrusion during phase two of
seed germination (Paparella et al. 2015). This technique
can particularly, be very useful for the improvement of rice
to be grown in water scant areas, as in the newly introduced
aerobic rice culture, the frequency and intensity of drought
may increase manifold. Sufficient literature has documented
the use of seed-priming treatments for drought resistance
in various plant species (Du and Tuong 2002, Harris ef al.
2002, Kaur et al. 2005, Kaya et al. 2006, Farooq et al.
2009, Hasanuzzaman and Fujita 2011, Goswami et al.
2013, Samota er al. 2017). However, the effectiveness of
priming varies widely depending on the crop species being
treated as well as the selected priming technique. Under
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low light conditions, Jiang et al. (2020) found that shade-
induced hypocotyl elongation in soybean is modulated by
gibberellins, which are produced in response to the mutual
promotion of auxin and brassinosteroid. The use of such
plant growth regulators under shade stress can be explored
as the above-mentioned evidence suggests a promising role
of this technique in conferring drought stress tolerance.

Future perspectives and conclusion

Shade is a common abiotic stress in crop production and
has a serious negative impact on the quality and yield of the
crops produced. Unfortunately, although the shade is lethal
for crop growth and crops often experience it during their
life span (specifically in intercropping systems and high-
density monocropping systems), little attention has been
paid to this stress. Plants respond to shade through various
complex biochemical, physiological, and molecular
mechanisms, together with posttranscriptional regulation
via miRNA. Recently, a range of biotechnological tools
have been used to better understand the mechanisms
by which plants respond to shade stress, nevertheless,
these approaches need to be explored further. Modern
computational and systems biology tools can be used for
recognition of the vital genes, proteins, and metabolites,
etc., which could be then utilized for engineering plants
that are tolerant to shade. Furthermore, the identification
of miRNAs as important regulators of the gene expression
under shade stress underscores that miRNA-based
biotechnology has great potential for the development of
plants that can tolerate shade. Similar to shade, drought
stress also has deleterious effects on crop growth. Though,
the physiological mechanisms of plants' tolerance against
drought have been comparatively described in great
detail in the literature, yet we require comprehensive
research regarding the responses of roots (involving the
root—shoot signalling) under conditions of water scarcity.
Moreover, the use of modern era genomic, proteomic,
and transcriptomic approaches for a thorough insight of
molecular basis of plant's tolerance to drought stress is
also imperative. Fundamental knowledge of molecular
responses and tolerance mechanisms will help to engineer
crops that can withstand drought stress and produce
adequate economic yield under such conditions.

Under field conditions, plants encounter multiple
stresses simultaneously. Consequently, the occurrence of
shade and drought stress simultaneously rather than the
occurrence of individual stress, is a major challenge for
crop production. Both these stresses alter the growth and
development at various growth stages of a plant throughout
its life span. The above-reviewed literature provides
evidence that plant responses to the co-occurrence of
shade and drought stresses may be unique or shared.
For example, being unique, shade stress results in stem
elongation whereas drought stress results in shorter plant
height. In contrast, the consequences of both the stresses
include a decrease in flower and pod yield, an increase in
flower and pod abortion rate, and a decrease in seed size,
all of which leads to a dramatic reduction in seed yield.
Although, plant responses to drought and shade stress

at morphological and physiological levels, including
the structural and biochemical changes, have been well
documented at individual leaf and whole-plant levels but
what impact does shade has on plant growth under drought
conditions, remains unclear. So far, there are no consistent
conclusions to date as to whether the interaction of shade
and drought stress is antagonistic, synergistic, or additive,
as it varies from species to species, the growth period of
the plant, and the stress intensity factor. The interactive
effect of shade and drought stress is considerably well
documented in woody plants and forest species in
comparison to the field crops. Therefore, much research
is needed on field crop responses to the co-occurrence of
shade and drought stress. Proper field experiments should
be designed under field conditions to clearly understand
the responses. Furthermore, modern-day novel molecular
and biotechnological approaches should be used for the
development of genetically engineered plants that can
respond specifically to shade and drought stress. The use of
bioinformatics and genomic sequencing, transcriptomics,
and proteomics analysis could further assist in determining
shared and unique genes that are regulated under abiotic
stress conditions thereby helping improve plants' resistance
against individual and concurrent shade and drought stress.
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