

Exogenous calcium-alleviating effect on sodium salt-induced phytotoxicity associated with changes in photosynthetic characteristics of wheat seedlings

Y. ZHANG*, G.M. LIU*, Z.F. WANG**, A.M. ZHANG*, and Y.L. YANG*,[†]

College of Life Science, Northwest Normal University, 730070 Lanzhou, China*

College of Bioengineering and Technology, Tianshui Normal University, 741000 Tianshui, China**

Abstract

To evaluate the Ca-alleviating effect on sodium salt-induced phytotoxicity, wheat (*Triticum aestivum* L.) cultivar Xihan 3 seedlings were treated with 150 mM NaCl, CaCl₂ (0.1, 0.5, and 1 mM), Ca²⁺-channel blocker LaCl₃, and/or Ca²⁺ chelator, ethylene glycol tetraacetic acid (EGTA) alone or in combination, to investigate seedling growth and photosynthetic characteristics. NaCl (150 mM) exposure alone suppressed a growth of seedling, weakened photosynthetic efficiency and chlorophyll (Chl) fluorescence parameters, reduced photosynthetic pigments, Ca²⁺ and calmodulin (CaM) contents, and downregulated *TaCaM* expression in wheat leaves. The opposite changes of these parameters were caused by 0.5 or 1 mM CaCl₂ treatments alone. Moreover, 0.5 or 1 mM CaCl₂ application effectively alleviated sodium salt-induced changes of these parameters, which was blocked by LaCl₃ or EGTA. Therefore, exogenous Ca presence effectively promoted the growth of NaCl-stressed wheat seedlings through the enhancement of photosynthesis and Chl synthesis mediated by the Ca–CaM signal.

Keywords: calcium; chlorophyll fluorescence parameters; photosynthetic characteristic; photosynthetic pigment; sodium salt stress; *Triticum aestivum*.

Introduction

Photosynthesis can convert inorganic matter into organic matter (Gu *et al.* 2017), thus providing energy and material sources for plant growth and development. In recent years, soil salinization has become increasingly aggravated due to climate change, environmental deterioration, and unreasonable agricultural irrigation (Mukhopadhyay *et al.* 2021). In general, photosynthesis is the most sensitive physiological process to salinity environment

and the main target of salinity toxicity (Hussain *et al.* 2017, Patanè *et al.* 2013). Gas-exchange parameters, net photosynthetic rate (P_N), stomatal conductance (g_s), intercellular CO₂ concentration (C_i), and transpiration rate (E), are important indicators for evaluating plant photosynthesis (Huang *et al.* 2019). Salinity-induced inhibition of photosynthesis is reflected by the significant reduction of these four parameters in salt-tolerant and salt-sensitive wheat seedlings (Dugasa *et al.* 2019). In addition, chlorophyll (Chl) fluorescence parameters

Highlights

- The sodium salt-inhibitory effect on wheat seedling growth is alleviated by CaCl₂
- CaCl₂ application promotes photosynthesis in sodium salt-stressed wheat seedlings
- Activated Ca–CaM signal results in enhanced Chl synthesis in NaCl + CaCl₂-treated wheat seedlings

Received 4 May 2023
Accepted 16 October 2023
Published online 6 November 2023

[†]Corresponding author
e-mail: xbsfxbsdyang@163.com

Abbreviations: CaM – calmodulin; Car – carotenoid; Chl – chlorophyll; C_i – intercellular CO₂ concentration; DM – dry mass; E – transpiration rate; EGTA – ethylene glycol tetraacetic acid; ETR – electron transport rate; F_0 – minimal fluorescence yield of the dark-adapted state; F'_0 – minimal fluorescence yield of the light-adapted state; FM – fresh mass; F_m – maximum fluorescence yield of the dark-adapted state; F'_m – maximal fluorescence yield of the light-adapted state; F_s – the steady-state Chl fluorescence yield; F_v – variable fluorescence; F_v/F_m – maximal quantum yield of PSII photochemistry; g_s – stomatal conductance; NPQ – nonphotochemical quenching; P_N – net photosynthetic rate; q_P – photochemical quenching; ROS – reactive oxygen species; $Y_{(II)}$ – the actual photochemical efficiency; $Y_{(NPQ)}$ – the electron yield of regulatory energy dissipation.

Acknowledgments: This work was financially supported by the National Natural Science Foundation of China (No. 32160749).

Conflict of interest: The authors declare that they have no conflict of interest.

can reflect the primary photosynthesis reaction. Among those, the actual photochemical efficiency ($Y_{(II)}$), electron transport rate (ETR), and photochemical quenching (q_p) represent the changes in photochemical efficiency and electron transport of the PSII (Lu *et al.* 2019), and the electron yield of regulatory energy dissipation ($Y_{(NPQ)}$) and nonphotochemical quenching (NPQ) reflect the alteration in energy dissipation of the PSII. NaCl treatment (100–300 mM) negatively affected the maximal quantum yield of PSII photochemistry (F_v/F_m) in wheat (*Triticum aestivum* L.) cultivars (Kafi 2009), while this parameter of two wheat species (*T. durum* and *T. aestivum*) remains unaltered under 50 or 100 mM sodium salt treatment (Ouerghi *et al.* 2000). In contrast to a notable decrease of ETR and q_p , $Y_{(II)}$, $Y_{(NPQ)}$, and NPQ enhance gradually in the leaves of *Haloxylon ammodendron* seedlings with the increase of the salinity concentration (Han *et al.* 2010). Photosynthetic pigments are the material basis of plant photosynthesis, and the effects of sodium salt on Chl are dependent on salt categories and concentrations, salt treatment durations, or various plant species. For example, Chl *a* and Chl *b* contents in seven tetraploid wheat genotypes (*T. durum* subsp. *dicoccum* and *T. turgidum* subsp. *durum*) decrease with increasing NaCl concentration (Tabatabaei *et al.* 2016), and the Chl content in the leaves of wild-type (*Rht-B1c*) wheat seedlings significantly increase for 7 d but decrease for 9 d under sodium salt treatment (Jusovic *et al.* 2018). Salt stress can also alter photosynthesis by affecting carotenoid (Car) or lutein in plants (Sankari *et al.* 2019, Wang *et al.* 2019a).

Calcium (Ca), one of the essential macronutrients for plant growth, participates in regulating various physiological processes in plants (Dayod *et al.* 2010). Plant organelles chloroplasts possess a high concentration of Ca^{2+} (Hochmal *et al.* 2015), and specific Ca^{2+} signals can be observed in the chloroplast under a high salt environment (Nomura *et al.* 2012). Calmodulins (CaMs), a group of well-characterized Ca^{2+} sensors, can interact with the target proteins and affect their biological activity, thereby regulating plant growth and response under environmental stresses (Zielinski 1998, Bouché *et al.* 2005, Zeng *et al.* 2015). The study of Vafadar *et al.* (2020) highlighted that the influx of extracellular Ca^{2+} through plasma membrane Ca^{2+} channels and the formation of the Ca^{2+} –CaM complex are essential in mediating *Dracocephalum kotschy* tolerance to salt stress. Yang *et al.* (2020) found that the detection of most *TaCaM* implies the wide involvement of these genes in wheat growth and development. The overexpression of *TaCaM2-D* in *Arabidopsis* enhances plant tolerance to drought and salt treatment (Li *et al.* 2022). Ethylene glycol tetraacetate (EGTA) is a Ca^{2+} chelator, and $LaCl_3$ is a blocker of the Ca channel in the plasma membrane. Ma *et al.* (2019) reported that applying $CaCl_2$ significantly induces Ca^{2+} burst and increases the CaM content in barley under salinity stress, but the addition of $LaCl_3$ or EGTA impairs these responses.

