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Abstract

Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It
begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then
transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae
and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However,
cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached
to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner
antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed
in their environment have a great influence on the composition and the structure of the light-harvesting complexes
(the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the
entire organism. We present here a perspective on ‘Light Quality and Oxygenic Photosynthesis’, in memory of George
Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (/) the influence of
the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on
photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration
for the optimal growth of photosynthetic organisms.
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I and II; stomatal and chloroplast photoinduced movements.
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et al.2019).
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Introduction

Oxygenic photosynthesis (in cyanobacteria, algae, and
higher plants), during which water is oxidized to mole-
cular oxygen and carbon dioxide (CO,) is reduced to
carbohydrates, is indispensable for the development and
maintenance of life on Earth. The absorption of light is an
essential step in the photosynthetic process (Blankenship
2021). In nature, the intensity and the quality (spectral
composition) of sunlight plays a crucial role, in conjunction
with other environmental factors, in affecting the growth of
photosynthetic organisms, by operating as specific signals
that regulate their acclimation, and adaptation process
(see e.g., Liscum et al. 2020).

The light-harvesting apparatus of various photosyn-
thetic organisms has evolved through different adaptation
mechanisms, allowing each of them to work optimally under
diverse environments by transferring excitation energy
(EE) efficiently through multi-component assemblies of
pigment—protein complexes (known as outer, or peripheral
antenna) to the reaction centers (RCs) of PSI and PSII,
and by modifying suitably their absorption cross-sections
(Croce and van Amerongen 2013a,b; 2014; Ostroumov
et al. 2014, Mirkovic et al. 2017, Liu and Blankenship
2019, Croce and van Amerongen 2020). In the RCs, the
photoreaction is completed within 20 to 300 ps, with
a maximal quantum efficiency close to 1.0 for PSI, and
~0.9 for PSII (Jennings et al. 2003, Engelmann et al.
2006, Wientjes et al. 2011, 2013a; Mamedov et al. 2015,
Croce et al. 2018). Both PSI and PSII, which are very
similar in the majority of these organisms, also contain
inner antennas (with ~100 and ~35 Chl a in PSI and PSII,
respectively) that either absorb light or receive EE from
the outer antenna; the EE is directed to a small group of
Chls and other cofactors in the RCs, where the primary
charge separation and the initial electron transfer take
place (see e.g., Zouni et al. 2001, Nelson and Junge 2015).

The organization and composition of the outer antenna
in plants and green algae differ from those in cyanobacteria
and red algae. The outer antenna of the photosystems in
plants and green algae is modular, containing variable

amounts of several types of transmembrane pigment—
protein complexes that are members of the light-harvesting
complex (LHC) superfamily, containing approximately
200—400 molecules of Chls and carotenoids (Cars)
per photosystem (see e.g., Croce 2020, Croce and van
Amerongen 2020). The carotenoids function not only to
capture light, but many of them (e.g., lutein, B-carotene,
violaxanthin, fucoxanthin, and neoxanthin) also play
an essential roles in photoprotection (see chapters in
Demmig-Adams et al. 2014 and Xu et al. 2020a). In plants,
LHCII trimers associate (via the monomeric LHCs: CP24,
CP26, and CP29) with the PSII core, usually forming
PSIIC,S, and PSIIC,S;M, supercomplexes (see a review
on PSII by Shevela et al. 2021), where S and M represent
LHCII trimers that are strongly or moderately associated
with the PSII core (Fig. 14,B). PSII megacomplexes,
containing additional loosely bound LHCII trimers (L)
(Fig. 10), have been found in plants such as Picea
abies (L.) Karst and Pinus sylvestris (that lack Lhcb3 and
CP24; Koutil ef al. 2020).

In the green alga Chlamydomonas reinhardtii (that has
four types of major LHCII proteins; see e.g., Natali and
Croce 2015), an adaptation mechanism to low light exists,
when the M- and L-LHCII trimers interact with CP29 to
form a subcomplex bound to CP47 in the PSIIC,S;M,L,
supercomplex, establishing a direct pathway for EE
transfer from the L-LHCII to the PSII RC (Sheng et al.
2019). Further, in the PSI outer antenna of plants, four
different LHCI proteins (Lhcal—4) usually bind to the PSI
core (in a 1:1 stoichiometry) to form the PSI supercomplex
(Fig. 1D; Ben-Shem et al. 2003, Qin et al. 2015).
Additionally, PSI outer antenna contains (under several
conditions), at least one LHCII trimer, forming a
PSI-LHCI-LHCII complex with a 25% larger absorption
cross-section (Fig. 1E; Pan et al. 2018, Chukhutsina et al.
2020). We note that there are more than four binding sites
for LHCI proteins around the PSI core, and the position of
different types of LHCI are known to change in different
organisms (Kubota-Kawai er al. 2019, Croce and van
Amerongen 2020). On the other hand, the organization
of PSI is less flexible than that of PSII under changes

Abbreviations: C; and C, plants — plants in which the first carbon compound produced during photosynthesis contains three, and four
carbon atoms; CBCRs — cyanobacteriochromes; Chl(s) — chlorophyll(s); ChIF and ChIFI — Chl a fluorescence and Chl a fluorescence
induction; Cphs — cyanobacterial phytochromes; CRYs — cryptochromes; Cyt — cytochrome; EE — excitation energy; FaRLiP — far-
red light photoacclimation of cyanobacteria; FCPs — fucoxanthin-chlorophyll a/c-binding proteins; Fy — maximal Chl a fluorescence;
Fo — minimal Chl a fluorescence; Fr — Chl a fluorescence at its peak (P); FR(L) — far-red (light); Fyv — variable (Chl a) fluorescence;
GAF — a phytochrome domain named after cGMP, adenylyl cyclase, and FhlA; H*-ATPase — adenosine triphosphatase transporting
protons (H's) across membranes (proton pump); LEDs — light-emitting diodes; LHC — light-harvesting complex; LHCSR — light-
harvesting complex stress-related proteins; NPQ — nonphotochemical quenching (of Chl a fluorescence); OCP — orange carotenoid
protein; P7 — reaction center pigment (P) of photosystem I, with a maximum absorbance at 700 nm; PAM — pulse amplitude modulation;
PBS(s) — phycobilisome(s); PC — phycocyanin; PCM — photosensory core module (of phytochromes); PE — phycoerythrin; PEA —
plant efficiency analyzer; PEB — phycoerythrobilin; Pfr — far-red light-absorbing (active) state of phytochrome; PHOT — phototropin;
Phys — common (canonical) phytochrome subfamily found in higher plants; PQ — plastoquinone; Pr — red-light absorbing (inactive) state
of phytochrome; PUB — phycourobilin; Q4 and Qg — primary and secondary plastoquinone electron acceptors of photosystem II; R —red
(light); RC — reaction center; TM — thylakoid membrane; UV-A — ultraviolet radiation (wavelength range 320 to 400 nm); VPD — vapor
pressure deficit.
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Debevec (Information Technology, Life Sciences, University of Illinois at Urbana-Champaign) for their valuable help during the writing
of this paper.
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Fig. 1. The photosystems (both PSI and PSII) in plants, shown in different configurations of the light-harvesting components (4—E).
The PSII and PSI cores, and all the light-harvesting components, are shown in (£). The S-, M-, and L-LHCII represent LHCII trimers
that are strongly, moderately, or loosely associated with the PSII core, respectively. Figure modified from Croce (2020) and Croce and

van Amerongen (2020).

in environmental conditions; the long-term equilibrium
between these two photosystems is usually adjusted
through changes in the PSII/PSI ratio (see e.g., Ballottari
et al. 2007, Wientjes et al. 2017). However, Wientjes et al.
(2013b) have shown that the percent of LHCII associated
with PSI (in the PSI-LHCII form) changes under
illumination with different light intensities; it is 65, 54,
and 40% for plants grown under low, medium, and high
light, respectively. Thus, although the LHCI content of
PSI remains constant under different light intensities, the
above observation shows that modulation of LHCII affects
the total antenna size of both photosystems.

We note that PSI contains, in addition to a large
fraction of Chl a molecules with broad absorption peaks
in the 680-685 nm region, about 3—10% Chl @ molecules
that absorb above 700 nm, the so-called red or low-
energy Chls (see e.g., Jennings et al. 2003, Croce et al.
2007, Russo et al. 2021, for land plants; Giera et al.
2018, Santabarbara et al. 2020, for algae; Gobets and
van Grondelle 2001, Karapetyan et al. 2006, 2014, for
cyanobacteria). The existence of ‘red’ Chls was first
observed by Litvin and Krasnovsky (1957) and by Brody
(1958) (also see Govindjee 1963). The fluorescence
spectra of PSI, especially at low temperatures, are greatly
influenced by the presence of ‘red” Chls (Golbeck 1987,
Brecht et al. 2012). The higher PSI absorption at longer
wavelengths than that of PSII is responsible for Emerson's
‘red drop’ effect, first observed in the green alga Chlorella
(Emerson and Lewis 1943; ¢f. Emerson and Rabinowitch
1960), which is an abrupt decrease in the yield of oxygen
evolution per absorbed quanta, beyond 685 nm (see also
Emerson et al. 1957). This red drop is due to an imbalance
in PSI and PSII excitation, with relatively low absorption
in the far-red light by PSII; thus, the number of electrons
available to PSI (provided by PSII) is limited in light beyond
685 nm, which leads to a decrease of the photosynthetic
yield in the FR region. ‘Red’ Chl @ molecules have inter-
molecular interactions between them forming strongly

excitonically coupled dimers or trimers, and even larger
aggregates. The presence of ‘red’ Chls in PSI increases the
absorption cross-section of the system; further, it plays a
critical role in the regulation of energy transfer from the
bulk Chls to Py, as well as in the dissipation of excess
excitation energy as heat (Karapetyan et al. 2014). Also,
it has been shown, in plants, that the EE transfer from
the ‘red’ Lhcas (i.e., Lhca3 and Lhca4) to the PSI core is
slower than from the ‘blue’ ones (i.e., Lhcal and Lhca2)
(Engelmann et al. 2006, Wientjes et al. 2011), but the
photon utilization efficiency by PSI-LHCI remains close
to unity. The physiological role of ‘red’ Chls is important
under ‘canopy-(like) shading’ conditions when the photon
fluxes are low and the photosynthetic process is limited
by light absorption (Rivadossi et al. 1999); however,
here excitation energy transfer from the ‘red” Chls to PSI
reaction center takes place through thermal activation
(i.e., uphill energy transfer; Jennings ef al. 2003), a process
that increases the photoprotective efficiency of PSI-LHCI
(Matsubara et al. 2007). Therefore, when it comes to light
harvesting, the presence of a significant amount of ‘red’
Chls in PSI is one of the main differences between PSI and
PSII supercomplexes. On the other hand, while the lowest-
energy Chls in PSII are those responsible for the Fgos
fluorescence band of PSII core complexes at 77 K (see e.g.,
Shibata et al. 2013, Hall et al. 2016), various studies show
that oxygen evolution is possible under illumination with
wavelengths above 700 nm in many phototrophs, including
the green alga Chlorella vulgaris, and higher plants, such
as sunflower, bean, and spinach (Myers and Graham 1963,
Greenbaum and Mauzerall 1991, Pettai ef al. 2005a,b;
Thapper et al. 2009); the above must be due to the presence
of additional red-shifted PSII Chls in PSII. Indeed, low-
energy PSII Chls with maximum absorption above 700 nm
are present in various species (see Santabarbara et al.
2020), such as the diatoms Phaeodactylum tricornutum,
Nitzschia closterium, Chromera velia, and Phaeodactylum
tricornutum acclimated to low red light (having Chl a
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with an emission band at 710 nm at room temperature,
F710; Fujita and Ohki 2004, Bina et al. 2014, Kotabova
et al. 2014, Herbstova et al. 2017), the moss Physco-
mitrella patens (Alboresi et al. 2011), and the aerial
green alga Prasiola crispa from Antarctica (it has F;;; at
room temperature, and Frs at 77 K; Kosugi et al. 2020).
However, the low-energy PSII Chls are present in a smaller
number than in PSI and have lower maximum emission
wavelengths.

On the other hand, in cyanobacteria and red algae,
there are large water-soluble protein assemblies, the
phycobilisomes (PBSs), absorbing green light, functioning
as an outer antenna for both the photosystems (but
especially for PSII), allowing these organisms to live at
greater depths than those that primarily use Chl a and
Chl b (e.g., Harris et al. 2018); as mentioned earlier,
the PBSs cover the stromal surface of the thylakoid
membrane (TM) and transfer EE efficiently to both the
PSI and the PSII cores (Acufia ef al. 2018a,b). The hemi-
discoidal PBS is the most common type in cyanobacteria;
it has two main domains, several peripheral rods, and a
‘core’; the latter connects all the rods and transfers the
excitation energy to both PSI and PSII [see Fig. 6 (shown
later), under ‘Acclimation of cyanobacteria to changes in
environmental light quality’].

The PBSs contain a large number of covalently bound
linear tetrapyrrole phycobilin chromophores, which
strongly absorb light in the 500-640-nm range, depending
on the type of phycobilin, protein surrounding, and the
presence of various linkers (colorless polypeptides known
to be involved in the assembly of phycobiliproteins
in PBS; Nobel 2009, Harris et al. 2018). The most
common phycobiliproteins are phycocyanin (PC, orange-
red absorbing), allophycocyanin (red absorbing), and
phycoerythrin (green absorbing), although other spectral
variants also exist. Note that, in general, the presence of
various accessory pigments, which absorb light at higher
energies than the antenna Chl a (e.g., Chl b, phycobilins,
carotenoids), leads to directed downhill energy transfer at
a very fast rate before it is trapped; further, the trapping
time depends on the number of Chl a molecules in the
antenna (see van Amerongen et al. 2000). Although the
crystal structure of the PSI core complex of cyanobacteria
(Jordan et al. 2001) is quite similar to that of the plants
(Ben-Shem et al. 2003), there are some differences. These
differences are responsible for, e.g., the trimeric PSI form
(found in the most characterized cyanobacteria; see e.g.,
Jordan et al. 2001), and the tetrameric PSI form (common
in the heterocyst-forming cyanobacteria and their close
relatives; see e.g., Semchonok et al. 2016), as compared
to the monomeric PSI form, present in plants and in algae.
Furthermore, the PSI/PSII ratio in cyanobacteria, instead
of being close to 1, as is in plants and green algae, is
much higher (2 to 10 times) under different environmental
conditions (Sonoike et al. 2001). Therefore, due to this
high stoichiometric ratio of PSI to PSII, 80-95% of Chl a
and 73— 93% of Cars are located in PSI in cyanobacteria.
Further, the number of ‘red’ Chls depends on the state
of PSI aggregation: fewer ‘red’ Chls are present in PSI
monomers than in PSI trimers (Gobets and van Grondelle
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2001).