Although the research associated with the effects of Ca on plant stress responses has attracted much attention, the mechanism of exogenous Ca regulation of photosynthetic characteristics in salt-stressed plants remains

unclear. In addition, few reports have analyzed the relationship between plant growth and photosynthetic characteristics under Ca salt and sodium salt treatment alone or in combination. Our previous investigations showed that different sodium salt concentrations (100–300 mM NaCl) retarded the growth of wheat (*T. aestivum* L.) seedlings including cultivar Xihan 3 (Li *et al.* 2018a, Xu *et al.* 2021). Based on these studies, in the present study, wheat cultivar Xihan 3 seedlings were treated with 150 mM NaCl, different $CaCl_2$ concentrations, EGTA, and/or $LaCl_3$ alone or in combination to evaluate the changes in plant growth, photosynthetic characteristics, and Ca–CaM components, thereby revealing the regulatory mechanism of Ca–CaM signal involved in salinity-tolerant enhancement of wheat seedlings by adding exogenous Ca.

Materials and methods

Cultivation and treatment of plant materials: The seeds of wheat 'Xihan 3' purchased from Gansu Agricultural University were sterilized with 0.1% $HgCl_2$ for 10 min, washed with water for 8–10 h, and germinated in darkness at 25°C for 24 h. Wheat seedlings were cultured in 1/4 Hoagland nutrient solution [945 mg($Ca(NO_3)_2$) L⁻¹, 506 mg(KNO_3) L⁻¹, 80 mg(NH_4NO_3) L⁻¹, 136 mg(KH_2PO_4) L⁻¹, 439 mg($MgSO_4$) L⁻¹, 2.5 mL of EDTA-FeNa·3H₂O, and 2 μ L of trace element] with or without NaCl, $CaCl_2$, $LaCl_3$, and/or EGTA, and the nutrient solution or treatment solution was changed every other day. At least three replicates were set for each treatment. The seedlings were cultured at 25 ± 0.5°C and 12-h light/12-h dark under a light irradiance of 300 μ mol(photon) m⁻² s⁻¹ in the incubator LRH-250-A (*Medical Instruments Factory*, Guangdong, China). The seedlings grown for 6 d were used for detecting physiological indicators.

Growth parameters: After 6 d of growth, twenty five wheat seedlings were randomly selected from each treatment to determine root and stem lengths as well as plant fresh mass (FM). Wheat seedlings were dried at 80°C to constant mass and plant dry mass (DM) was recorded. Twenty-five wheat seedlings were chosen from each treatment to measure the length (A) and width (B) of wheat flag leaves, and the leaf area was calculated using the coefficient method (leaf area = A × B × 0.77, 0.77 in the formula is the corrected value for wheat leaf area) (Li *et al.* 2018b).

Photosynthetic gas-exchange parameters: Gas-exchange parameters including P_N , g_s , C_i , and E were determined in the fully developed young leaves (the first true leaf) using a portable photosynthesis-fluorescence measurement system (GFS-3000, Heinz Walz, Germany). The measurement was performed at 9:00–11:00 h on the sixth day after treatment. Leaf temperature was maintained at 25°C, together with 60–80% relative humidity, 600 ± 10 μ mol mol⁻¹ external CO₂ concentration, and 600 μ mol(photon) m⁻² s⁻¹ illumination intensity (Zhou *et al.* 2016). Fifteen wheat seedlings were randomly selected from each treatment, with three biological replicates for each treatment.

Chl fluorescence parameters: *PAM-2500* Chl fluorometer (*Walz Heinz GmbH*, Effeltrich, Germany) was used to analyze Chl fluorescence parameters (Han *et al.* 2017, Zhao *et al.* 2017), such as minimal fluorescence yield of the dark-adapted state (F_0), maximum fluorescence yield of the dark-adapted state (F_m), variable fluorescence (F_v), F_v/F_m , $Y_{(II)}$, q_P , ETR, $Y_{(NPQ)}$, and NPQ. Ten seedlings were selected for each treatment, and each plant was tested three times in duplicate. Wheat leaves were first dark-adapted for 30 min to determine the F_0 , and a red saturation pulse (Int: 9) was applied for 5 s to determine F_m and calculate $F_v/F_m = (F_m - F_0)/F_m$. Actinic light (red light) was applied to measure the steady-state Chl fluorescence yield (F_s). Maximal fluorescence yield of the light-adapted state (F_m') and minimal fluorescence yield of the light-adapted state (F_0') were measured in the light-adapted state, which was used to calculate $Y_{(II)}$, q_P , NPQ, and $Y_{(NPQ)}$ (Han *et al.* 2017). ETR was automatically calculated using *WinControl* software (v2.08 and v2.13; *Heinz Walz GmbH*, Effeltrich, Germany) under the standard default settings for rapid light curves (Ritchie *et al.* 2021).

Photosynthetic pigment content: Fresh leaves (0.5 g) were thoroughly homogenized with 4 mL of 95% ethanol, and the homogenate was centrifuged at $9,000 \times g$ for 10 min to collect the supernatants, and then the precipitate was extracted again with 4 mL of 95% ethanol and centrifuged according to the above operation. The supernatant obtained by two centrifugations was mixed and the volume was set to 25 mL. The absorbances at 470, 485, 646, and 663 nm were recorded by using a UV-Visible spectrophotometer (*UV-Vis, Agilent 8453*, Palo Alto, USA). The contents of Chl *a*, Chl *b*, total Chl, Car, and lutein, as well as the ratio of Chl *a* to Chl *b* (Chl *a/b*), were calculated according to dos Santos Araújo *et al.* (2018) and Li *et al.* (2018a).

Ca²⁺ content: The amount of Ca²⁺ was detected based on the method described by Sheteiwy *et al.* (2019). A dry sample (0.2 g) was digested with 8 mL of concentrated nitric acid in a microwave digester. The program was set to the first stage at 150°C for 5 min and a power of 1,600 W, followed by 190°C for 10 min and a power of 1,600 W in the second stage. After complete digestion, the solution was transferred and a volume was set to 50 mL with 1 M dilute nitric acid, and the Ca²⁺ content was determined by inductively coupled plasma mass spectrometer (ICP-MS) model 7500a (*Agilent Technologies*, USA).

CaM content: The amount of CaM in 0.5 g of wheat leaves was detected by enzyme-linked immunosorbent assay (ELISA) with the kit purchased from *Hongyu Biochemical Co., Ltd.*

Real-time quantitative PCR (RT-PCR) of *TaCaM* expression: To investigate the expression levels of *TaCaM*, wheat leaves were collected after culturing for 6 d. Total RNA extraction and first-strand cDNA synthesis were accomplished using *TRIZOL* reagent and a *PrimeScriptTM* RT reagent kit (*Takara*, Shiga, Japan). The PCR solution

(20 mm³) consisted of 10 mm³ of 2 × *TransStart Tip Green* qPCR super mix (*TransGen*, Beijing, China), 0.4 mm³ of 10 μM each primer, 1.5 mm³ of cDNA, and distilled water. RT-PCR was completed on the detection system *Bio-Rad iQ5* (CA, USA). The PCR conditions were as follows: 94°C for 30 s, followed by 40 cycles of 94°C for 5 s and 60°C for 30 s. Gene-specific primers used for real-time quantitative PCR were designed using the primer design software *Primer Premier 5* from the wheat *CaM* gene fragment (forward: 5'-GCTCTTACAAGGAAACATCA-3'; reverse: 5'-CTACAGAACTCAAACCGAAATCCA-3'). The *T. aestivum glyceraldehyde-3-phosphate dehydrogenase* (*TaGAPDH*) gene (forward: 5'-TTAGACTTG-CGAAGGCCAGCA-3'; reverse: 5'-AAATGCCCTTG-GGTTTCCC-3') was used as a reference gene. The relative expression levels were calculated using the $2^{-\Delta\Delta Ct}$ method. RT-PCR experiment was carried out three times with three biological replicates (Xu *et al.* 2021).

The data analysis: Data analysis software *SPSS* 17.0 was used for one-way analysis of variance (*ANOVA*), and the significant differences between treatments were indicated with different lowercase letters ($P \leq 0.05$). Statistical data were expressed as average value ± standard error (SE), and *Origin 2018* software was used for mapping.

Results

In this work, 150 mM NaCl stress significantly restrained the growth of wheat roots and stems with reduced leaf area and a loss in plant FM and DM (Table 1). In addition to reduced stem length, these parameters of 0.1 mM CaCl₂ exposure alone remained unaltered, when compared to CK. By contrast, the individual application of 0.5 mM CaCl₂ promoted stem growth and increased leaf area with plant FM and DM increment, 1 mM CaCl₂ treatment only stimulated stem growth. In contrast to 0.5 mM CaCl₂ alone, exposure to 5 mM CaCl₂ caused the opposite effects on these parameters (Table 1). Adding 0.5 or 1 mM CaCl₂ stimulated the growth of roots and stems and enhanced plant FM and DM in sodium salt-stressed seedlings when compared with 150 mM NaCl stress alone, and the stimulating effect of 0.5 mM CaCl₂ was more significant than that of 1 mM CaCl₂. However, the stem or root length as well as plant FM and DM under 150 mM NaCl + 0.1 mM CaCl₂ treatment did not alter notably. Additionally, the application of all CaCl₂ concentrations increased leaf area in sodium salt-stressed seedlings. Therefore, 150 mM NaCl or/and 0.1, 0.5, and 1 mM CaCl₂ alone or in combination were selected for subsequent study.

Photosynthetic gas-exchange parameters P_N , g_s , C_i , and E in wheat leaves significantly weakened under 150 mM NaCl stress (Fig. 1). Compared with CK, 0.1 mM CaCl₂ treatment alone significantly upregulated P_N , C_i , and E , respectively, but insignificantly altered g_s . By contrast, 0.5 mM CaCl₂ treatment alone increased P_N , g_s , C_i , and E to 1.22, 1.14, 1.27, and 1.35 folds of CK, respectively, whereas for 1 mM CaCl₂ treatment wheat leaves exhibited about 146 and 127% enhancement of P_N and C_i , respectively, along with decreased g_s and E (Fig. 1).

Table 1. Changes of growth parameters in wheat seedlings under different treatments. Values are expressed as the average value \pm SE based on at least three replicates, and *different lowercase letters* indicate significant differences ($P < 0.05$) according to *Duncan's test*. CK – control, S – 150 mM NaCl, C1 – 0.1 mM CaCl₂, C2 – 0.5 mM CaCl₂, C3 – 1 mM CaCl₂, C4 – 5 mM CaCl₂, S + C1 – 150 mM NaCl + 0.1 mM CaCl₂, S + C2 – 150 mM NaCl + 0.5 mM CaCl₂, S + C3 – 150 mM NaCl + 1 mM CaCl₂, S + C4 – 150 mM NaCl + 5 mM CaCl₂. FM – fresh mass, DM – dry mass.

Treatment	Root length [cm]	Stem length [cm]	Leaf area [cm ²]	Plant FM [g per treatment]	Plant DM [g per treatment]
CK	8.43 \pm 0.36 ^e	16.55 \pm 0.17 ^g	4.28 \pm 0.03 ^g	4.50 \pm 0.07 ^e	0.47 \pm 0.01 ^f
C1	8.18 \pm 0.14 ^e	16.73 \pm 0.24 ^g	4.13 \pm 0.01 ^g	4.21 \pm 0.08 ^d	0.44 \pm 0.01 ^e
C2	8.83 \pm 0.28 ^e	17.63 \pm 0.16 ^h	4.50 \pm 0.10 ^h	4.81 \pm 0.11 ^f	0.51 \pm 0.01 ^g
C3	7.13 \pm 0.29 ^d	17.57 \pm 0.23 ^h	4.31 \pm 0.02 ^{gh}	4.75 \pm 0.12 ^f	0.47 \pm 0.00 ^{ef}
C4	6.07 \pm 0.28 ^e	14.72 \pm 0.25 ^f	3.69 \pm 0.08 ^f	3.84 \pm 0.10 ^e	0.41 \pm 0.01 ^d
S	3.81 \pm 0.13 ^b	10.45 \pm 0.26 ^{cd}	1.67 \pm 0.08 ^a	2.62 \pm 0.04 ^a	0.33 \pm 0.01 ^a
S + C1	5.71 \pm 0.33 ^c	9.58 \pm 0.22 ^b	2.11 \pm 0.04 ^b	2.75 \pm 0.05 ^a	0.35 \pm 0.01 ^{ab}
S + C2	6.97 \pm 0.33 ^d	12.62 \pm 0.32 ^e	3.17 \pm 0.04 ^e	3.87 \pm 0.05 ^c	0.46 \pm 0.01 ^{ef}
S + C3	5.43 \pm 0.31 ^c	12.17 \pm 0.21 ^e	2.90 \pm 0.01 ^d	3.74 \pm 0.09 ^{bc}	0.39 \pm 0.00 ^{ed}
S + C4	4.29 \pm 0.17 ^b	10.97 \pm 0.36 ^d	2.62 \pm 0.07 ^c	3.52 \pm 0.01 ^b	0.36 \pm 0.00 ^{bc}

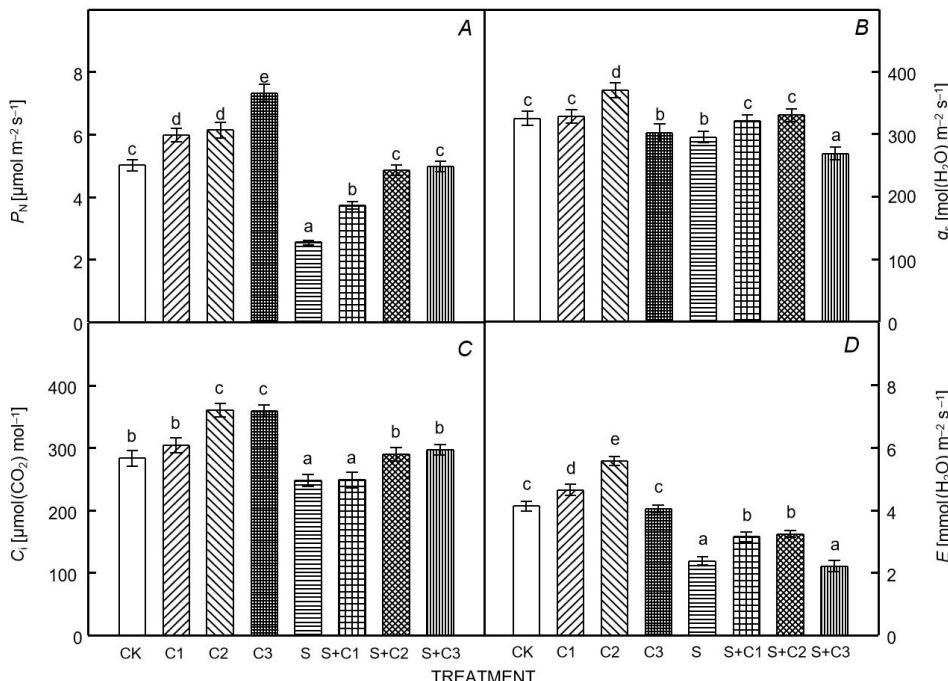


Fig. 1. Changes of (A) net photosynthetic rate (P_N) [$\mu\text{mol m}^{-2} \text{s}^{-1}$]; (B) stomatal conductance (g_s) [$\text{mol}(\text{H}_2\text{O}) \text{m}^{-2} \text{s}^{-1}$]; (C) intercellular CO_2 concentration (C_i) [$\mu\text{mol}(\text{CO}_2) \text{mol}^{-1}$]; (D) transpiration rate (E) [$\text{mmol}(\text{H}_2\text{O}) \text{m}^{-2} \text{s}^{-1}$] in wheat leaves under different treatments. CK – control, S – 150 mM NaCl, C1 – 0.1 mM CaCl₂, C2 – 0.5 mM CaCl₂, C3 – 1 mM CaCl₂, S + C1 – 150 mM NaCl + 0.1 mM CaCl₂, S + C2 – 150 mM NaCl + 0.5 mM CaCl₂, S + C3 – 150 mM NaCl + 1 mM CaCl₂. Values are expressed as the average value \pm SE based on at least three replicates, and *different lowercase letters* on bars indicate significant differences ($P < 0.05$) according to *Duncan's test*.