Studies using electron microscopy and other methods
have clearly shown differences in size, composition, and
organization of the outer antenna of the photosystems
between different species, reflecting adaptation to
the spectral composition of environmental light, and
acclimation to changes in both the quality and the quantity
of light (Croce and van Amerongen 2014, 2020; Natali and
Croce 2015, Mirkovic et al. 2017, Pi et al. 2019, Sheng
et al. 2019, Suga et al. 2019, Chukhutsina et al. 2020,
Koufil et al. 2020, Pan et al. 2020). For example, plants
grown under low light have an increased number of
LHCIIs to maximize light absorption, but this number
decreases under high light, minimizing photodamage
(Anderson and Andersson 1988). Here we note that,
by selectively reducing peripheral LHC complex sub-
units under high light, important improvement of the
photosynthetic efficiency in crops has been predicted (e.g.,
Ort et al. 2015, Slattery and Ort 2021), and promising
results have already been obtained with the green alga
Chlamydomonas (see e.g., Negi et al. 2020; cf. Bielczynski
et al. 2020).

In addition to ‘light capture’, plants use pigments
as photoreceptors to sense light changes that trigger
chloroplast movement in the cells, which increase or
decrease the total leaf transmittance, and regulate the
stomatal opening, and thus the CO, influx and water
evaporation. Since the spectral distribution of ambient light
can vary tremendously under aquatic environment, changes
in PBS composition take place in many cyanobacteria,
through chromatic acclimation (CA; see a review by
Sanfilippo ef al. 2019, and the subsection ‘Acclimation of
cyanobacteria to changes in environmental light quality’,
see below). During the CA, cyanobacterial cells use a
complex network of photoreceptors to sense the color of
the ambient light and use this information to optimize the
photosynthetic light harvesting (Grossman 2003, Kehoe
and Gutu 2006, Montgomery 2016, Hirose ef al. 2019,
Wiltbank and Kehoe 2019). Some terrestrial cyanobacteria
synthesize Chl d and Chl f during chromatic acclimation
to far-red (FR) light (A = 700-800 nm; see Fig. 2 for the
absorption spectra of different types of Chls); this is known
as far-red light photoacclimation (FaRLiP) (Sanfilippo
et al. 2019). These far-red acclimated cyanobacteria are
known to significantly remodel their core PSI and PSII,
and the PBS to facilitate the absorption of FR light for their
growth (Chen ef al. 2010, Chen and Blankenship 2011,
Gan et al. 2014, Ho et al. 2020, Kato et al. 2020, Mascoli
et al. 2020). For example, some of these cyanobacteria
can synthesize and incorporate ~8% Chl f into their PSI
(see the cryo-electron microscopy data on Fischerella
thermalis PCC 7521 by Gisriel et al. 2020a), which
extend their light utilization to ~800 nm (see also Tros
et al. 2021). Some of the new Chls, mentioned above
(Chl d, Chl f), participate not only in light harvesting,
but also in photochemical reactions of both PSI and PSII
(Miyashita et al. 1996, Boichenko et al. 2000, Larkum
and Kihl 2005, Nirnberg et al. 2018). In the model of
Niirnberg et al. (2018) for Chroococcidiopsis thermalis,
a widely spread extremophile cyanobacterium that



LIGHT QUALITY AND OXYGENIC PHOTOSYNTHESIS

Fig. 2. Different types of chlorophylls (Chls) are used by oxygenic photosynthetic organisms. (4) The absorption spectra of Chl a, Chl b,
Chl ¢, Chl d, and Chl f'in solution. (B) Tetrapyrrole structure of the Chls; for information on the substitutions (red-colored), see a table
in Croce and van Amerongen (2014). Figure modified from Croce and van Amerongen (2014, 2020).

contains ~90% of Chl a, ~10% of Chl £, and <1% of
Chl d when grown under 750-nm illumination, the Chl f
at 745 nm and Chl f (or d) at 727 nm were assumed
to participate in charge separation in PSI and PSII,
respectively. Zamzam et al. (2020) found experimental
evidence for the PSII model of Niirnberg ef al. (2018), in
which the primary PSII electron donor is a ‘far-red” Chl
(P72 in the Chlp, position), and the secondary donor is the
Chl a (Ppi) of the central Chl pair. This shows that by
shifting, even partially, the antenna of PSII towards lower
energy, the system might require also a reconfiguration
of the RC, which would otherwise be excessively
depopulated in the excited state. However, analysis of
structural data in several recent studies (Gisriel er al.
2020a,b; Kato et al. 2020) excludes the involvement of
Chl f in the photochemistry of PSI. On the other hand,
Chl d, a pigment that has the long-wavelength absorption
maximum in organic solvents shifted by ~30 nm toward
longer wavelengths than Chl a (Fig. 2), is the predominant
photosynthetic pigment in Acaryochloris marina (which
contains only traces of Chl a; Larkum and Kiihl 2005).
Chl d functions not only as a light-harvesting pigment
in the antenna but also as a redox-active cofactor in both
PSII and PSI reaction centers. The structure of the PSI
supercomplex of this cyanobacterium has been recently
obtained using cryo-electron microscopy (Hamaguchi et al.
2021). It clearly shows a distinctly different arrangement
of electron carriers and light-harvesting complexes than
those in other types of reaction centers I: the special pair
of Chls in the RC is a dimer of Chl 4 and its epimer Chl d'
(P740; see Hu et al. 1998); the two accessory Chls (Ax and
Ap) are also Chl d, while the primary electron acceptors
(Aoa and Aggp) are two Pheo @ molecules (instead of two
Chl a; see Kumazaki et al. 2002). Besides the presence of
Chl d in the reaction center, the replacement of Chl a with
Pheo a is also a very distinctive property of this PSI.
Furthermore, a few other oxygenic organisms, besides

cyanobacteria, have other differences in their Chl com-
position. For example, diatoms and brown algae do
not have Chl b, but they contain Chl ¢ (see Fig. 2 for
Chl ¢ absorption spectrum), as an adaptation for harvesting
the blue-green light available under water (see e.g., Alami
et al. 2012, Mirkovic et al. 2017, Levitan et al. 2019).
The diatoms contain special protein complexes from
the LHC superfamily, called fucoxanthin-chlorophyll
alc-binding proteins (FCPs; Wang et al. 2019, Biichel
2020). The PSI-FCPI in the diatoms binds 16 FCPI
subunits, which has the largest number of auxiliary
antennas associated with PSI reported thus far (Xu et al.
2020b). Further, a special light acclimation was observed
in the pennate diatom Phaeodactylum tricornutum (Oka
et al. 2020), which synthesizes a red-shifted type of FCP
under weak or red light, extending its light-absorption
capacity to longer wavelengths. In this perspective, we
review several implications of the diversity in composition
and organization of the antenna used by photosystems
in different organisms, and the strong correlation of this
phenomenon with the light quality in their environment
(e.g., Bjorn 1976, Kiang et al. 2007a,b; Bjorn et al.
2009), which is especially evident between terrestrial and
aquatic plants, since the solar spectra at diverse water
depths differ considerably from the spectra incident on
Earth (e.g., Stomp et al. 2007a,b). We also discuss below
how differences in pigment composition of the antenna
between different photosynthetic organisms influence
their response to the wavelengths of the excitation light
used in Chl fluorescence measurements, which is a
popular method in the study of several important aspects
of photosynthesis (see e.g., chapters in Papageorgiou and
Govindjee 2004).

In the last section of this paper, we will discuss
what is known about the influence of the quality (i.e.,
the wavelength) of the actinic light on the growth and
photosynthetic activity of oxygenic organisms, including
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those grown indoors (see e.g., Hogewoning et al. 2010,
Dueck et al. 2016, Ptushenko et al. 2020, Paradiso and
Proietti 2021).

Spectral signatures of photosynthesis:
Why chlorophyll a?

A characteristic of oxygenic organisms is the dual
function of Chl a: light harvesting and photochemistry
(see ‘Introduction’). Important initial studies on spectral
properties of Chl @ and its biosynthesis have been carried
out by Felix Litvin and his coworkers (see e.g., Belyaeva
2003), by C. Stacy French in the USA (see e.g., French
1971), and by others (see Govindjee and Braun 1974).
Reasons for the omnipresence of Chl a in oxygenic
photosynthesizers have been discussed by many (see
e.g., French et al. 1972, Katz and Norris 1973, Mauzerall
1973, 1976; Bjorn 1976, Kiang et al. 2007a, Bjorn et al.
2009, Marosvolgyi and van Gorkom 2010, Bjorn and
Ghiradella 2015, Arp et al. 2020). Katz and Norris (1973),
after examining all available data on Chl absorption and
fluorescence spectroscopy in the visible spectrum, both
in vitro and in vivo, have pointed out that the main in vivo
long-wavelength absorption band, at the red end, is due
to Chl a in almost all oxygenic photosynthetic organisms.
This explains the main role of Chl a in photochemistry, as
its lowest energy, compared to the other pigments, allows
the excitation energy transfer, via resonance, to it. Further,
Mauzerall (1973, 1976) has rationalized the structure—
function relation of Chl in physicochemical terms, but in
addition, he also emphasized the evolutionary viewpoint
of photosynthesis and of Chls (for further information,
see Xiong et al. 2000, Dismukes et al. 2001, Olson and
Blankenship 2004, Larkum 2006, Xiong 2006, Bjérn and
Govindjee 2009, Hohmann-Marriott and Blankenship
2011). In David Mauzerall's view, the uniqueness of Chl a
on the global scale of photosynthesis (which appears to
be irreplaceable, on Earth) seems to be due to its special
physicochemical properties.

On the other hand, Bjorn (1976) studied specifically
the maximal efficiency of the conversion of solar radiation
into chemical energy in the photosynthetic systems,
considering it as a function of both the solar spectrum and
the absorption spectrum of the light-harvesting pigments.
To find the optimum absorption characteristics for a
photosynthetic pigment, he used the theoretical approach
of Ross and Calvin (1967) (¢f- Knox 1969); these results
showed that, in full sunlight, the optimum absorption
maximum for a narrow-banded photosynthetic pigment is
at~707 nm, which works fine for the in vivo forms of Chl, as
they all have half-band width of about 10-20 nm. Further,
it was shown by Bjorn (1976) that, when the radiant flux
density is decreased by 10%, the optimum wavelength
of the absorption peak is at shorter wavelengths, by
~12 nm; therefore, for one-tenth of the maximal irradiance,
the new predicted optimum absorption maximum would
be at 694 nm, and for one hundredth, 682 nm. Therefore,
since the absorption maximum at 682 nm is closer to that of
PSII in oxygenic organisms, this specific band seems to be
tuned to the maximal utilization of light when the radiant
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energy is severely limiting (i.e., at low light), but not under
high light. Further, Bjorn (1976) studied theoretically
a photosynthetic system with two absorption bands to
see the effect of an accessory pigment on the maximal
efficiency of light utilization. By calculating the maximal
increment in the chemical potential caused by the presence
of a second band, besides the one at 682 nm, an optimized
accessory absorption band at 642 nm was predicted (Fig. 3
in Bjorn 1976); this band was assigned to Chl b in higher
plants and green algae, and to allophycocyanin (APC) in
cyanobacteria (for APC see e.g., Mimuro 2004). However,
we note that the effect of this second absorption band on
the chemical potential was small. Further, Bjorn (1976)
also studied the effect of the Soret bands of Chls on the
photochemical redox potential and found that its effect
was negligible, even though this additional band leads to
an increase in the rate of the excitation of the system.

Furthermore, Kiang et al. (2007a,b) have discussed
responses to several intriguing questions, such as ‘Why do
plants have a ‘red edge’ in the red’, or ‘should extrasolar
photosynthesis be the same (as that of normal photo-
synthesis)?’ (c¢f- Ritchie et al. 2018). Kiang et al. (2007a)
discussed the absorbance characteristics of pigments,
present in different photosynthesizers, and showed that
these are strongly correlated with those of atmospheric
spectral transmittance. Based on these data, they speculated
that the near-infrared (NIR) end of the absorption spectra
of the pigments must have evolved in response to the
major absorbance bands of the air or water environment
of the organisms, being due to both solar spectrum and the
presence of oxygen. Kiang ef al. (2007a) proposed several
rules regarding where the photosynthetic pigments would
peak in absorbance, and assumed that, most probably,
these would account for the so-called ‘green bump’
(also known as ‘green trough’) in land plants, which is
due to their relatively lower absorptance for the green
light. While specific absorption wavelengths of the RCs
were not predicted from the available data, Kiang et al.
(2007a) explained the excitation energy transfer kinetics
from the LHCs to the RCs, by pointing out that even if
the resonance excitation energy transfer (the Forster
mechanism) toward the red is the dominant mechanism
of light harvesting and energy trapping, the light energy
absorbed at wavelengths longer than of the RCs (i.e.,
by the so-called ‘red” Chls, or Chls d and f) can still be
transferred uphill to the RCs (Jennings ef al. 2003, Giera
et al. 2018, Kosugi et al. 2020, Tros et al. 2021).