In comparison with NaCl stress alone, the presence of 0.1 mM CaCl₂ did not change C_i but elevated P_N , g_s , and E in the leaves of sodium salt-stressed seedlings; 0.5 mM CaCl₂ application significantly increased these four parameters of NaCl-treated seedlings by 91, 12, 17, and 36%, respectively. However, adding 1 mM CaCl₂ to sodium salt-stressed wheat seedlings upregulated P_N and C_i by about 95 and 20%, respectively, together with further decreased g_s and E (Fig. 1).

Chl fluorescence parameters F_v/F_m , $Y_{(II)}$, q_p , and ETR of 150 mM NaCl stress significantly lowered in wheat leaves to 59, 30, 72, and 74% of CK, respectively (Fig. 2). By contrast, 0.1 mM CaCl₂ alone did not affect F_v/F_m , $Y_{(II)}$, q_p with upregulating ETR, whereas these four parameters of 0.5 mM CaCl₂ treatment notably elevated by about 13, 35, 17, and 26%, respectively; q_p and ETR of 1 mM CaCl₂ rose about 16 and 12%, respectively, when compared with CK. No statistical difference for F_v/F_m , q_p , and ETR

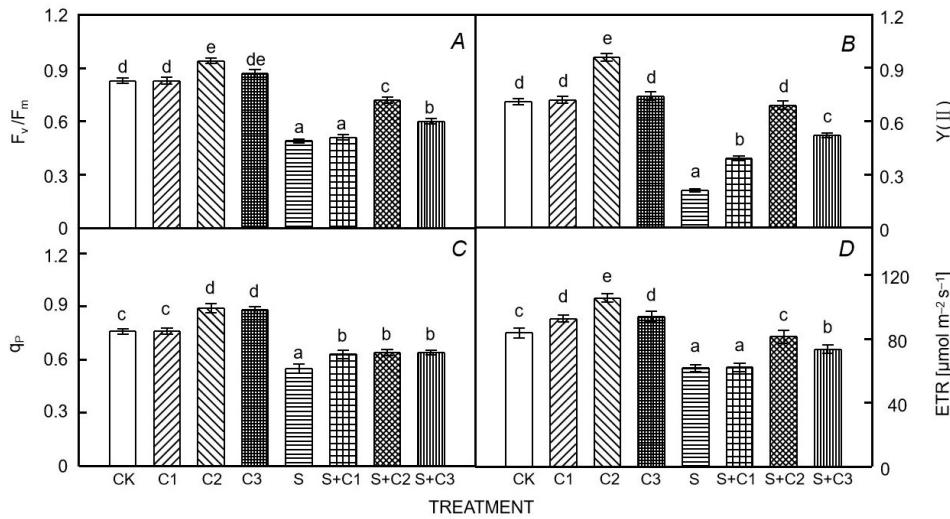


Fig. 2. Changes of (A) maximal quantum yield of PSII photochemistry (F_v/F_m), (B) the actual photochemical efficiency ($Y_{(II)}$), (C) photochemical quenching (q_P), and (D) electron transport rate (ETR) in wheat leaves under different treatments. CK – control, S – 150 mM NaCl, C1 – 0.1 mM CaCl₂, C2 – 0.5 mM CaCl₂, C3 – 1 mM CaCl₂, S + C1 – 150 mM NaCl + 0.1 mM CaCl₂, S + C2 – 150 mM NaCl + 0.5 mM CaCl₂, S + C3 – 150 mM NaCl + 1 mM CaCl₂. Values are expressed as the average value \pm SE based on at least three replicates, and different lowercase letters on bars indicate significant differences ($P<0.05$) according to *Duncan's* test.

was observed between NaCl-alone-treated and 150 mM NaCl + 0.1 mM CaCl₂-treated seedlings. The presence of 0.5 or 1 mM CaCl₂ effectively prevented NaCl-induced decreases of F_v/F_m , $Y_{(II)}$, q_P , and ETR, with about 47, 229, 16, and 32% increases due to 150 mM NaCl + 0.5 mM CaCl₂ treatment and 22, 148, 16, and 19% increments to 150 mM NaCl + 1 mM CaCl₂ exposure, respectively, when compared with sodium salt alone (Fig. 2).

In contrast, Chl fluorescence parameters $Y_{(NPQ)}$ and NPQ in wheat leaves rose significantly under NaCl stress but markedly lowered under CaCl₂ treatment alone, when compared with CK (Table 2). Adding CaCl₂ to 150 mM NaCl-stressed seedlings significantly reduced $Y_{(NPQ)}$, whereas NPQ of NaCl-stressed seedlings remained unaltered due to 0.1 or 1 mM CaCl₂ presence but notably lowered by about 31% under 0.5 mM CaCl₂ application when compared with NaCl stress alone.

Exposure to NaCl alone led to a significant reduction in the photosynthetic pigment content in wheat leaves, with approximately 20, 46, 24, 27, and 17% decreases in the amount of Chl *a*, Chl *b*, total Chl, Car, and lutein, respectively, together with about 48% increase of Chl *a/b*, when compared with CK (Fig. 3). By contrast, 0.1 mM CaCl₂ treatment alone obviously increased the content of lutein but did not affect other photosynthetic pigments, while the exposure of wheat seedlings to 0.5 or 1 mM CaCl₂ alone resulted in notable increases of these five parameters and an obvious decrease of Chl *a/b*. No significant difference of Chl *a* and total Chl contents was found between the leaves of sodium salt-alone-treated and NaCl + 0.1 mM CaCl₂-treated seedlings, while an obvious increase for the amount of Chl *b*, Car, and lutein was observed, together with a significant decrease in Chl *a/b*. Adding 0.5 or 1 mM CaCl₂ to sodium salt-stressed seedlings effectively enhanced Chl *a*, Chl *b*, total

Table 2. Changes of the electron yield of regulatory energy dissipation ($Y_{(NPQ)}$) and nonphotochemical quenching (NPQ) in wheat leaves under different treatments. Values are expressed as the average value \pm SE based on at least three replicates, and different lowercase letters indicate significant differences ($P<0.05$) according to *Duncan's* test. CK – control, S – 150 mM NaCl, C1 – 0.1 mM CaCl₂, C2 – 0.5 mM CaCl₂, C3 – 1 mM CaCl₂, S + C1 – 150 mM NaCl + 0.1 mM CaCl₂, S + C2 – 150 mM NaCl + 0.5 mM CaCl₂, S + C3 – 150 mM NaCl + 1 mM CaCl₂.

Treatment	$Y_{(NPQ)}$	NPQ
CK	0.39 ± 0.02^b	0.26 ± 0.01^b
C1	0.25 ± 0.02^a	0.19 ± 0.01^a
C2	0.21 ± 0.02^a	0.17 ± 0.01^a
C3	0.20 ± 0.02^a	0.17 ± 0.01^a
S	0.79 ± 0.02^d	0.39 ± 0.01^c
S + C1	0.55 ± 0.01^c	0.35 ± 0.01^c
S + C2	0.52 ± 0.02^c	0.27 ± 0.01^b
S + C3	0.53 ± 0.02^c	0.35 ± 0.02^c

Chl, Car, and lutein contents to about 133, 177, 137, 119, and 152% of 150 mM NaCl treatment alone, respectively, whereas Chl *a/b* significantly decreased, when compared with sodium salt stress alone (Fig. 3).

Further studies were conducted to analyze the effect of Ca²⁺ channel blocker LaCl₃ or Ca²⁺ chelator EGTA on the Chl content in wheat leaves under the combined treatment of NaCl and CaCl₂. The application of 0.5 mM LaCl₃ or 0.5 mM EGTA significantly eliminated the CaCl₂-alleviating effect on sodium salt-induced destruction of Chl (Table 3). For example, the amount of Chl *a*, Chl *b*, and total Chl in the leaves of sodium

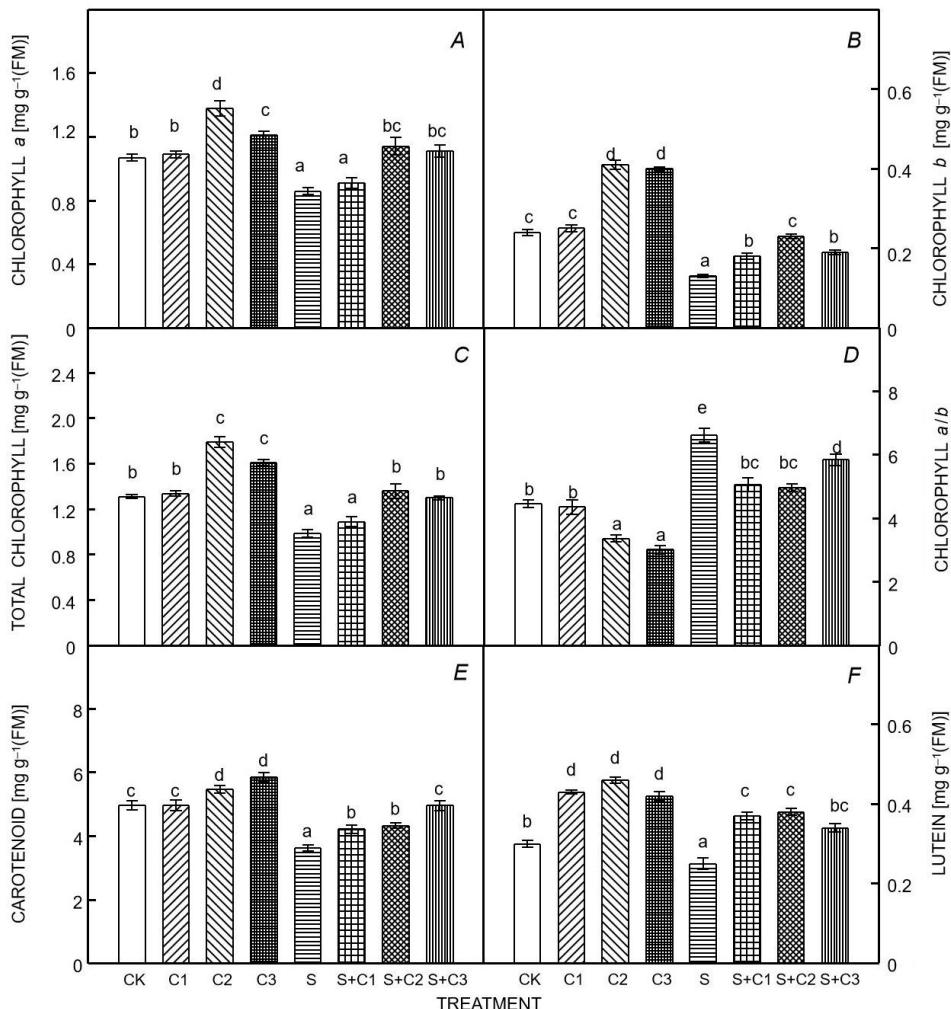


Fig. 3. Contents of chlorophyll (Chl) *a* (A), Chl *b* (B), total Chl (C), Car (E), and lutein (F) [$\text{mg g}^{-1}(\text{FM})$] and Chl *a*/Chl *b* (D) in wheat leaves under different treatments. CK – control, S – 150 mM NaCl, C1 – 0.1 mM CaCl₂, C2 – 0.5 mM CaCl₂, C3 – 1 mM CaCl₂, S + C1 – 150 mM NaCl + 0.1 mM CaCl₂, S + C2 – 150 mM NaCl + 0.5 mM CaCl₂, S + C3 – 150 mM NaCl + 1 mM CaCl₂. Values are expressed as the average value \pm SE based on at least three replicates, and different lowercase letters on bars indicate significant differences ($P < 0.05$) according to *Duncan's* test.

salt-stressed seedlings was 1.19 ± 0.027 , 0.17 ± 0.008 , and 1.36 ± 0.019 [$\text{mg g}^{-1}(\text{FM})$], respectively, and the presence of CaCl₂ increased these three indexes to 1.26 ± 0.048 , 0.29 ± 0.017 , and 1.55 ± 0.024 [$\text{mg g}^{-1}(\text{FM})$] in the leaves of sodium salt-treated seedlings, whereas adding 0.5 mM LaCl₃ to NaCl + CaCl₂-treated seedlings reduced the amount of Chl *a*, Chl *b*, and total Chl to 1.15 ± 0.019 , 0.19 ± 0.011 , and 1.34 ± 0.016 [$\text{mg g}^{-1}(\text{FM})$], respectively. Similarly, the addition of 0.5 mM EGTA to NaCl + CaCl₂-treated seedlings reduced Chl *a*, Chl *b*, and total Chl to 1.19 ± 0.062 , 0.20 ± 0.013 , and 1.39 ± 0.020 [$\text{mg g}^{-1}(\text{FM})$], respectively.

When compared with CK, 150 mM NaCl significantly reduced the Ca²⁺ content in wheat leaves by about 25% (Fig. 4A). Insignificant changes were found between CK and 0.1 mM CaCl₂ treatment, whereas exposure to 0.5 and 1 mM CaCl₂ alone notably increased the amount of Ca²⁺ to about 126 and 132% of CK, respectively. No statistical

difference for the Ca²⁺ content was observed between the leaves of sodium salt-alone-stressed and NaCl + 0.1 mM CaCl₂-treated seedlings, while this parameter significantly increased in the leaves of sodium salt-stressed seedlings in the presence of 0.5 or 1 mM CaCl₂ by about 22% when compared with 150 mM NaCl stress alone.

The CaM content in the leaves of both untreated and salinity-treated seedlings notably decreased with the extension of growth time (Fig. 4B). In untreated seedlings that grew on days 2 and 6, the amount of CaM in the leaves was 152.26 ± 14.64 and 89.73 ± 9.24 [$\text{U g}^{-1}(\text{FM})$], respectively. Compared with untreated seedlings, 150 mM NaCl-alone-stressed ones exhibited about 47 and 35% reduction of the CaM content on days 2 and 6, respectively. The CaM content of different CaCl₂ concentrations was significantly higher than that of CK, and the most prominent increase was due to 0.5 mM CaCl₂ exposure alone (Fig. 4B). Adding 0.1, 0.5, or 1 mM

Table 3. Changes of Chl content [$\text{mg g}^{-1}(\text{FM})$] in wheat leaves under different treatments. Values are expressed as the average value \pm SE based on at least three replicates, and *different lowercase letters* indicate significant differences ($P < 0.05$) according to *Duncan's test*. CK – control, S – 150 mM NaCl, C2 – 0.5 mM CaCl₂, S + C2 – 150 mM NaCl + 0.5 mM CaCl₂.