In the perspective on “Why Chlorophyll a?’, Bjorn et al.
(2009), where George C. Papageorgiou was one of the
authors, examined the near ubiquity of Chl a function, not
only in light harvesting but in the primary photochemistry
of PSII and PSI. Further, this paper provides not only
historical (i.e., how evolution turned out to use Chl a,
and photosynthesis in general), but spectral, and chemical
points of view. First, Bjorn ez al. (2009) emphasized the
omnipresence of Chl a, pointing out that Chl  not only
appeared later but has an absorption spectrum that is not so
suitable when it is not associated with that of Chl a; on the
other hand, while Chl ¢ may have preceded Chl q, it has a
weak absorption in the red region (Fig. 2; for the evolution



of Chls, see Larkum 2006). Second, these authors point
out that the six Chl a molecules of the PSI RC and the six
Chls a of the PSII RC have never been completely replaced
by any other Chl (see, however, the earlier discussion in
the ‘Introduction’ on the presence of Chl d and Pheo a
molecules in the PSI RC of Acaryochloris marina). And
third, Bjorn et al. (2009) pointed out that excited Chl a
molecules become redox active only when they are located
in an appropriate protein environment, where compatible
redox-active cofactors exist at an appropriate distance,
which is true for both PSI RC and PSII RC, but not for
the core and peripheral LHCs. As far as the question ‘Why
the plants are green?’, Bjorn et al. (2009) emphasized
that the low absorption of Chl in the green region of the
spectrum does not prevent plants from utilizing green
light, as many layers of TMs containing Chl a and
Chl b lead to up to 95% light absorption, which means
that a shade plant can effectively intercept nearly all
the visible light, even in the green region (for a further
discussion on the green light used for photosynthesis, see:
Nishio 2000, Raven 2009, Terashima et al. 2009). The
detour effect (see the next section ‘Light quality effects on
photosynthesis, inferred from Chl fluorescence induction’)
might lead to the absorption of green light.

On the other hand, Marosvolgyi and van Gorkom
(2010) have stated that, to their knowledge, except for
Bjorn (1976) ‘no one has challenged the assumption that
black, or gray, would be better’ for photosynthesis. In
Hans van Gorkom's opinion, this is an irrelevant question,
since the optimization analysis used by Lars Olof Bjorn
predicts a strong influence of Fraunhofer lines in the
solar irradiance on the spectral shape of the optimized
absorption band, and does not predict absorption at other
wavelengths. The Fraunhofer lines in the solar spectrum
are caused by absorption by chemical elements in the
solar atmosphere. However, some of the lines originate
from molecules in the Earth's atmosphere (telluric
lines), between which, those produced from water vapor
absorption (the strongest in the visible spectrum) and
oxygen are the most important; however, we note that the
oxygen was not present when chlorophyll was selected by
Nature. In their paper ‘Cost and color of photosynthesis’,
Marosvolgyi and van Gorkom (2010) have extended the
analysis presented by Bjorn (1976) to optically thick
systems, taking the energy cost into account. We also
remark that the optimization method for maximal energy
production, used by Marosvdlgyi and van Gorkom (2010),
has been recently applied by Lehmer ef al. (2021) to
calculate the region of photon absorption by (eventual)
photosynthetic organisms on an Earth-like planet around F
through late M type stars that have different temperatures
(thus color, i.e., emission spectrum). This knowledge is
of importance when we search for life on other planets
based on their reflectance spectra. Accepting these ideas,
Lehmer ef al. (2021) found that for planets near stars of
yellow-white color (e.g., Polaris), the absorption peak
of the possible photosynthetic pigments is expected to
be situated in the blue region of the spectrum, whereas,
for planets near the stars of yellow (Sun), orange (e.g.,
Arcturus), or red-orange (e.g., Proxima Centauri) color,
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the peak absorption of photosynthetic pigments tends to
be in the red, the far-red or the near infra-red, respectively.
These peaks are dependent not only on the stellar type,
being examined, and planetary atmospheric composition,
but also on the atmospheric water vapor concentration
(see above), which alters the availability of surface
photons, and therefore the predicted pigment absorption.
However, Arp et al. (2020) have proposed a different type
of optimization for the above question, and that too, to
determine the expected spectral absorption bands of two
main pigments of a photosynthetic organism living in an
environment characterized by a specific solar spectrum.
Arp et al. (2016) have also discussed a theoretical analysis
of the conditions for minimal energy fluctuations and
optimized power conversion efficiency of a nanoscale
quantum heat engine photocell with two monochromatic
photon-absorbing channels (2QHC). Here, these authors
had found that, for two specific wavelengths from the solar
spectrum, the fluctuations of the incident solar power can
be naturally suppressed in the output, without any active
feedback or adaptive control mechanisms. Thus, Arp ef al.
(2020) used a version of the optimization model, used
earlier for the 2QHC photocell model, and theoretically
derived the optimized absorption characteristics of two
pigments for solar power conversion of several photo-
synthetic organisms living in niches with different solar
spectrum characteristics. Under the full solar spectrum
incident on Earth, the wavelength bands predicted for the
two pigments were attributed to the LHCII complex, which
contains mainly Chl @ and Chl 5. However, we note that
these bands were shifted toward the orange region of the
spectrum, compared to those measured in vivo (Fig. 34,D
in Arp et al. 2020), or to those predicted by Bjorn (1976)
using a different optimization criterion (i.e., 707 and
682 nm under maximal irradiance, or 682 and 642 nm
under 1/100 of the maximal irradiance; see -earlier
discussion). If we accept the idea that minimizing the
excitation energy fluctuations is also a valid criterion for
the optimization of light-harvesting systems, then Chl b
together with Chl a must play a regulatory role in the
photosynthesis of terrestrial plants. Further, Arp et al.
(2020) presented examples of purple bacteria, and green
sulfur bacteria; we, however, note that in the case of green
sulfur bacteria, there are serious errors, in this paper,
related to the information used about the photopigments
involved. We suggest that the hypothesis presented by
Arp et al. (2020) must be re-examined by applying similar
optimization methods for various photosynthetic aquatic
organisms, known to possess different accessory pigments,
depending on the light conditions in their respective niches.
Indeed, Stomp et al. (2007a,b) had already found that
differences in light spectrum offer opportunities for niche
differentiation for phytoplanktons, which allow coexistence
of aquatic species with photopigments absorbing different
wavelengths of light (see Stomp et al. 2004, 2008). In these
studies, it was shown that the shoulders in the absorption
spectrum of (pure) water create gaps in the underwater
light spectrum (Fig. 34), due to the exponential nature of
light attenuation, and that the wavebands between these
gaps define several distinct niches in the underwater light
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Fig. 3. Underwater differentiation of niches for photosynthetic aquatic microorganisms. Stomp et al. (2007a) have suggested that the
light absorption by water determines ‘dips’ (marked by red /ines) in the underwater light spectra, which create a series of distinct niches
for phototrophic microorganisms. (4) The overlay of 100 underwater light spectra was calculated at the euphotic depth. (B) The overlay
of light absorption spectra of 20 phototrophic species (i.e., oxygenic photosynthetic microorganisms, and photosynthetic bacteria). Two
examples of absorption spectra used in the panel (B) are shown in: (C) for green-colored cyanobacteria, mostly using red light absorbed
by phycocyanin (peak at 630 nm) and Chl @ (peak at 680 nm); and (D) for red-colored cyanobacteria (Synechococcus strains) mostly
using green light absorbed by phycoerythrin (peak at 560 nm). The absorption spectra shown in black correspond to the underwater
‘light spectra’ of these two species. Figure modified from Stomp ez a/. (2007a).

spectrum (Fig. 3B). The relative similarity between the
dips in the curves presented in Fig. 34,8 seems to confirm
the hypothesis of Stomp et al. (2007a). Further research is
needed to fully understand the origin and evolution of the
spectral signatures of oxygenic photosynthesis, not only
for Chl a, but all other photosynthetic pigments.

Light quality effects on photosynthesis, inferred
from Chl fluorescence induction

Use of Chl a fluorescence induction in the study
of photosynthesis: Basics

One of the most often used methods in the study of
photosynthesis is Chl a fluorescence (ChlF; reviewed by,
e.g., Kalaji ef al. 2014, 2017; Baba et al. 2019, Hu et al.
2020); it is only 3—8% of the total absorbed light (Duysens
1979, Trissl et al. 1993). The emission spectrum of
in vivo ChlIF at room temperature has a major maximum
at about 685 nm, and another smaller and broader shoulder
at about 740 nm; both these bands have been ascribed
mainly to PSII with a minor PSI contribution that increases
at wavelengths beyond 685 nm (Dau 1994, Govindjee
1995, 2004).

Chl a fluorescence induction (ChIFT) shows the
dependence of ChlF emission on the time of illumination
of a sample that had been previously adapted to darkness.
During ChlFI, electron transport in both PSI and PSII
occur, followed by the induction of the Calvin—Benson
cycle (see Krause and Weis 1991, Baker 2008; and chapters
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in Papageorgiou and Govindjee 2004, and in Demmig-
Adams et al. 2014). Measurement of the ChIFI is very
popular in photosynthesis research since it provides much
information on various aspects of photosynthesis (e.g.,
Schreiber et al. 1986, Strasser and Strasser 1995). For
reviews and some original papers on ChlFI, coauthored by
George Papageorgiou, see Govindjee and Papageorgiou
(1971), Papageorgiou (1975, 1996), Papageorgiou et al.
(2007), Tsimilli-Michael et al. (2009), Kana et al. (2009,
2012), Papageorgiou and Govindjee (2011), Stamatakis
etal. (2007,2016), and Stirbet et al. (2019). Also, see other
reviews, e.g., that by Lazar (1999, 2006, 2015), Schreiber
(2004), Strasser et al. (2004), Stirbet and Govindjee (2011,
2012), Stirbet et al. (2018, 2020), and Tsimilli-Michael
(2020).

The ChIFI begins with a fast (~0.3 s) fluorescence
rise followed by a slow (~300 s) decrease. Such kinetics
was first observed by Kautsky and Hirsch (1931), who
had used their eyes to detect these changes! George
Papageorgiou, while working for PhD in Govindjee's Lab,
contributed much in the early stage of ChIFI research
(e.g., Papageorgiou and Govindjee 1967, 1968a,b). It is
generally accepted that the variable ChIF is mostly from
Chl a in PSII, whereas the contribution from Chls of PSI
is rather negligible (e.g., only ~4% increase of ChIF of
isolated PSI upon closing its RC; see Wientjes and Croce
2012). A somewhat higher (8-17%) PSI contribution to
the variable fluorescence has been predicted by Lazar
(2013) using theoretical mathematical simulations; this
was confirmed by Schreiber and Klughammer (2021),



who measured the ChIF rise in vivo both at emission
wavelengths lower than 710 nm (mostly PSII ChlF) as well
as longer than 700 nm (enriched in PSI ChlF). The curves,
reflecting variable PSI ChlF, resembled those theoretically
simulated by Lazar (2013). Both in the simulations and
experiments, the variable PSI ChlF was lower when the
PSI acceptor side was oxidized (i.e., when the system was
in a ‘light-adapted’ state). This observation is consistent
with the low contribution of variable PSI ChlF, observed
using the same experimental protocol (Pfiindel 2021).

ChIF rise from the initial fluorescence (Fo; the ‘O’
level) to the peak (Fp, or Fy, which is the ‘P’ level in
saturating light) is fast (~300 ms), reflecting mostly the
reduction of the first plastoquinone electron acceptor of
PSII, Qa (Duysens and Sweers 1963). However, for a
discussion of other possibilities, see Lazar (2006), and
Stirbet and Govindjee (2011, 2012).

The variable (Fv) to maximal (Fy) ChlF, i.e., (Fm — Fo)/
Fu, is widely used as a proxy for the maximal quantum
yield of PSII photochemistry for the dark-adapted state
(Kitajima and Butler 1975, Genty et al. 1989). For healthy
leaves, it is ~0.83 (Bjorkman and Demmig 1987, Lazar
and Nau$ 1998), which matches the value obtained
independently from time-resolved ChIF measurements
(see e.g., Wientjes et al. 2013a), supporting the use
of Fy/Fy ratio as a proxy for the quantum yield of PSII
photochemistry.

Here we mention that the Fy level is often reached
using multiple turnover saturating light pulse. If a single
turnover saturating flash is used in the presence of DCMU
[3-(3,4-dichlorophenyl)-1,1-dimethylurea], which inhibits
the electron transport from Qa to Qg, the maximal ChlF
measured, denoted as F,, has values significantly lower
than Fy, leading to Fy/F, ratios between ~0.6 and ~0.4
(see e.g., Joliot and Joliot 1979, Magyar et al. 2018). Since
Qa4 is reduced at both F; and Fy levels, the increase of Fy
over F; was attributed to conformational changes of PSII
(Schansker et al. 2011, Prasil et al. 2018, Laisk and Oja
2020, and Sipka ef al. 2019, 2021). Thus, conforming to
these views, the Fy reflects not only the reduction of Qa,
but also the conformational changes of PSII. However, we
will further refer in this review to the Fy/Fy ratio obtained
using multiple turnover saturating light pulse as a proxy
for the quantum yield of PSII photochemistry, as used
in standard ChlFI measurements, and since the reported
light-induced conformational changes seem to be a natural
phenomenon.