Treatment	Chl <i>a</i>	Chl <i>b</i>	Total Chl	Chl <i>a/b</i>
CK	1.51 \pm 0.03 ^d	0.34 \pm 0.00 ^c	1.85 \pm 0.04 ^c	4.44 \pm 0.21 ^a
0.5 mM LaCl ₃	1.31 \pm 0.03 ^c	0.26 \pm 0.01 ^b	1.57 \pm 0.02 ^b	5.04 \pm 0.18 ^b
0.5 mM EGTA	1.34 \pm 0.02 ^c	0.31 \pm 0.01 ^c	1.65 \pm 0.03 ^b	4.32 \pm 0.22 ^a
S	1.19 \pm 0.03 ^a	0.17 \pm 0.01 ^a	1.36 \pm 0.02 ^a	7.00 \pm 0.26 ^d
S + C ₂	1.26 \pm 0.05 ^b	0.29 \pm 0.02 ^b	1.55 \pm 0.02 ^b	4.34 \pm 0.27 ^a
S + C ₂ + 0.5 mM LaCl ₃	1.15 \pm 0.05 ^b	0.19 \pm 0.01 ^a	1.34 \pm 0.02 ^a	6.05 \pm 0.28 ^c
S + C ₂ + 0.5 mM EGTA	1.19 \pm 0.06 ^a	0.20 \pm 0.01 ^a	1.39 \pm 0.02 ^a	5.09 \pm 0.33 ^b

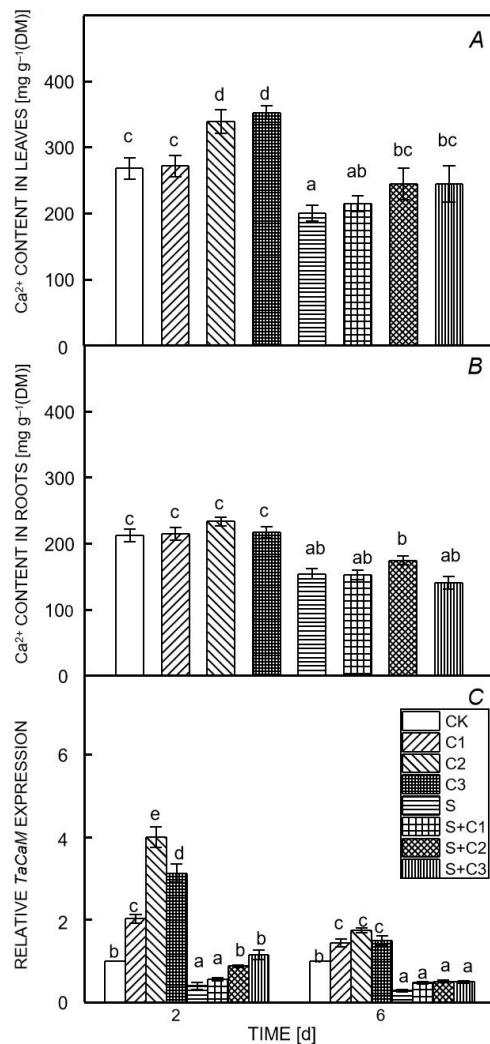


Fig. 4. Changes of Ca²⁺ content [$\text{mg g}^{-1}(\text{DM})$] (A) and calmodulin (CaM) content [$\text{U g}^{-1}(\text{FM})$] (B) and *TaCaM* expression (C) in wheat leaves measured under different treatments after 2 d and 6 d. CK – control, S – 150 mM NaCl, C1 – 0.1 mM CaCl₂, C2 – 0.5 mM CaCl₂, C3 – 1 mM CaCl₂, S + C1 – 150 mM NaCl + 0.1 mM CaCl₂, S + C2 – 150 mM NaCl + 0.5 mM CaCl₂, S + C3 – 150 mM NaCl + 1 mM CaCl₂. Values are expressed as the average value \pm SE based on at least three replicates, and *different lowercase letters* on bars indicate significant differences ($P < 0.05$) according to *Duncan's test*.

CaCl₂ to wheat seedlings treated with sodium salt for 2 d increased the amount of CaM to 141, 164, and 148% of sodium salt stress alone, respectively, but did not affect this parameter on day 6. We speculated that the addition of exogenous CaCl₂ affected the amount of CaM in seedling leaves at the early stages of 150 mM NaCl stress.

As shown in Fig. 4C, stress with 150 mM NaCl on days 2 and 6 downregulated *TaCaM* expression by about 60 and 72%, respectively, in comparison with CK. However, the expression of this gene was significantly enhanced in response to different CaCl₂ concentrations, among which the 0.5 mM CaCl₂-stimulating effect was the most predominant, and the early effect of all CaCl₂ concentrations was notably stronger than the late effect (Fig. 4C). No significant difference was found between NaCl-alone-stressed and NaCl + 0.1 mM CaCl₂-treated seedlings, whereas the sodium salt-induced downregulation of *TaCaM* expression was effectively blocked by the application of 0.5 or 1 mM CaCl₂ for 2 d but remained unaltered for 6 d (Fig. 4C).

Discussion

Photosynthesis is the main determinant of plant growth (Chang *et al.* 2020). Photosynthetic gas-exchange parameters and Chl fluorescence parameters can reflect the influence of adverse environments on plant photosynthetic apparatus (Yin *et al.* 2019, Zhang *et al.* 2021). In the present study, photosynthetic gas-exchange parameters P_N , g_s , C_i , and E , as well as Chl fluorescence parameters F_v/F_m , $Y_{(II)}$, q_p , and ETR, notably decreased in wheat leaves under 150 mM NaCl treatment. The changes in these parameters might be due to the excessive reactive oxygen species (ROS) accumulation in wheat leaves caused by sodium chloride stress (Li *et al.* 2018a), because more ROS generation not only causes oxidative damage on plant cells but also disturbs processes within the various photosynthetic apparatus (Wu *et al.* 2023). Therefore, sodium salt-induced restraint of wheat seedling growth (Table 1) was caused by the weakening of photosynthetic capacity (Zhao *et al.* 2007). These present findings suggested that salinity-mediated decrease in photosynthesis might be attributed to stomatal constraints, such as stomatal closure and CO₂ absorption reduction, and nonstomatal factors including the reduction of leaf

area (Table 1) and photosynthetic pigment content (Fig. 4), and the inhibition of photochemical reactions. Several previous observations also demonstrated that decreased photochemical efficiency of the PSII reaction center was responsible for the inhibition of plant growth (Hu *et al.* 2022) and that the inhibition of photosynthesis was attributed to stomatal limitation (Sehar *et al.* 2019, Rasouli *et al.* 2021), when various plants were exposed to sodium salt stress. However, sodium salt-induced weakening of P_N is accompanied by increased C_i and decreased E , F_v/F_m , and q_p in the leaves of rice (*Oryza sativa* L., cv. Ningjing No. 7) seedlings (Yan *et al.* 2021). Also increased P_N of *Puccinellia distans* (Dashtebani *et al.* 2014) and *Typha domingensis* Pers. (Akhter *et al.* 2021) together with markedly decreased g_s and E under sodium salinity stress is indicating that the retardation or enhancement of photosynthesis in these plants is due to nonstomatal factors. It could be concluded from the above that sodium salt treatment mediated different stomatal responses to modify photosynthesis in various plants. Contrary to the variation of the above parameters, the obvious increases of $Y_{(NPQ)}$ and NPQ in wheat leaves under sodium salt stress indicated enhancing thermal dissipation, which was beneficial to attenuate the damage of excessive energy to photosynthetic apparatus.