The decrease of ChIF emission during the ChIFI
(from the ‘P’ to the ‘S’, or the ‘T’ level) is due to both
photochemical and nonphotochemical quenching (NPQ)
of ChIF. The ferredoxin-NADP*-reductase and several
enzymes of the Calvin—Benson cycle are inactive in
darkness, and they are activated (with a delay) upon
illumination, and carbon assimilation becomes the major
sink for electrons (available in NADPH) and energy (ATP).
Under these conditions, the electrons can flow to NADP?,
and thus, the electron transport chain in the TM becomes
less reduced, leading to a decrease in ChlF, known as
photochemical quenching. All other effects causing a
decrease in ChlF, except for the photochemical one, are
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grouped into the NPQ of ChlF. Since the movement (or
turning away from light) of the chloroplasts in the leaf
under high light conditions (the so-called avoidance
movement; e.g., Haupt and Scheuerlein 1990, Barankova
et al. 2016), and the state 1 (high ChlF) to state 2 (low
ChlF) transition (Papageorgiou and Govindjee 2011)
decrease the measured ChlF, both are considered to be
NPQ processes (Stirbet et al. 2020). However, according
to Papageorgiou and Govindjee (2014), it is preferable to
consider as NPQ only those processes in which the excess
energy in Chls is dissipated as heat. In this sense, the
photoinhibition initiated by the photodamage of PSII (e.g.,
Kale et al. 2017) might be also considered an NPQ process,
since the photoinhibited PSIIs dissipate heat (Anderson
and Aro 1994, Chow 1994, Vavilin et al. 1998). But the
typical NPQ process is the quickly reversible ‘high-energy’
NPQ (qg), which develops in a few seconds and relaxes
within 1-2 min in darkness (reviewed in Demmig-Adams
et al. 2014). In plants, the g is related to the formation of
trans-thylakoid ApH in light (Wraight and Crofts 1970,
Briantais et al. 1979), formation of zeaxanthin and
antheraxanthin from violaxanthin (Yamamoto ez al. 1962,
Yamamoto and Higashi 1978), and to the presence of
PSII protein subunit S (PsbS) (Li ef al. 2000). In algae,
the g is much more species-dependent than that in plants.
In unicellular green algae, or other algal groups (e.g.,
diatoms), the extent of qe depends on the light-harvesting
complex stress-related (LHCSR) proteins (Peers ef al.
2009). In most organisms, the LHCSR level is strongly
light-dependent, and in some species, such as the green
alga Chlamydomonas reinhardtii, acclimation to low light
leads to very low NPQ levels (Peers ef al. 2009). In
cyanobacteria, the qg is affected by the presence of an
orange carotenoid protein (OCP), a soluble protein
binding a ketocarotenoid (Wilson et al. 2006). After being
activated by high intensity of white or blue light, the OCP
acts both as a light sensor and a quencher of excitation
energy at the level of PBS (Harris ez al. 2016, Kirilovsky
and Kerfeld 2016, Magdaong and Blankenship 2018).

Many parameters reflecting the function of the
photosynthetic electron transport chain in the TM have
been successfully evaluated from the fast ChIF rise
measured under illumination by high light [~3,000
pumol(photons) m? s or more], the so-called O-J-I-P
transient (reviewed, e.g., by Strasser et al. 2004 and
Stirbet and Govindjee 2011). By application of pulses
of saturating light during the slow ChIFI decrease, many
other parameters, reflecting both the photochemical and
nonphotochemical quenching, can be calculated as well
(reviewed, e.g., by Lazar 2015). However, the most used
parameter determined from the fast ChlF measurement is
Fv/Fum, which is used as a measure of the maximal quantum
yield of PSII photochemistry (see above).

Importance of the quality of excitation and actinic light
in Chl fluorescence study of photosynthetic organisms

We provide below a brief account of the available

instruments for measuring ChlF. Two approaches have
been developed for the measurements of the ChIFI. In
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the first, continuous excitation light is used to drive
photosynthesis and ChlF; the intensity of ChIF signal
reflects not only the quantum yield of ChlF, but also the
intensity of excitation light. A commercially available
fluorometer using this type of measurement is the Plant
Efficiency Analyser (PEA, Hansatech, Norfolk, UK),
a shutterless and LED-based instrument. In the second,
continuous actinic light is used to drive photosynthesis, and
microsecond flashes of high frequency modulated light are
used for the excitation of ChlF (measuring flashes). With
this method, called the pulse amplitude modulation (PAM)
technique, the magnitude of the ChIF signal reflects the
quantum yield of ChlF. Also, with this type of fluorometer,
it is possible, in principle, to measure the ChlF using light
of one color for the measuring flashes, and another beam
of different colors for the actinic light. In addition to the
above-mentioned instruments for the measurement of the
ChIFI under continuous light, techniques based on the
application of light flashes/pulses of different intensity
and duration have also been developed. These include
(1) the pump-and-probe technique (PAP: e.g., Mauzerall
1972), also called single flash induced transient fluo-
rescence yield technique (SFITFY: e.g., Belyaeva et al.
2014); (2) the fast repetition rate technique (FRR: e.g.,
Kolber et al. 1998), also called light-induced fluorescence
transient (LIFT: e.g., Osmond et al. 2017); and (3) the flash
fluorescence induction (FFI: e.g., Nedbal et al. 1999)
method. For details, see the papers cited above.

The first commercially available fluorometer based
on the PAM technique was Walz 101 (Walz, Effeltrich,
Germany), which with the use of a so-called ‘saturation
pulse method’ has been used to separate the photochemical
and nonphotochemical quenching of the excited state of
Chl a (Schreiber 2004). This version of the fluorometer
uses white light for both the measuring flashes and the
actinic light. One of the recent Walz PAM-fluorometers,
PAM-2500, uses orange (630 nm) light, for measuring
flashes and blue or red beam for actinic light. Another
current fluorometer is Dual-PAM-100 (also from Walz); it
uses blue (460 nm) excitation flashes, and this instrument
can be equipped with an optional measuring head,
which provides orange (620 nm) measuring flashes for
measurements on cyanobacteria (see below). Further,
this Dual-PAM-100 measures ChlF simultaneously with
absorption changes in P (Chl @ pair in the RC of PSI)
by 820 nm transmittance changes. Further, it can also
measure transmission changes at 515 nm (Ps;s signal),
which reflects voltage across the TM.

Going back to the first PEA fluorometer, we note that
it used 650 nm actinic light; although the current Handy
PEA also uses 650 nm excitation, the new Pocket PEA
uses 627 nm excitation. Still another instrument, from
the same company, is M-PEA (Multi-Function Plant
Efficiency Analyser); it is quite versatile since it measures
not only ChIF and Ps" kinetics, but also delayed (Chl @)
fluorescence (DF). Among other manufacturers, we men-
tion Photon Systems Instruments (PSI, Czech Republic);
this company was one of the early manufacturers.
The original fluorometer from PSI is FL-100 with
which ChIF is measured both by PAM and continuous
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excitation techniques. A current fluorometer from PS/
is a hand-held unit, the FluorPen, which uses 470 nm
excitation light, but their FL-6000 has the possibility of
using both 460 and 623 nm for excitation. For a comparison
of the O-J-I-P ChIF transients measured by Handy
PEA with that by FluorPen, see Padhi et al. (2021); the
observed differences between the O—J—I-P transients from
Arabidopsis thaliana leaves were due mainly to the use of
different colors of excitation light (the topic of our current
review): blue (in FluorPen) and red (in HandyPEA).

To measure the effects of different colors of light
via ChlF, a MULTI-COLOR-PAM fluorometer has been
developed by Walz (Schreiber et al. 2011, 2012). This
fluorometer provides six different wavelengths for the
measuring light (400, 440, 480, 540, 590, and 625 nm),
as well as six different wavelengths of continuous actinic
light and saturating pulse: blue to red (440, 480, 540,
590, and 625 nm), and ‘white’ light (obtained using light
in the 420-640 nm range). The use of light of different
wavelengths is particularly important when working
with organisms that have different antenna pigment
composition, or for the study of wavelength-dependent
processes, as, e.g., reversible state transitions, and the OCP
quenching, as well as for the studies on the wavelength
dependence of the rates of electron transport, and changes
in absorption cross-sections, particularly of PSII.

To compare measurements made using different colors
(wavelengths) of light, many measurements must be
made to obtain statistically meaningful data. For this,
Hogewoning et al. (2012) used a laboratory-built fluoro-
meter with red and green light measuring flashes,
modulated at different frequencies, and applied simul-
taneously to the samples. ChlF emission induced by these
flashes was detected selectively and simultaneously, using
two laboratory-built demodulators (lock-in amplifiers),
one for each of the two excitation wavelengths; this is a
complicated system and requires precise adjustment of two
photodiodes and demodulators. Further, if the experiment
would require a parallel use of three or more measuring
light beams, the difficulties would be even greater! The
simultaneous measurement of ChlF emission, under
excitation by two (or potentially more) colors of measuring
flashes, was, however, improved by Lysenko ef al. (2018);
these authors developed bicolor (potentially multicolor)
fast-Fourier PAM Chl fluorometry where the sample was
simultaneously excited by red (660 nm) and blue (470 nm)
measuring flashes (duration of ~1.4 ms) at a frequency of
360 Hz and 370 Hz, respectively. Data of ChIF emission
(at 740 nm) were processed by real-time fast-Fourier
transform to obtain the amplitudes of ChIF excited by
the light flashes, mentioned above. In this system, the
bicolor ChlF excitation was combined with actinic light
and saturating pulses of blue or red color. Lysenko ef al.
(2018) used this measuring technique on the leaves of
Ficus benjamina, and then discussed the implications of
calculated quantum yields of PSII photochemistry.

Most of the above-mentioned measuring methods have
been used in experiments on many plant leaves, where
the light-harvesting pigments are Chls, and thus, many
fluorometers use blue and/or red excitation light, mostly



absorbed by Chls. However, the situation is different
with cyanobacteria, which differ from plants and green
algae in several aspects, as reviewed by Campbell ef al.
(1998) and Stirbet er al. (2019). In cyanobacteria:
(1) light is mainly absorbed by phycobiliproteins (see
also the ‘Introduction’) in the external light-harvesting
antenna of both PSI and PSII, the PBSs; (2) the TM
contains both the photosynthetic and respiratory electron
transport components; (3) the PSI/PSII ratio is higher
(2 to 10, depending on the environmental conditions)
compared to about 1 in leaves and green algae; (4) state
transitions involve the movement of PBSs from PSII to
PSI and vice versa (see also Papageorgiou and Govindjee
2011, 2014); further, this phenomenon is more important
here than in higher plants and green algae (but in some
algae, e.g., in Chlamydomonas, the state transition also
plays a significant role; see Kodru ef al. 2015); and lastly
(5) the NPQ is OCP-driven (see above). Based on these
facts, different methods have been used to obtain the
correct ChlFI in cyanobacteria, as compared to those
earlier developed for leaves and green algae. An example
of a change concerning the quality of light to be used for
ChIF measurements in cyanobacteria is because, unlike
plants, they are not in state 1 after dark-adaptation, but
in the state 2 (i.e., PBSs are attached to PSIs); this is
because their plastoquinone pool is reduced, due to other
metabolic reasons (see e.g., Stirbet et al. 2019). In state 2,
lower values of F and Fy are observed when compared to
state 1 (where PBSs are attached to PSIIs); this is a
consequence of several processes, leading to an incorrect
low Fy/Fy ratio, of about 0.3-0.4 (see e.g., Ogawa et al.
2017, Stirbet et al. 2019). Thus, it is important to have
cyanobacteria in state 1 before the measurement of Fy/Fy.
This is obtained by exciting them with far-red light (which,
as in plants and green algae, is mostly absorbed by Chls of
PSI), or by a weak blue light, when PSI drains electrons
from the electron transport chain, because of their high
PSI/PSII ratio, which, thus, keeps the PQ pool oxidized,
and the cells go into the state 1. We emphasize that the blue
light must be really weak [~30 pmol(photons) m™s™'] since
otherwise, it would induce the OCP-driven NPQ. Even
when cyanobacteria are in state 1 before the measurement,
the PBSs can move to PSI during the saturation pulse
used to measure Fy, thus affecting this ChIF level.
Therefore, Fu in cyanobacteria is best measured by
using DCMU; under this condition, the PQ pool remains
oxidized. However, as mentioned earlier, the contribution
of the constant ChlF of PSI to Fo and Fy levels is high in
cyanobacteria, due to high PSI/PSII ratio, and this must
be subtracted from both the ChlIF levels (at Fo and Fy) to
obtain the correct Fy/Fy, which is about 0.82 (see Stirbet
et al. 2019 and references therein).

We also note that if a leaf is excited, at room
temperature, by UV-A radiation, centered at 355 nm, the
fluorescence emission spectrum shows, in addition to
ChlF peaks at ~690 nm (red) and 740 nm (far-red), also
blue (440 nm) and green (520 nm) fluorescence. This blue-
green fluorescence comes mainly from the cell walls of the
epidermis, the vascular bundles as well as the trichomes.
The fluorophore responsible for this fluorescence is mainly
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ferulic acid, but also several other compounds (e.g.,
secondary phenolic products: chlorogenic acid, caffeic
acid, and sinapic acid; and flavonoids, e.g., quercetin,
in the vacuole of epidermal cells). To simultaneously
measure all the above fluorescence signals, two different
laboratory-made multicolor fluorescence imaging systems
have been developed by Hartmut Lichtenthaler and his
coworkers (see Lichtenthaler 2021). These two systems
differ in the source used for measuring flashes of UV-A
radiation: either a laser (Lichtenthaler et al. 1996) or a
flash lamp (Lichtenthaler and Babani 2000). Continuous
white light is used in both systems to drive photosynthesis.
By evaluating the ratios of the red-to-the far-red, and the
blue-to-the red, or the blue-to-the far-red fluorescence
emission, we can obtain important information about the
sample used. For example, the red-to-the far-red ratio has
been shown to decrease with increasing Chl concentration
in the leaf (Hak et al. 1990); further, the ratios of the
blue-to-the red and the blue-to-the far-red have been
shown to decrease with the increasing concentration of
nitrogen in the leaves (Langsdorf ef al. 2000). At present,
a multicolor fluorescence imaging system, similar to the
systems mentioned above, has been produced by Photon
Systems Instruments (PSI, Czech Republic), which has
been used, e.g., for early detection of pathogen infection
(Pérez-Bueno et al. 2015), and for the early detection of
stress, by toxic compounds, using photoautotrophic cell
suspension cultures, as sensitive biomarkers (Segecova
etal.2019).

Furthermore, upon UV-A excitation, low levels of
blue-green fluorescence have been observed not only
from isolated chloroplasts (Latouche ez al. 2000) but from
cyanobacteria (Mi et al. 2000) as well as from algal cells
(White et al. 2014). This fluorescence is from NADPH.
We note that the well-known DUAL-PAM-100 fluorometer
(Walz, Effeltich, Germany) has also been equipped with
optional measuring heads for NADPH fluorescence
(Schreiber and Klughammer 2009).

Interaction of blue, green, and red light with plant
leaves, and its influence on the interpretation of Chl
fluorescence

Although only one color of light, usually either red
or blue, is used in fluorometers based on continuous
light excitation, two different wavelengths of light are
simultaneously used in PAM measurements with newer
fluorometers: red actinic light to drive photosynthesis,
and blue measuring light flashes to excite ChlF. Since the
light of different wavelengths penetrates differently in the
samples, the methods used to measure ChIFI affect the
results and their interpretation (see below).

In a dilute solution of Chl with homogeneous
spatial distribution, the prevailing optical effect causing
attenuation of excitation light intensity is the absorption
of light, based on the Beer—Lambert law. However, plant
leaves and algal/cyanobacterial suspensions are optically
dense (i.e., have a high concentration of Chls); in addition,
they are heterogeneous concerning the distribution of
Chls. Thus, excitation light has a complex gradient inside
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the leaf, as well as in algal/cyanobacterial suspensions;
it deviates from the Beer—Lambert law, and the gradient
depends on the quality (wavelength) of the excitation
light. Since different microstructures inside the leaf or cell
suspension receive different light intensities, their ChIF
emission is also different.

We emphasize that different optical phenomena
contribute to a complex light gradient inside leaves, as
well as in algal/cyanobacterial suspensions. Since Chl
molecules are packed in chloroplasts and TMs inside
chloroplasts, Chls that receive the light first, shield the
others below them. This effect is known as the ‘sieve
effect’ or ‘flattening of absorption spectrum’ since it leads
to a decrease and broadening of absorption peaks of the
pigments (Duysens 1956, Das et al. 1967, Javorfi et al.
2006, Merzlyak et al. 2009, Barankova et al. 2016, Naus
et al. 2018). On the other hand, there is ‘scattering’ of
light (all optical effects causing changes in the direction
of light propagation), which increases the path length
of the excitation light beam in the sample, and thus, the
probability of light absorption. This effect is known as
the detour effect (Kok 1948, Terashima and Saeki 1983,
Merzlyak et al. 2009, Barankova et al. 2016, Naus et al.
2018). Hence, an increased concentration of the pigments
causes a decrease of absorption due to the sieve effect,
but also an increase of absorption due to the detour effect,
and as a result, light absorbance is a nonlinear function
(Barankova et al. 2016, Naus§ et al. 2018). Both the
sieve and detour effects lead to similar relative changes
in the absorption spectra of the photosynthetic sample:
an increase in the green region, and a decrease in both
the red and the blue region (Terashima et al. 2009, Naus
et al. 2018).

Optical phenomena and resulting light gradients are
related to the leaf structure in higher plants. In the upper
(adaxial) part of bifacial leaves (e.g., tobacco, pea), the first
layer is a cuticle layer (which also contains trichomes),
which is formed by waxes. A layer of epidermis cells is
under this layer, followed by a layer of cylindrical palisade
mesophyll cells. Under these layers, there are sphere-like
spongy mesophyll cells, separated by air cavities, followed
again by the epidermis and the cuticle in the lower
(abaxial) leaf side, which also contains stomata. Since
both the palisade and spongy mesophyll cells contain
Chls, this is where most of the light absorption takes place
in the leaf. Air cavities, in the spongy mesophyll cells,
are responsible for most of the light ‘scattering’ by light
refraction and reflection, which is due to the difference in
refractive indexes of air/cell interfaces. In unifacial leaves
(e.g., maize, barley), mesophyll is not differentiated into
palisade and spongy cells but is composed of compactly
arranged isodiametric cells. Thus, the overall optics is
different.

The light gradients within leaf tissues were first
estimated from measurements with a fiber optic probe
(Vogelmann and Bjorn 1984, Vogelmann et al. 1989,
Cui et al. 1991) or from scattered light (Takahashi et al.
1994, Koizumi et al. 1998), measured from the leaf cross-
section, upon illumination of the leaf surface, assuming
that the intensity of the scattered light inside the leaf is
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proportional to the internal light fluence rate. Based on
qualitative agreement among the light gradients estimated
by the above methods and the profiles of carbon fixation
as well as ChlIF of leaf cross-sections, upon illumination
of the leaf surface, Vogelmann and Han (2000) suggested
that the ChIF profiles within the leaf cross-sections may
be used to estimate the light gradients within a leaf. This
was confirmed by Vogelmann and Evans (2002), who
combined measurements of ChIF of leaf cross-sections
upon illumination of leaf surface as well as upon epi-
illumination (perpendicular to leaf cross-section surface).
Thus, ChIF profiles within the leaf cross-section upon
illumination of leaf surface seem to provide a valid
measure of light absorption through a leaf, and, thus,
such ChIF profiles were used for that purpose in several
subsequent studies (see below).

Since the structure of leaves is not the same when
going from the adaxial or the abaxial leaf side, different
light gradients are expected when a leaf is illuminated
from one or the other side. Steeper light gradients
(utilizing ChlIF) have been reported when the abaxial leaf
side was illuminated (Vogelmann and Evans 2002, Evans
and Vogelmann 2003, Brodersen and Vogelmann 2010,
see Fig. 44,B). In addition to the detour effect (see above),
due to light refraction on air/spongy cell interfaces, the
steeper light gradient is probably also caused by light
scattering from grana, since a higher number of grana
and more appressed grana stacks are present in spongy
chloroplasts (Terashima and Inoue 1985a). Moreover,
these gradients also differ if the incident light is collimated
and perpendicular to the leaf surface or diffuse, the diffuse
light being absorbed more within the leaf (Brodersen and
Vogelmann 2010). Further, light gradients also exist inside
macroalgae (Lichtenberg and Kiihl 2015, Lichtenberg
et al. 2017) as well as in algal/cyanobacterial suspensions,
grown in photobioreactors (see e.g., Li et al. 2016, Fuente
et al. 2017).

It is well known that Chls have a higher absorption
coefficient in the blue region than in the red and a very
small one in green light. Moreover, carotenoids also
absorb blue light. Consequently, about 90% of blue and
red light is attenuated in the upper 20% of the leaf's depth,
while a high fraction of green light penetrates deeper into
the leaf (Cui e al. 1991). Indeed, measurements of ChIF
profiles and gradients across the mesophyll of absorbed
monochromatic light in spinach leaves have shown that the
blue light is fully absorbed in the first ~150 pm beneath the
leaf surface, followed by the red light (~200 pm), and then
the green light (~300 pm) (see e.g., Vogelmann and Evans
2002, Johnson et al. 2005, Brodersen and Vogelmann
2010, Slattery et al. 2016). As a result of the above, most
of the ChIF measured under illumination with red or blue
light is from the upper layers of the leaves.

Because of differences in light absorption profile
of light, there are also gradients in the content of Chl
and ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco) inside the leaves (Terashima and Inoue 1985b,
Nishio et al. 1993, Sun et al. 1998, Evans 1999, Evans and
Vogelmann 2003). In bifacial leaves, these gradients are
less steep than the gradients of blue and red light, but they
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Fig. 4. Gradients of chlorophyll (Chl) fluorescence and Fv/Fy ratio upon illumination (4,B), or preillumination (C,D), of spinach
leaves (from the adaxial or abaxial side), by using different colors of light: blue, red, and green, but also white, for (C,D). (4,8) Chl
fluorescence was measured from different parts (cross-sections) of leaves, using an imaging fluorometer, and the fluorescence gradients
were used as proxies for gradients of light inside the leaf (see the text). (C,D) Here, the leaves were treated with 1 mM lincomycin
(an inhibitor of prokaryote-type protein synthesis), and preilluminated for 1 h; then, Chl fluorescence was measured with a fiber optic
microprobe fluorometer. The gradients of Fy/Fy in control leaves (without lincomycin and light treatment) are also shown (see the black
curves in C, D). The gradients of Fy/Fy were used to evaluate the photoinhibition effect of different colors of light (see the text). Figure
modified from Vogelmann and Evans (2002) and Oguchi et al. (2011).

match that of the green light.

The above-mentioned light gradients affect the photo-
synthetic activity inside the leaves, which is reflected in
the measured ChIF signals. Using the PAM technique
(see above) and a fiber-optic microprobe, Schreiber ef al.
(1996) measured the Fy/Fy ratio at different depths of
Syringa vulgaris leaves under red light illumination and
obtained almost constant values of 0.77-0.80 (Fig. 4C.D,
black symbols and lines). However, the Fyv/Fy dropped to
~0.5 after 5 min of preillumination with strong white light
[5,000 pmol(photons) m~ s7'], when measured just under
the leaf surface (i.e., at 20-um depth), but it remained
approximately at the control level when measured at
180 um. Thus, photoinactivation of PSII does not occur
homogeneously at different depths in the leaf. In a similar
type of experiment, leaves of Capsicum annuum were
preilluminated, for 60 min, with strong light [2,000
umol(photons) m~ s7'] of different colors, and the Fy/Fy
ratio, measured just under the illuminated leaf surface,
dropped to ~0.45 after preillumination with white, green,
and red light, while the drop of Fv/Fu was higher (i.e.,
to ~0.2) after preillumination with blue light (Terashima
et al. 2009). Further, there was a less steep change in
Fv/Fu, measured within the leaf depth, when the pre-
illumination was with green light. All the observed
effects have been explained, in addition to the existence
of different light gradients for different light colors (see

above), by the fact that the Mn-cluster of the oxygen-
evolving complex (OEC) absorbs UV light, and thus the
highest inactivation of the Mn-cluster (reflected in the
Fv/Fu decrease) is by blue (which has some UV in the beam
used), then by green, and then by red light (Terashima
et al. 2009). Different effects of preillumination by the
white, blue, green, and red light of low, medium, and
high intensities on the Fv/Fy ratio measured from the leaf
surface (Oguchi ef al. 2009), and at particular depths of
the leaves (Evans 2009, Oguchi ef al. 2011, Evans et al.
2017; Fig. 4C,D) have led to the conclusion that there
are two mechanisms involved in PSII photoinactivation:
(1) when the excess energy, not used in photosynthesis
or dissipated as heat, causes PSII photoinactivation; and
(2) when the excitation of Mn, in the Mn cluster of OEC,
causes the release of Mn from the cluster, leading to PSII
damage.

The effect of light gradients on the shape of the
O-J-I-P ChlIF transient and selected ChlF levels, evaluated
from the data, measured on TM suspensions, with different
concentrations of Chl, under red light illumination, was
explored by Susila et al. (2004). Further, data obtained
by using different thicknesses of the sample, and different
intensities of excitation light, were explained by using
a model for the O-J-I-P transient, which also considers
light gradient inside the sample. In this model, particular
layers of the sample had different excitation light intensity,
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due to the light gradient, and the simulated ChIF transient
was a sum of individual ChIF transients of particular
sample layers. Results of the simulations qualitatively
agreed with the experimental data (for details, see Susila
et al. 2004).

The above study was followed by that of Pfiindel
(2009), who used excitation flashes of light of different
wavelengths (430 to 680 nm), given at 10-nm intervals,
to measure both the Fo and Fy levels; Pfiindel (2009)
also used a pulse of saturating white light on leaves of
barley and maize (from the adaxial side of the leaf). The
emission spectra of Fo and Fy were quite similar for barley
(C; plant) and maize (C,4 plant) leaves; they both showed
excitation peaks at 440, 480, 610, and 660 nm. However,
the spectra of Fo and Fy of Chl b-less barley mutant showed
peaks at 440, 500, and 670 nm. For barley, the calculated
Fv/Fu ratio was 0.74-0.78, when excited by 470 nm and
490 nm light. For maize, Fv/Fy had a minimum value
of 0.72 (excitation 520 nm) and a maximum of 0.79
(excitation 430 nm). The Chl b-less mutant showed a
different spectrum for Fy/Fy, with the lowest value of
0.69 (excitation 470 nm), indicating the lack of Chl b.
Although the Fo, Fy, and Fy/Fy values, mentioned above,
showed minima and maxima at particular wavelengths,
all values had high data variance. The wavelength
dependence, observed in the excitation spectrum of Fy/Fy
in the samples of barley and maize, is due to the different
absorption spectra of PSII and PSI in the plants used by
Pfiindel (2009).

Evans et al. (2017), using Setaria viridis (a C,4 plant)
and Spinacea oleracea (a C; plant), compared photo-
synthetic electron transport rates (ETR) measured via
ChIF from the leaf surface and gas exchange (gross CO,
assimilation rate, i.e., the sum of CO, assimilation rate
and mitochondrial respiration) using different fractions
of blue and red actinic light illumination. For leaves of
both species, mentioned above, and by using an increasing
fraction of blue actinic light, the ETR was higher than the
rate of photosynthesis, measured by gas exchange. These
observations agreed with theoretical simulations based on
a multilayer photosynthesis model of Evans (2009), and
after considering reported gradients of blue and red actinic
light, the concentration of Chl, and Rubisco content inside
the leaves (see above).

Going back to the data on ChlF, the measured signal
is known to be affected by reabsorption of fluorescence
(Agati ef al. 1993, Naus et al. 1994, Gitelson et al. 1998,
Romero et al. 2018). This is because the major (685 nm)
part of the ChIF emission spectrum overlaps with the
major Chl absorption band (at 680 nm). Thus, a large part
of ChIF (~680 nm) is reabsorbed and re-emitted as ChlF.
However, since ChIFI is usually measured at wavelengths
longer than 700 nm, the reabsorption alone does not
significantly affect the detected ChlF signal.

The existence of ChlF reabsorption was considered in
experiments by Rappaport ez a/. (2007) who recommended
the use of green light for excitation of the sample. When
green light of moderate intensity was used, the time course
of ChlF rise was similar at 680 nm (i.e., at a wavelength
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of high ChIF reabsorption, and thus the detected ChIF
was mostly from the leaf layers close to the detector), or
> 750 nm (i.e., for wavelengths when ChIF reabsorption
is minimal and thus, all leaf layers contribute about
equally to the detected ChlF signal), indicating that green
light penetrates deeper leaf layers, and is homogeneous
throughout the leaf.