The calcium-salt environment can also affect plant growth by altering photosynthesis. In the present study, notable improvement of P_N and C_i was observed in wheat leaves under all CaCl_2 concentrations (0.1–1 mM), along with obvious increment of E due to 0.1 mM CaCl_2 , significant increases of g_s and E to 0.5 mM CaCl_2 but marked decreases of g_s and E to 1 mM CaCl_2 . These results suggested that all CaCl_2 concentrations (0.1–1 mM) enhanced photosynthesis in wheat leaves because Ca^{2+} is an essential element for photosynthesis in some plants (Jones and Lunt 1967, Schwartz *et al.* 1988) and a certain Ca^{2+} concentration can maintain the stability of chloroplast structure and photosynthetic efficiency (Guo *et al.* 2023). Meanwhile, these present findings together with CaCl_2 -induced positive effects on F_v/F_m , $Y_{(NPQ)}$, q_p , or/and ETR also manifested that enhanced photosynthetic efficiency depended on both stomatal and nonstomatal factors under CaCl_2 treatment alone (Fig. 2). Differently, stomatal limitation is mainly responsible for the suppression of photosynthesis in 80 mM $\text{Ca}(\text{NO}_3)_2$ -treated tomato and cucumber (Yuan *et al.* 2012, Wu *et al.* 2023). More recently, some researchers observed that combined sodium salt and Ca treatments increased P_N but decreased g_s , C_i , and E in *Populus deltoides* female clones (Miao *et al.* 2020). The present findings showed that appropriate Ca application effectively alleviated the NaCl -inhibitory effect on wheat seedling growth (Table 1). More importantly, in addition to decreased g_s and unchanged E in $\text{NaCl} + 1 \text{ mM CaCl}_2$ -treated seedlings, the application of 0.1–1 mM CaCl_2 concentrations to NaCl -exposed wheat seedlings significantly increased P_N , g_s , C_i , and E , confirming that CaCl_2 presence could relieve stomatal restriction to promote photosynthetic efficiency in salinity-stressed wheat seedlings. Additionally, the marked improvement of F_v/F_m , $Y_{(NPQ)}$, q_p , or/and ETR in sodium salt + CaCl_2 -treated

wheat seedlings, along with lowered $Y_{(NPQ)}$ and unaltered or decreased NPQ, suggested that nonstomatal factors also were responsible for the enhanced photosynthesis. According to the above results in this study, we speculated that exogenous CaCl_2 application might relieve the damage to photosynthetic apparatus and the restriction of stomatal factors under sodium salt stress, thereby reducing heat dissipation and promoting photosynthesis and seedling growth. This is because Ca can maintain the photosynthetic capacity of plants by increasing stomatal conductivity and maintaining chloroplast membrane structure under abiotic stress (Lionetti *et al.* 2014, Xu *et al.* 2017). Our speculation was also supported by Kang *et al.* (2017), who reported that CaCl_2 treatment alone did not alter PSII photochemistry, but that water deficit-caused inhibition of PSII photochemistry could be blocked by adding CaCl_2 .

Photosynthetic pigments affect the rate of photosynthesis and the formation of photosynthates (Hussain *et al.* 2021). According to the literature, the amount of Chl, Car, and lutein in the leaves of various plants gradually decreases under sodium salt stress (Shafi *et al.* 2009, Zhang *et al.* 2021, Hu *et al.* 2022). Similarly, the amount of Chl, Car, and lutein in wheat leaves significantly lowered under NaCl treatment alone, along with the obvious increase in Chl a/b , implying stronger destruction of Chl b concerning Chl a and weakened photosynthesis. Increased Chl a/b was also found in salt-adapted halophyte *Artemisia anethifolia* (Lu *et al.* 2003) and rice cultivars (Frukh *et al.* 2020) under sodium salt. Reduced Chl content might be caused by the destruction of photosynthetic apparatus and the decomposition of Chl under sodium salt stress (Shu *et al.* 2013, Yang *et al.* 2015), because sodium salt toxicity improves ROS accumulation (Li *et al.* 2018a) and the instability of protein complexes and stimulates Chl-degrading enzymes chlorophyllase and pheophorbide α oxygenase (Reddy and Vora 1986, Zhu *et al.* 2019), and ROS-induced peroxidation of membrane lipids in wheat chloroplasts enhances the direct contact between Chl and Chl-degrading enzymes and thus accelerates Chl degradation (Hörtenersteiner and Kräutler 2011). Different from sodium salt treatment alone, 0.1 mM CaCl_2 only significantly increased lutein content, while the individual application of medium- or high-concentration CaCl_2 markedly improved the amount of Chl a , Chl b , Car, and lutein with an obvious decrease in Chl a/b in wheat leaves, proving that appropriate Ca concentration was necessary for the stability or synthesis of photosynthetic pigments; in particular, Chl b to Chl a was strongly dependent on the Ca content in wheat leaves. This conclusion was further supported by the Ca^{2+} -induced increase of the Chl content in rice (Cha-um *et al.* 2012), CaCl_2 -preventing Chl degradation in butterhead lettuce (León *et al.* 2009), and the Chl a content of foxtail millet seedlings independent of Ca^{2+} concentration (Han *et al.* 2019). Different from these observations, exogenous Ca application causes a greater positive effect on Chl a than Chl b in honeysuckle (*Lonicera japonica*) (Huang *et al.* 2019), and high-concentration Ca as a stress factor destroyed photosynthetic apparatus and inhibited photosynthetic pigments synthesis (Yuan *et al.* 2012).

We also found that the addition of 0.5 or 1 mM CaCl_2 effectively blocked the reduction of photosynthetic pigment contents in wheat leaves under sodium salt treatment, further confirming that appropriate Ca^{2+} presence might be beneficial for enhancing the stability of photosynthetic pigment or/and weakening the decomposition of photosynthetic pigment in wheat leaves under sodium salt stress. Several previous studies also demonstrate that exogenous CaCl_2 application can partially eliminate the decrease of the Chl content and the inhibition of plant growth under sodium salt stress in honeysuckle (*Lonicera japonica*) (Huang *et al.* 2019) and foxtail millet (*Setaria italica* L.) (Han *et al.* 2019). Moreover, CaCl_2 treatment can successfully prevent the accumulation of O_2^- and H_2O_2 and thus delay Chl degradation (Ganesan and Thomas 2001).

The Ca–CaM complex in the Ca-signal pathway can activate a variety of target proteins to regulate various cellular processes (Villalobo and Berchtold 2020). EGTA or/and LaCl_3 can inhibit Ca–CaM-mediated signal transduction (Wang *et al.* 2019b). In this experiment, EGTA or LaCl_3 treatment alone or combined with NaCl significantly reduced the Chl content in wheat leaves, implying that Chl metabolism might depend on Ca–CaM signal pathway. Similarly, EGTA or LaCl_3 can eliminate the Ca-alleviating effect on Chl destruction induced by sodium salt stress in excised etiolated barley leaves and cucumber cotyledons (Legocka *et al.* 2014). Therefore, we further analyzed Ca and CaM contents in wheat leaves under NaCl or $\text{NaCl} + \text{CaCl}_2$ treatment. Sodium salt stress alone significantly reduced the Ca and CaM contents, whereas all CaCl_2 concentrations markedly enhanced Ca content. On the contrary, the CaM content in tobacco (Che *et al.* 2022) and sweet potato [*Ipomoea batatas* (L.) Lam.] (Chen *et al.* 2012) rose observably under sodium salt stress. Additionally, the CaM content together with *TaCaM* expression under $\text{NaCl} + \text{CaCl}_2$ treatment was upregulated for 2 d but remained unaltered for 6 d, further supporting the conclusion that exogenous CaCl_2 application enhanced the amounts of photosynthetic pigments in sodium salt-stressed seedlings through activating the Ca^{2+} –CaM messenger pathway. Similarly, exogenous Ca^{2+} addition dramatically increased the CaM content in perennial ryegrass (*Lolium perenne* L.) seedlings under sodium salt stress (Hu *et al.* 2016).