The above examples refer to measurements with leaves.
Remelli and Santabarbara (2018) measured emission
spectra (from 600 to 800 nm) of Fo and Fy upon excitation
of the cyanobacterium Synechocystis sp. PCC 6803 with
different wavelengths (from 420 to 680 nm) of light.
The Fv/Fy ratios, calculated from these spectra, showed
pronounced variation, reaching a maximal value at wave-
lengths close to the 684 nm emission, upon excitation at
435 nm. This variability was due to the contribution of PSI
ChIF in the red tail of the emission spectrum, and to an
uncoupled/weakly coupled fraction of PBS, in the short
wavelength emission wing. The same results as above
were obtained also for the cyanobacterium Synechococcus
PCC 7402 (Santabarbara et al. 2019). On the other hand,
the emission spectra of the Fy/Fy ratio of green algae
Chlamydomonas reinhardtii and Chlorella sorokiniana
showed only minor variations, irrespective of the excitation
wavelength (Santabarbara et al. 2019).

Acclimation of oxygenic photosynthetic
organisms to different colors of light

The importance of photoreceptors

As photoautotrophs, photosynthetic organisms are sensi-
tive to their light environment. They possess various
photoreceptors that sense key environmental cues, such
as the intensity, quality (wavelength), and directionality
of light. They have a complicated network of signal
transduction that enables a variety of physiological
adjustments in response to changes in the light environment
(Kami et al. 2010, Briggs 2014, Dueck et al. 2016,
Rockwell and Lagarias 2017, Ptushenko et al. 2020). The
use of light-emitting diodes (LEDs) has helped us gain
new knowledge about these processes (see e.g., Darko
et al. 2014 for details).

There are many types of photoreceptors in different
photosynthetic organisms (for cyanobacteria, see Bhaya
2016, Wiltbank and Kehoe 2016, 2019, Villafani et al.
2020; for plants, see Moglich et al. 2010, Kong and
Okajima 2016, Paik and Huq 2019; and for algae, see
Rockwell et al. 2014, Rockwell and Lagarias 2017).
Some of these photoreceptors are directly involved even
in the perception of non-light stimuli, such as temperature
(thermosensing; see Paik and Huq 2019). Below, we
discuss the involvement of several of these photoreceptors
in the acclimation of the light-harvesting apparatus in
cyanobacteria to environmental light changes, and on the
regulation of photosynthesis through stomatal opening/
closing and chloroplast photorelocation movements in
plants. Lastly, we will present examples of the effects of
light quality on the growth of different species of plants,



and the advantages of using high-intensity LEDs for the
optimization of light in systems, such as greenhouses,
soilless systems, and vertical gardening.

Acclimation of cyanobacteria to changes in
environmental light quality

As mentioned earlier, cyanobacteria can sense changes
in the color of the ambient light, which trigger reversible
acclimation processes, including the remodeling of their
PBS antenna complex, which increase the efficiency of
light harvesting for photosynthesis (Kehoe and Gutu
20006, Hirose et al. 2013, Sanfilippo et al. 2019). Initially,
such a change was known as ‘complementary chromatic
adaptation’ (CCA; see e.g., Gaidukov 1903), since changes
in the pigmentation of cyanobacterial cells were modulated
in a complementary way with the color of the light in the
environment. However, since many noncomplementary
types of these processes were later discovered (Villafani
et al. 2020), and because they involve changes in gene
expression, rather than changes in genetic composition
(necessary for an adaptation process), all these phenomena
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are now called ‘chromatic acclimation’ (CA).

The phytochromes are important photoreceptors that
are found in all oxygenic photosynthetic organisms;
they contain a linear tetrapyrrole (bilin) chromophore
covalently attached to a GAF domain (named after
the three proteins that contain this domain: N-terminal
c¢cGMP phosphodiesterase; adenylyl cyclase; and FhlA)
for light perception via 15,16-photoisomerization. The
GAF domain is usually part of a larger photosensory core
module (PCM) of phytochromes (Fig. 5). In common
(canonical) phytochromes found in plants (Phy) and in
cyanobacteria (e.g., Cphl; Yeh er al. 1997, Rockwell
and Lagarias 2017), the PCM has three domains
(PAS-GAF-PHY; see also Rockwell and Lagarias
2010, Wiltbank and Kehoe 2019); it is connected with
a carboxy-terminal output domain via a flexible hinge
region (see also Hoang ef al. 2019). On the other hand, the
PCM in Cph2 has only two domains (GAF-PHY; Wallner
et al. 2020), while the cyanobacteriochromes (CBCRs),
which are small photoreceptors usually found as modular
components in multidomain cyanobacterial signaling
proteins, have GAF-only photosensory modules (Rockwell

Fig. 5. Domain structure of phytochrome subfamilies in cyanobacteria and plants (4), and phytochrome photoconversion (B and C).
(4) Phytochromes have a modular domain architecture, usually consisting of a globular N-terminal photosensory core module (PCM),
with the most complex PCMs containing three protein domains (PAS-GAF-PHY, with GAF binding the bilin chromophore), and
a C-terminal regulatory region, which contains histidine kinase (-related) regulatory domains. The PAS domain of PCM is missing
in Cph2, while the molecules of Phys have two additional PAS domains in the regulatory region, important for nuclear localization
(Rockwell et al. 2006). There are also small CBCR photoreceptors that contain only a GAF domain, functioning as modular components
in multidomain cyanobacterial signaling proteins, which are important in cyanobacterial chromatic acclimations. (B) The primary
photochemical step of the Pr 2 Pfr conversion: Z 2 E photoisomerization of the phytochrome bilin chromophore. Cphl and Cph2 bind
phycocyanobilin, Phys bind phytochromobilin, and CBCR can bind various bilin pigments as chromophores. (C) Plant phytochrome
photocycle and dark reversion, with Pr and Pfr absorption spectra. See the text for details. CBRC — cyanobacteriochromes; Cphl and
Cph2 — phytochrome subfamilies, named after cyanobacterial phytochromes 1 and 2 from Synechocystis sp. PCC 6803; Cys — cysteine;
Phys — phytochrome subfamily found in plants; plant Pr and Pfr — red-light absorbing and far-red light absorbing states of phytochrome.
Figure modified from Li ef al. (2011), Rockwell and Lagarias (2017), and Wiltbank and Kehoe (2019).
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and Lagarias 2017, Fushimi et al. 2020, Moreno et al.
2020) (Fig. 54). In all these subfamilies of phytochromes,
light absorption by the bilin chromophore induces the
photoisomerization of the C15-C16 bilin double bond,
which triggers reversible photoconversion between the
157 dark state and the 15E photoproduct state, with the
two chromophore configurations having different spectral
properties (Fig. 5B,C; Yeh et al. 1997, Rockwell and
Lagarias 2017). Then the Pfr migrates to the nucleus where
the PCM domain can interact with regulatory transcription
factors (Rockwell et al. 2006, Oh and Montgomery 2017).
CBCRs are essential in many chromatic acclimation types
(Wiltbank and Kehoe 2019), and in contrast to the canonical
phytochromes that are red/far-red receptors, they perform
a variety of photocycles at different wavelengths (colors)
of light: UV-A, visible, and far-red (Ikeuchi and Ishizuka
2008, Hirose et al. 2013, Blain-Hartung et al. 2018). We
also note that the photoreceptors responsible for chromatic
acclimation also induce changes in cell morphology and
physiology of cyanobacteria, besides those in the PBS
structure (Sanfilippo et al. 2019).

The phenomenon of chromatic acclimation was first
observed in cyanobacteria which contain phycocyanin
(PC; Amax = 620 nm) and phycoerythrin (PE; . = 540 nm),
out of which ~70% showed differences in their response
to green and red light. These cyanobacteria have been
classified into three groups (Fig. 64; Tandeau de Marsac
1977): Type 1 — no change in PC or PE content under
both green and red light (i.e., no chromatic change);
Type II — PE accumulation under green light, but not
under red light, but PC is constitutively produced; and
Type Il — PE accumulation under green light, but not
under red light, and PC accumulation under red light,
but not under green light. Here we note that the Type III

group is also responsible for similar responses to teal
(blue-green) and yellow light (Wiltbank and Kehoe
2016). Moreover, a 4" group, Type IV, has been found in
the unicellular marine cyanobacterium Synechococcus,
considered to be the second-most abundant phototroph
on our Earth. This CA takes place in one subgroup of
Synechococcus, called blue-green generalists, and it
involves the replacement of three molecules of green
absorbing phycoerythrobilin (PEB; A = 550 nm) with an
equivalent number of blue absorbing phycourobilin (PUB,;
Amax = 495 nm) when the ambient light changes from
green to blue, and the reverse occurs when the ambient
light changes from blue to green, while the PC and PE
content does not change (Fig. 65; Palenik 2001, Everroad
et al. 2006, Sanfilippo et al. 2019). However, in the other
two subgroups of Synechococcus, known as the blue-light
specialists (having a high PUB:PEB ratio, and absorbing
efficiently blue light), and the green-light specialists
(having a low PUB:PEB ratio, and absorbing efficiently
green light), the PUB:PEB ratios are not influenced by
changes in the ambient light color (i.e., there is no CA).
The 2™ and the 3™ group, described above, are now
known as CA2, and CA3 types (Fig. 64), and are initiated
by the CBCR photoreceptors CcaS and RcaE, respectively
(Kehoe and Gutu 2006, Hirose et al. 2013, Sanfilippo
et al. 2019). The exact process by which the relative
amounts of blue and green light are being sensed in the
4% group of cyanobacteria (now the CA4 type; Fig. 6B)
is still unknown. It appears that CBCRs are not involved
here, since genes encoding such proteins have not been
found in the genome of Synechococcus cells. However, it
was found that the light signal is mediated via the chromo-
phore lyases MpeZ and MpeW, and the transcriptional
regulators FciA and FciB (Shukla er al. 2012, Sanfilippo

Fig. 6. A diagram of different types of chromatic acclimation (CA) in cyanobacteria; here, the nature of changes in light-harvesting
structures are specified for each type of CA; the phycobilisomes (PBS) are shown attached to the thylakoid membrane, in which the
photosystems are demarked by two vertical lines. For simplicity, the positions of the PBS are illustrated in the same manner in almost all
cases, and the CA changes are shown in color. The three major types of CA are: (4) green/red acclimation, including the CA1, CA2, or
the CA3 type; (B) blue/green acclimation CA4; and (C) red/far-red acclimation, including CAS or CA6 type (also called FaRLiP). In the
first row are shown CA changes in the PBS induced under green light (for 4), blue light (for B), and red light (for C), while in the second
row are shown changes under red light (for 4), green light (for B), and far-red light (for C). APC — allophycocyanin; PC — phycocyanin;
PCB — phycocyanobilin; PE — phycoerythrin; PEB — phycoerythrobilin; PUB — phycourobilin. See the text for further details. Modified

from Sanfilippo et al. (2019).
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et al. 2016).

Two other types of CA, labeled CAS5 and CA6
(Fig. 6C), are present in cyanobacteria shaded from the
red light, but functioning in far-red (A > 700 nm) light;
these contain far-red absorbing Chl d and Chl f (see
‘Introduction’, and Sanfilippo et al. 2019, Hirose et al.
2019). The CAS was discovered in Acaryochloris marina
MBIC11017, which, in addition to possessing far-red-
absorbing Chl d, can increase dramatically the PC content
of its rod-shaped PBS, when placed under orange-red
(625 nm) light (Duxbury et al. 2009). On the other hand, the
presence of CA6/FaRLiP is responsible for a physiological
response, by the organism, involving an extensive
remodeling of the photosynthetic apparatus, which, in
turn, allows growth under far-red light, since it contains
the far-red-absorbing PBS and photosystems containing
Chl f'and Chl d (Chen et al. 2009, 2010, 2011; Gan et al.
2014; Ohkubo and Miyashita 2017). FaRLiP occurs
especially in cyanobacteria inhabiting a microbial mat in
the terrestrial environment, and the knotless phytochrome
RfpA, which is part of a large cluster of FaRLiP genes
and is essential for this chromatic acclimation (Zhao et al.
2015, Ho et al. 2016).

Photomorphogenesis and regulation of photosynthesis
in plants through stomatal and chloroplast movement

Photomorphogenesis refers to the development of form
and structure in plants, as affected by light, a phenomenon
quite different from photosynthesis. It deals with the
regulation of plant growth under a broad range of light
intensities and wavelengths and allows plants to optimize
their use of light and space. For this, plants have acquired
several major photoreceptor molecules, including phyto-
chromes (PHY; Franklin and Quail 2010), and two types
of blue-light photoreceptors, cryptochromes (CRY; Yu
et al. 2010, Chaves et al. 2011), and phototropins (PHOT;
Christie and Briggs 2001, Lin 2002, Christie 2007, Goh
2009). These plant photoreceptors are implicated in direct
perception, and/or modulation of responses, of a wide
range of environmental cues, or to plant development
stages and responses to dynamic environmental stimuli
(D'Amico-Damido and Carvalho 2018, Paik and Hugq
2019). In contrast to spectrally diverse cyanobacterial
and algal phytochromes (Rockwell et al. 2014, Rockwell
and Lagarias 2017, Fushimi and Narikawa 2019, 2021;
Villafani et al. 2020), plants possess only red/far-red
receptors (i.e., canonical phytochromes; Castillon et al.
2007, Bae and Choi 2008, Li ef al. 2011), which direct
diverse responses through photoconversion between a
red (660 nm) light-absorbing ground state Pr and a far-
red (730 nm) light-absorbing photoactivated state Pfr
(Fig. 5). These phytochromes ‘measure’, so to say, the
ratio of the red light to far-red light, allowing the plant to
sense the quantity of available useful light, and to trigger
shade avoidance responses (Ruberti et al. 2012). On the
other hand, the phototropins (PHOT) and cryptochromes
(CRY), which bind flavin mononucleotide (FMN) as
chromophore, are important for plant responses to
UV-A/blue light (see below, and a review by Christie
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etal.2015).

Arabidopsis contains several blue-light photoreceptors,
including two types of PHOT (PHOT! and PHOT?2;
Lin 2002, Harper et al. 2003, Christie 2007, Goh 2009)
and three types of CRY (CRY1, CRY2, and CRY3, also
called CRY-DASH; Wang and Lin 2020). The receptors
PHOT1 and PHOT2 mediate phototropism (i.e., turgor-
driven movement of a plant organ away or toward from
a light source; see e.g., Liscum et al. 2020), as well as
stomatal and chloroplast movement (Briggs and Christie
2002, Christie et al. 2015), which play an important
role in the optimization of photosynthesis. On the other
hand, CRY1, CRY2, and CRY-DASH are involved in
a variety of growth and developmental processes. Further,
CRY1 and CRY2, together with PHOT1 and PHOT?2,
serve to entrain the plant circadian clock to the phase of
daily light—dark cycles (Somers ef al. 1998). We note that
PHOT1 and PHOT2 are bound on plasma membranes,
while the other photoreceptors are localized in the nucleus
or the cytoplasm (Ronald and Davis 2019, Hayes 2020,
Ishishita et a/. 2020). This difference probably makes the
phototropins particularly useful in deciphering directional
light cues.

Below, we discuss mainly the involvement of plant
photoreceptors in the closing and the opening of stomata,
and the accumulation/avoidance movements of chloro-
plasts; further, we mention how the above affect ChlF
measurements.

Stomatal movement

The surface of most leaves is impermeable to gases and
water, and the regulation of CO, uptake and water loss by
transpiration takes place through stomatal pores located in
the epidermis of leaves, each surrounded by a pair of guard
cells (Fig. 74). There are large differences in how the
stomata of different plant species develop and are patterned
(Rudall ez al. 2013, Bertolino et al. 2019). Together with
the stomatal size and density, the number and placement
of stomatal pores on leaf surfaces determine the capacity
of stomata to allow CO, to enter the leaf, i.e., stomatal
conductance (gs), which was correlated with the rate of
photosynthesis, when other factors are not limiting (Wong
et al. 1979, Xiong and Flexas 2020).

The number, size, and distribution of stomata vary
widely in vascular plants (see e.g., Xiong and Flexas
2020). Moreover, the stomatal development may also be
adjusted over long periods, with stomatal size and density
being adapted to suit environmental conditions. For
example, atmospheric CO, availability strongly influences
the dorsoventral organization of leaf structure, and studies
from periods when CO, concentrations were low have
shown an increased stomatal size and a reduced stomatal
density (Bertolino ez al. 2019). Between various vascular
plants, leaves with stomata on both upper (adaxial) and
lower (abaxial) sides, i.e., ‘amphistomatous’, allow higher
photosynthetic productivity compared to leaves with
stomata only on the abaxial surface, known as ‘hypo-
stomatous’ (Drake et al. 2019). However, most plants have
stomata only on the abaxial side of the leaves (Kollist ez al.
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Fig. 7. Mechanism of the blue light-induced stomatal opening. (4) Schematic illustration of a stoma surface view. (B) Diagram showing
the sequential steps of blue light-induced stomatal opening mechanism in a guard cell: (/) the blue light activates the phototropins
PHOT1 and PHOT2 (bound on plasma membrane), which transmit the incoming signal to the cytosolic protein kinase Blue Light
Signalingl (BLUSI1), which indirectly (2) induces the activation of plasma H*-ATPase, leading to efflux of H's; this step leads to
(3) hyperpolarization of the plasma membrane, which induces (4) an influx of K* ions in the cell through K*;-channels, which accumulate
rapidly in the vacuole, together with Cl-, malate?” (produced during starch degradation), and water, thus increasing the turgor pressure
of the guard cell, which is then followed by (5) vacuolar remodeling, leading to stomatal opening. Modified from Inoue and Kinoshita

(2017).

2014, Muir 2015, Chater et al. 2017), as this prevents the
entry of foliar pathogens on the adaxial leaf side (McKown
et al. 2014). The plant species with amphistomatous leaves
are mostly from the dicots; further, in the amphistomatous
leaves, the stomatal density is generally higher on the
abaxial side, and the abaxial guard cells are usually more
sensitive to environmental and internal signals (Wang
et al. 1998). On the other hand, most floating aquatic plants
(e.g., lotus, water lily) have stomata only on the adaxial
side of the aerial leaves, which are generally permanently
open (see e.g., Shtein et al. 2017).

For stomatal movement, both red and blue light triggers
the activation of signal transduction cascades, which
interact with or are activated by phytohormones. Changes
in stomatal aperture are achieved through changes in the
volume and the turgor pressure of the guard cells, which
involve the activity of electrogenic proton pumps in the
plasma membrane and/or metabolic activity that lead
to the accumulation of K* salts and sugars in these cells
(Assmann et al. 1985, Roelfsema and Hedrich 2005,
Shimazaki et al. 2007, Daszkowska-Golec and Szarejko
2013, Inoue and Kinoshita 2017, Matthews et al. 2020,
Wang et al. 2020). Each of the two guard cells contains
all the necessary components for stomatal opening,
e.g., from the perception of the blue light to the increase
in the cell volume. Adjustment of stomatal opening is
triggered by environmental factors, e.g., changes in light
intensity and quality, temperature, concentrations of CO»,
and vapor pressure deficit (VPD), as well as internal
signaling cues, which vary between and within species
(see Khanna et al. 2014, Lawson and Blatt 2014, Aasamaa
and Aphalo 2016, Lawson and Vialet-Chabrand 2019,
Driesen et al. 2020, Matthews et al. 2020, Xu et al. 2021).
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For example, there is an important difference between
the plants with crassulacean acid metabolism (CAM),
which open their stomata at night to obtain CO, from the
atmosphere (Liittge 2002), and most C; and C, plants that
open their stomata when light falls on them in the morning
and close them in darkness (Kollist ez al. 2014). However,
generally, an increase in light intensity or temperature
(up to an optimum), as well as low CO, concentration
and VPD, trigger stomatal opening, while the closure is
induced by the reverse process, as well as by the presence
of abscisic acid, which is a phytohormone (e.g., Bernacchi
et al. 2007, Kollist et al. 2014, Matthews and Lawson
2019). Also, since stomata and photosynthesis do not
respond with the same rapidity to changes in light intensity
and spectral quality (Shimazaki et al. 2007), temporal and
spatial disconnections between these two processes take
place when there are short-term light fluctuations (see e.g.,
Vialet-Chabrand et al. 2017, Lawson et al. 2018, Matthews
et al. 2018, 2020).

Stomata are open when photosynthesis takes place
in the mesophyll and guard cell chloroplasts (Suetsugu
et al. 2014), but they close when electron transport is
inhibited (Matthews et a/. 2020). Under red light, when
photosynthesis takes place, CO, concentration decreases
in the leaf leading to an inhibition of the anion channels in
the guard cells (Lee ef al. 2007). This leads to K* uptake,
which, together with water (transported via aquaporins),
generates the turgor necessary to open the stomata.
However, the anion channels are activated if the CO,
increase is high, inducing stomatal closure. On the other
hand, PHOT1 and PHOT2 phototropins, present in the
guard cells, act as major blue-light receptors, which is
especially important for early morning stomatal opening



(Kinoshita and Shimazaki 2002). This process is activated
through autophosphorylation of two serine residues in the
kinase activation loop, which then initiates the signaling
for stomatal opening (Fig. 7B). The activated phototropins
phosphorylate a cytosolic protein kinase, the Blue Light
Signalingl (BLUSI1; Takemiya et al. 2013), which
transmits the signal, and induces the activation of plasma
H*-ATPases (Yamauchi et al. 2016). Then, the ATPase
functions to drive H* transport, hyperpolarizing the
plasma membrane (—110 mV), which activates the inward-
rectifying K* channels (K*;-channels), producing an influx
of K* ions in the guard cells that are rapidly transported
into the vacuole, together with CI-, malate’-, and NOs".
The result is a dynamic change in the vacuolar structure
and an increased turgor pressure (Fig. 7B), leading to
stomatal opening (Andrés ef al. 2014).

lino et al. (1985) have shown that even a short (30—60 s)
blue-light pulse induces stomatal opening, which is
sustained for more than 10 min after the pulse. During the
stomatal closure, inhibition of H*-ATPase, together with
the activation of anion channels, leads to depolarization of
the plasma membrane (—50 mV), which then induces an
ion efflux, and shrinking of the guard cells.

While the absorption of blue light by PHOT1 and
PHOT2 receptors triggers the signaling cascade for
stomatal opening, the CRY1 and CRY2 blue receptors
have been shown to function, together with PHOT, in
mediating this process (see e.g., Mao et al. 2005, Liu
et al. 2011). Although the PHOTs have relatively greater
importance at the start of illumination, both PHOT
and CRY receptors are necessary for stomatal opening
throughout the photoperiod (Wang et a/. 2020). In addition,
photosynthesis indirectly influences the stomatal opening
under blue light, as both the sensitivity and the magnitude
of stomatal response to blue light depends on the intensity
of the background red light (Karlsson 1986). Furthermore,
illumination of intact (attached) leaves with green light,
together with blue light (or immediately preceding the
blue light pulse), was shown to reverse the blue light-
specific opening in a dose-dependent fashion, while green
light alone did not induce stomatal closing (Frechilla
et al. 2000, Talbott et al. 2002, 2006). We note that the
above-described phenomenon is fully reversible and takes
place only in the morning phase of the stomatal movement,
which is potassium-dependent. Thus, the stomatal opening
is an intricate process, and, much more research is needed
to understand it all.

The role of blue light in the stomatal opening was
explored through measurements of ChlF, first with guard
cells (Zeiger et al. 1980, Ogawa et al. 1982, Mawson et al.
1984). Then, Srivastava and Zeiger (1992) measured
ChIF induction with chloroplasts isolated from Vicia faba
guard cells, and found, using red light illumination, a slow
(within 10 s) monophasic decrease of ChIF signal after
a peak; this was followed by experiments with blue-light
illumination, when a biphasic decrease with fast (within
a half-second) and some slow steps were observed, the
faster decrease indicating a specific response of the guard
cell chloroplasts to blue light. In experiments on leaves
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of grapevines and vines, Flexas et al. (2002) found that
decreasing stomatal conductance (i.e., stomatal closure) is
accompanied by a decrease of steady-state ChlF; further,
the relationship between the two variables was not linear.
In field experiments with Quercus sp. and tulip poplar,
Marrs et al. (2020) found that stomatal closure led to
decreases in both stomatal conductance and the rate of CO,
assimilation. All of this was accompanied by significant
decreases in the effective and maximal quantum yields of
PSII photochemistry; however, the decrease in stomatal
conductance was accompanied by only a slight decrease in
the steady-state ChlF. A detailed modeling study is needed
to fully understand the nuances of the above interesting
observations.

Chloroplast movement: Photorelocation

In response to changes in environmental light conditions,
chloroplasts adjust their location in the cell by ‘accumu-
lating’ at places, to better absorb the incident light,
or by moving away (‘avoidance’), to ‘avoid’ absorbing
the incident light. This phenomenon is dubbed ‘photo-
relocation’ movement since it is initiated by light. These
movements optimize the use of light in photosynthesis
and minimize the damage due to exposure to excess
light (see e.g., Suetsugu and Wada 2007, 2009). Both the
accumulation and the avoidance movement of chloro-
plasts (referred to as positive and negative blue/UV-A
light-dependent chloroplast phototaxis) depend on the
functioning of actin filaments (Kadota et a/. 2009, Suetsugu
et al. 2010); they are mediated in most plants by PHOT]1
and PHOT2 receptors, located on the outer membrane of the
chloroplasts (see above, and a review by Kong and Wada
2014). One of the methods to detect chloroplast movement
involves measuring changes in red light transmittance (T)
through the leaf blade during changes in light conditions
(Fig. 84). In weak or intermediate light, chloroplasts
slowly (~1-2 h) accumulate along the periclinal walls
(i.e., perpendicular to the direction of incident light),
and this response fine-tunes the photosynthesis through
a decrease in total leaf transmittance. Under strong blue
light, chloroplasts relocate in minutes (~30 min) to the
edges of anticlinal cell walls (i.e., parallel to the direction of
incident light), and this response provides them protection
against photodamage (Fig. 88). Both PHOT1 and PHOT2
are essential in the accumulation response, while PHOT2
alone induces the avoidance response (Jarillo er al.
2001). Indeed, PHOT2 mutant plants are defective in the
avoidance movement, while other phototropin-mediated
responses display a constitutive accumulation response,
irrespective of light intensity, leading to enhanced leaf
photosynthesis, and increased biomass production (Gotoh
et al. 2018a).

Studies by Suetsugu and Wada (2009) on the photo-
relocation movement of chloroplasts have shown that:
(1) signals for the avoidance response function only in the
irradiated areas, while those for the accumulation response
are also transferred towards chloroplasts located farther
down; (2) signals for the avoidance response disappear
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rapidly after the light is turned off, whereas those for the
accumulation response are long-lived; (3) the avoidance
response in the surface mesophyll layer facilitates diffusion
of CO, from the air spaces into the mesophyll chloroplasts,
as well as light absorption in the deeper cell layers, both of
which favor increase in net photosynthesis.

The influence of the photorelocation movement of
chloroplasts on the absorptance/transmittance of photo-
synthetically active radiation (PAR) depends on leaf
anatomy, being e.g., more pronounced in leaves with a
single layer of chloroplast-containing cells than in those
with well-developed palisade parenchyma and multiple
cell layers (Brugnoli and Bjorkman 1992). Also, the
narrower, more columnar, cells, found in sun leaves,
restrict the ability of chloroplasts to move, while the
broader, more spherical cells of shade leaves facilitate
chloroplast rearrangement, allowing efficient light capture
under low-light conditions (Gotoh ez al. 2018b). Indeed,
it has been shown that chloroplast movement-dependent
changes in leaf absorptance are greatest in shade plant
species, where absorptance changes of >10% were
observed between high- and low-light treatments (Davis
et al. 2011). The number and morphological heterogeneity
of chloroplasts also influence the effects of accumulation/
avoidance movements: large chloroplast phenotypes
usually exhibit greater PSII photodamage than those
with intermediate phenotypes, while plants with small
chloroplast phenotypes show no abnormalities in their
photorelocation efficiency and photosynthetic capacity
(Dutta et al. 2017).

Plants have evolved different strategies to optimize
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Fig. 8. Chloroplast photorelocation move-
ments. (4) Measurement of light-induced
changes as red light transmittance (AT =
T. — To) in Arabidopsis thaliana leaf under
illumination with the blue light of 3, 20, and
50 pumol(photons) m2 s™! (labeled as Light
1, 2, and 3), given for 60, 40, and 40 min.
(B) Schematic drawing of chloroplast
positions under different illumination con-
ditions: in darkness (at the bottom of the
cells), during the accumulation response
under low light (below the cell surface,
i.e., periclinal wall, and at the bottom of
the cells), and avoidance response under
medium and high light (on the sidewall, i.e.,
anticlinal wall). Modified from Suetsugu
et al. (2016) and Wada (2016).

the amount of light used for photosynthesis as well as to
reduce the risk of damage when exposed to excess light; for
this, the chloroplast photorelocation movement, discussed
above, plays a specific role. For example, Howard ef al.
(2019) have shown the relative importance of chloroplast
movement, NPQ, as well as ETR concerning the short-
term stress tolerance of Arabidopsis thaliana grown
under different light conditions; Howard and coworkers
showed that ETRmax and NPQuax play important roles in
avoiding damage to plants grown under intermediate light
intensities, while the chloroplast avoidance response is
beneficial for plants grown under low light.

Prolonged illumination of leaves with strong blue light
causes chloroplast avoidance movement, and a decrease
of the absorption cross-section of chloroplasts (see e.g.,
Naus et al. 2010, Barankova et al. 2016). Thus, if ChlF
induction is measured under blue-light illumination, there
is a different absorption cross-section of the sample at the
beginning (i.e., in the dark-adapted state) than at the end of
the measurement (i.e., blue-light adapted state). Therefore,
the basic ChIF levels (Fo and Fy) for the dark-adapted
state, and the ChIF levels in the blue-light adapted state
(Fo', F, and Fy"), are characterized by different absorption
cross-sections of the sample, which affect the values of
parameters evaluated using basic ChIF levels. Pfiindel
et al. (2018) explored the effect of blue-light illumination
on the ChIF levels using leaves of Arabidopsis thaliana
adapted to low and high light [100 and 250 pmol(photons)
m? s']: only the low-light-adapted leaves showed the
blue-light effect, with a decrease in the blue-light-
adapted ChIF levels by ~30%. Based on several different



approaches, but all leading to the same formula, a correction
factor by which the blue-light-adapted ChlF levels must
be divided to obtain the ChIF levels corrected for the
chloroplast movement, has been derived by Kasajima
etal. (2015), as well as by Pfiindel et al. (2018), and Semer
et al. (2019); for details, see the cited papers.

Light quality effects on growth of different plant species
used in horticulture

The manufacture of high-intensity light-emitting diodes
(LEDs) of different colors (including white light) has
opened new possibilities to develop multi-color driving
algorithms to control plant photosynthesis, growth, and
photomorphogenesis for plants grown in greenhouses for
horticulture, as well as in soilless systems, and in vertical
gardening (Hogewoning et al. 2007, 2012; Wu et al. 2018,
Paradiso and Proietti 2021). These LEDs offer a great
advantage, for their use, over the earlier light sources (e.g.,
incandescent, fluorescent, and high-intensity discharge
lamps), since they have specific wavelengths, smaller size,
better durability, longer lifetime, cool-emitting surfaces,
and lower power consumption (Pattison et al. 2018, He
et al.2019). However, to select appropriate LEDs, detailed
knowledge is needed on morphological and physiological
responses of different plant species to the quality of light
and their triggering signaling. Many studies are now
available on the growth and functioning of a large number
of plants under specific and different wavelength ranges
of light (see e.g., reviews by Hogewoning et al. 2010,
Ouzounis et al. 2015, Dueck et al. 2016, Ptushenko et al.
2020, Palmitessa et al. 2021).

Further, data are now available on the growth of many
plants grown under blue or red light or their combination,
sometimes with white light. For example, Wang et al.
(2016) used lettuce plants grown for 30 d under
200 pmol(photons) m? s! of red or blue, or a mixture
of red and blue light, with red/blue ratios of 1, 4, §, and
12. Whereas the rate of CO, fixation was the highest for
red/blue light ratio of 1, slightly higher effective and
maximal quantum yields of PSII photochemistry were
obtained for red light alone, than for the mixture of red
and blue light, or blue light alone. A similar study was
performed by Zheng and Van Labeke (2017) on three
ornamental plants (Cordyline australis, Ficus benjamina,
and Sinningia speciosa) grown for eight weeks at 100
umol(photons) m? s! of red or blue, or 75% red with 25%
blue, or white light. When grown under blue, or 75% red
with 25% blue light, these plants had a greater Fy/Fy ratio
and effective quantum yield of PSII photochemistry in the
light-adapted state, compared to plants grown under the
red or the white light; also, lower quantum yields were
correlated with lower biomass, obtained under red light.
Interestingly, the thickness of palisade parenchyma tissue
showed a good correlation with the effective quantum
yield of PSII. (This needs to be further examined for the
precise basis of this correlation.) On the other hand, Zhang
et al. (2019) studied 3-week-old tomato plants grown for
18 d under 400 pumol(photons) m= s! of red or blue, as
well as red/blue light at a ratio of 9/1 or of 7/3. When the
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plants were exposed to 1,000 umol(photons) m~ s actinic
light intensity, those grown under red light showed a lower
effective quantum yield of PSII photochemistry at a steady
state, which was correlated with a low steady-state rate of
CO, assimilation of these plants. However, plants grown
in blue light showed the highest transient NPQ upon
illumination with the same actinic light. Furthermore,
Hamdani et al. (2019) have studied rice plants grown
under red, blue, and white light of 300 umol(photons)
m2 s7!, using custom-designed LEDs. ChIFI data
obtained on these samples with a PAM fluorometer
showed that blue and red lights, as compared to white
light, induced a higher NPQ and a lower effective quantum
yield of PSII, while the Fv/Fy ratio significantly decreased
under blue light, but remained unchanged in the red light.
On the other hand, further analysis revealed that plants
grown with blue or red light had a decreased transcript
abundance of both catalase and ascorbate peroxidase, as
well as an increased H,O, content, all of which suggest a
compromised antioxidant system in these samples, even
when exposed to a moderate light level.

It is well known that the highest quantum yield for
CO, fixation in many species is attained under red light
compared to other wavelengths of light (Inada 1976,
Evans 1987). However, other studies have shown that
combining different wavelengths of light, and using it
for the growth of plants, is advantageous to enhance the
quantum yield of photosynthesis (Hogewoning ef al.
2012); extended exposure to just red light results in low
photosynthetic performance (see above). At another level
of observation, we mention an effect in photosynthesis
called ‘The Emerson Enhancement Effect’, which was
first observed by Emerson ef al. (1957), and led to the
discovery of the existence of two light reactions and two
pigment systems in photosynthesis (see Govindjee ef al.
2017). In this study, Emerson and his workers showed
that the rate of oxygen evolution measured with far-red
light together with the light of a shorter wavelength is
greater than the total sum of oxygen evolution measured
when these two different light wavelengths are given
separately. This effect is in photosynthesis, but there is
another effect that deals with the role of phytochromes
(see below).

The effects of red (R), far-red (FR), and R/FR
ratio sensed by plant phytochromes (Fig. 5) have been
reviewed by, e.g., Demotes-Mainard et al. (2016). As
mentioned earlier, the Phys in plants can switch between
two states, an R-absorbing inactive state (Pr), as well as
an FR-absorbing active state (Pfr), and the Pfr/(Pfr + Pr)
ratio is known as the phytochrome photostationary state
(PSS), which is low when the R/FR ratio is low. This
ratio can vary among species, as it is determined not only
by the growing conditions, but also by the forward and
reverse rates of photoconversion, and the rates of thermal
interconversion between the Pfr and Pr states (Fig. 5).
A low R/FR is an important factor for signaling shade
avoidance syndrome (Smith and Whitelam 1997, Ruberti
etal.2012), characterized by e.g., stem and leaf elongation,
decreased branching, and changes in Chl content (Razzak
et al. 2017, Kalaitzoglou et al. 2019, Yang et al. 2020).
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On the other hand, blue light and high R/FR ratios are
known to induce the development of sun-type chloroplasts
(e.g., Lichtenthaler et al. 1980).

The UV-A and blue light, sensed by CRYs and/or
PHOTs, are very important for the morphological develop-
ment of plants, and, they have received considerable
attention from plant physiologists (see a review by Huché-
Thélier et al. 2016). The photosynthetic activity has been
shown to increase proportionally with the level of blue
light during plant growth, compared to white light, but
under blue light alone, it was lower (Matsuda et al. 2007,
Hogewoning et al. 2010, Hernandez and Kubota 2014).
Further, the Chl content in plants was found to increase
with the increasing proportion of blue light, when given
in combination with white light (Matsuda ez al. 2007),
but it was shown to decrease in some species under blue
light only. However, in all the species, the blue light,
given in high proportion or alone, increased the Chl a/b
ratio (Matsuda et al. 2007, Hogewoning et al. 2010, Wang
et al.2015).

Since red and blue LED lights alone do not substitute
for white light, other spectral components must be added,
and on-going research includes the growth of plants under
various light combinations of different colors of light, and
light intensity, depending on the requirement of crops at
different development stages (see reviews by Hasan et al.
2017, Bantis et al. 2018, Zheng et al. 2019, Paradiso and
Proietti 2021). As an example, in a study on cucumber
plants, Hogewoning et al. (2010) compared the effects
of a LED-based artificial solar (AS) spectrum with the
earlier methods using fluorescent tubes (FT), and a high-
pressure sodium lamp (HPS). The results support the use
of LED-based AS spectrum for illumination since the data
show 2.3 and 1.6 times greater total dry mass than from
the FT and HPS-grown plants; further, the height of the
AS plants was 4-5 times greater. We note that similar
interesting results have been obtained by Guruprasad
et al. (2007), in which the exclusion of solar UV-B and
UV-B/A radiation, enhanced the fresh and dry mass,
leaf area, as well as induced a dramatic increase in plant
height, which were reflected in a net increase in the biomass
of the plants. These and other results, reviewed above, give
us much hope to solve the problem of increasing human
population and dwindling resources.

Overview and concluding remarks

In this review, we have emphasized that distinct structure
and configuration of photosynthetic pigments in the antenna
of the two photosystems (I and II) in different oxygenic
organisms (see ‘Introduction’) depend on environmental
conditions, especially on the solar spectrum and changes in
light intensity (see ‘Spectral signatures of photosynthesis:
Why chlorophyll a?’). The spectral advantage of Chl a in
terrestrial plants has been theoretically explained by Bjorn
(1976) and Marosvolgyi and van Gorkom (2010), and this
approach has recently been applied even in astrobiology
(see Lehmer et al 2021). Details and specific predictions
of this work still need to be examined.

Since ChIF is an important tool in the study of
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photosynthesis, and George C. Papageorgiou was a well-
recognized authority on this topic (see e.g., Papageorgiou
and Govindjee 1967, 1968ab; 2004, 2011, 2014;
Papageorgiou 1975, 1996; Papageorgiou et al. 2007,
Stirbet et al. 2019), we have presented, in this review,
effects of light quality (different colors of light, i.e.,
different wavelengths of light) on photosynthesis measured
using ChlF (see ‘Light quality effects on photosynthesis,
inferred from Chl fluorescence induction’). In particular,
we have discussed (/) the importance of the ‘quality’ of
excitation light, as well as of actinic light in measuring
ChIF of photosynthetic organisms; and (2) interactions
of blue, green, and red light with plant leaves, and their
influence on the interpretation of ChlF data, related to
differences in the ‘depth’ of penetration, into the leaf, of
various spectral components of the light used.

Next, we have examined the influence of the spectral
composition of environmental light for growth and other
physiological functions of oxygenic organisms (see the
section on ‘Acclimation of oxygenic photosynthetic
organisms under different colors of light”). Through
the process of photomorphogenesis, the photosynthetic
organisms fine-tune their growth, development, and
metabolism to external light cues to optimize survival
(Montgomery 2016, 2021). Related to this area of research,
we have discussed chromatic acclimation in cyanobacteria,
a complex survival mechanism triggered by changes in the
ambient colors (wavelengths) of light. During this process,
cyanobacteria change their pigments by ‘remodeling’ their
PBS antenna complex, and sometimes even the entire
organism, to dramatically increase their efficiency of light
harvesting for photosynthesis (Sanfilippo et al. 2019).
We then discussed the ‘Regulation of photosynthesis in
plants through stomatal and chloroplast movements’, and
presented examples of ChIF studies related to this topic.
The stomatal movement is an important process in plants,
which needs to be further investigated, since, as we know,
the increased global [CO,] has led to reduced transpiration
and freshwater availability in temperate and northern
hemisphere forests (Keenan et al. 2013). The possibility
of tuning the stomatal response to blue light potentially
represents a target to develop ideotypes with the ‘ideal’
balance between carbon gain, evaporative cooling,
and maintenance of hydraulic status that is expected to
maximize crop performance and productivity (Lawson
and Vialet-Chabrand 2019, Matthews et al. 2020). Then,
we discussed ‘Light quality effects on the growth of
different plant species of interest in horticulture’, where
LEDs have been used for illumination, as an example of
the importance of the spectral composition of light for
growth and other physiological functions of plants. Since
this type of light source is much more energy-efficient
and long-lasting than the others, it has led to an explosive
development of computer-controlled systems for artificial
illumination in horticulture (Zheng et al. 2019, Paradiso
and Proietti 2021). Here we note that the inventors
(Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura) of
blue LEDs (1990s) received the Nobel Prize in Physics
(in 2014), especially since it allowed the realization of
white-light LEDs, which today are replacing the traditional



incandescent light bulbs, as well as the fluorescent bulbs.
We end this perspective with a quote: ‘Adopt the pace of
Nature: her secret is patience.’— Ralph Waldo Emerson,
1803—-1882, American philosopher, essayist, and poet.
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