In conclusion, sodium salt treatment alone significantly retarded seedlings' growth and photosynthetic efficiency, which were related to the decreases in photosynthetic electron transport, light energy conversion efficiency, and photosynthetic pigment contents. Moderate-concentration CaCl_2 treatment alone or combined with sodium salt promoted the growth of wheat seedlings by enhancing the efficiency of photosynthetic electron transport light energy conversion and the amount of photosynthetic pigments. The positive effect of CaCl_2 application on growth and photosynthesis was associated with the adverse improvement of photosynthetic pigment contents, photosynthetic efficiency, and photochemical reactions in NaCl -stressed wheat seedlings. Additionally, exogenous Ca application promoted Chl synthesis by

activating the Ca–CaM messenger system in the leaves of sodium salt-treated wheat seedlings.

References

Akhter N., Aqeel M., Shahnaz M.M. *et al.*: Physiological homeostasis for ecological success of *Typha* (*Typha domingensis* Pers.) populations in saline soils. – *Physiol. Mol. Biol. Plants* **27**: 687–701, 2021.

Bouché N., Yellin A., Snedden W.A., Fromm H.: Plant-specific calmodulin-binding proteins. – *Annu. Rev. Plant Biol.* **56**: 435–466, 2005.

Chang X., Sun J., Liu L. *et al.*: Transcriptome analysis of differentially expressed genes in wild jujube seedlings under salt stress. – *J. Am. Soc. Hortic. Sci.* **145**: 174–185, 2020.

Cha-um S., Singh H.P., Samphumphuang T., Kirdmanee C.: Calcium-alleviated salt tolerance in indica rice (*Oryza sativa* L. spp. *indica*): physiological and morphological changes. – *Aust. J. Crop Sci.* **6**: 176–182, 2012.

Che Y.H., Yao T.T., Wang H.R. *et al.*: Potassium ion regulates hormone, Ca^{2+} and H_2O_2 signal transduction and antioxidant activities to improve salt stress resistance in tobacco. – *Plant Physiol. Biochem.* **186**: 40–51, 2022.

Chen H.-J., Lin Z.-W., Huang G.-J., Lin Y.-H.: Sweet potato calmodulin *SPCAM* is involved in salt stress-mediated leaf senescence, H_2O_2 elevation and senescence-associated gene expression. – *J. Plant Physiol.* **169**: 1892–1902, 2012.

Dashtebani F., Hajiboland R., Aliasgharzad N.: Characterization of salt-tolerance mechanisms in mycorrhizal (*Claroideoglomus etunicatum*) halophytic grass, *Puccinellia distans*. – *Acta Physiol. Plant.* **36**: 1713–1726, 2014.

Dayod M., Tyerman S.D., Leigh R.A., Gillham M.: Calcium storage in plants and the implications for calcium biofortification. – *Protoplasma* **247**: 215–231, 2010.

dos Santos Araújo G., de Souza Miranda R., Mesquita R.O. *et al.*: Nitrogen assimilation pathways and ionic homeostasis are crucial for photosynthetic apparatus efficiency in salt-tolerant sunflower genotypes. – *Plant Growth Regul.* **86**: 375–388, 2018.

Dugasa M.T., Cao F., Ibrahim W., Wu F.: Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. – *Physiol. Plantarum* **165**: 134–143, 2019.

Frukha A., Siddiqi T.O., Khan M.I.R., Ahmad A.: Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. – *Plant Physiol. Biochem.* **146**: 55–70, 2020.

Ganesan V., Thomas G.: Salicylic acid response in rice: influence of salicylic acid on H_2O_2 accumulation and oxidative stress. – *Plant Sci.* **160**: 1095–1106, 2001.

Gu J.F., Zhou Z.X., Li Z.K. *et al.*: Rice (*Oryza sativa* L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. – *Field Crop. Res.* **200**: 58–70, 2017.

Guo H.X., Dong Q., Li S.M. *et al.*: Effects of exogenous calcium on growth, chlorophyll fluorescence characteristics and antioxidant system of *Fraxinus malacophylla* seedlings. – *Plant Physiol. Biochem.* **201**: 107860, 2023.

Han F., Sun M., He W. *et al.*: Ameliorating effects of exogenous Ca^{2+} on foxtail millet seedlings under salt stress. – *Funct. Plant Biol.* **46**: 407–416, 2019.

Han W., Xu X.W., Li L. *et al.*: Chlorophyll *a* fluorescence responses of *Haloxylon ammodendron* seedlings subjected to progressive saline stress in the Tarim desert highway

ecological shelterbelt. – *Photosynthetica* **48**: 635-640, 2010.

Han X.Z., Tohge T., Lalor P. *et al.*: Phytochrome A and B regulate primary metabolism in *Arabidopsis* leaves in response to light. – *Front. Plant Sci.* **8**: 1394, 2017.

Hochmal A.K., Schulze S., Trompelt K., Hippler M.: Calcium-dependent regulation of photosynthesis. – *BBA-Bioenergetics* **1847**: 993-1003, 2015.

Hörtenersteiner S., Kräutler B.: Chlorophyll breakdown in higher plants. – *BBA-Bioenergetics* **1807**: 977-988, 2011.

Hu C.-H., Zheng Y., Tong C.-L., Zhang D.-J.: Effects of exogenous melatonin on plant growth, root hormones and photosynthetic characteristics of trifoliate orange subjected to salt stress. – *Plant Growth Regul.* **97**: 551-558, 2022.

Hu T., Chen K., Hu L.X. *et al.*: H_2O_2 and Ca^{2+} -based signaling and associated ion accumulation, antioxidant systems and secondary metabolism orchestrate the response to NaCl stress in perennial ryegrass. – *Sci. Rep.-UK* **6**: 36396, 2016.

Huang L.Y., Li Z.Z., Pan S.B. *et al.*: Ameliorating effects of exogenous Ca on the photosynthetic physiology of honeysuckle (*Lonicera japonica*) under salt stress. – *Funct. Plant Biol.* **46**: 1103-1113, 2019.

Hussain S., Zhang J.-H., Zhong C. *et al.*: Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. – *J. Integr. Agr.* **16**: 2357-2374, 2017.

Hussain T., Li J.S., Feng X.H. *et al.*: Salinity induced alterations in photosynthetic and oxidative regulation are ameliorated as a function of salt secretion. – *J. Plant Res.* **134**: 779-796, 2021.

Jones R.G.W., Lunt O.R.: The function of calcium in plant. – *Bot. Rev.* **33**: 407-426, 1967.

Jusovic M., Velitchkova M.Y., Misheva S.P. *et al.*: Photosynthetic responses of a wheat mutant (*Rht-B1c*) with altered DELLA proteins to salt stress. – *J. Plant Growth Regul.* **37**: 645-656, 2018.

Kafi M.: The effects of salinity and light on photosynthesis, respiration and chlorophyll fluorescence in salt-tolerant and salt-sensitive wheat (*Triticum aestivum* L.) cultivars. – *J. Agr. Sci. Tech.* **11**: 535-547, 2009.

Kang J., Zhao W., Zheng Y. *et al.*: Calcium chloride improves photosynthesis and water status in the C_4 succulent xerophyte *Haloxylon ammodendron* under water deficit. – *Plant Growth Regul.* **82**: 467-478, 2017.

Legocka J., Sobieszczuk-Nowicka E.: Calcium variously mediates the effect of cytokinin on chlorophyll and LHCPII accumulation during greening in barley leaves and cucumber cotyledons. – *Acta Biol. Cracov. Bot.* **56**: 27-34, 2014.

León A.P., Frezza D., Logegaray V.R. *et al.*: Calcium chloride dip and postharvest behavior of butter head lettuce minimally processed. – *Acta Hortic.* **875**: 191-204, 2009.

Li H.R., Li H.L., Wang H.G. *et al.*: [Further study on the method of leaf area calculation in winter wheat.] – *J. Triticeae Crop.* **38**: 455-459, 2018b. [In Chinese]

Li Q., Lv L.R., Teng Y.J. *et al.*: Apoplastic hydrogen peroxide and superoxide anion exhibited different regulatory functions in salt-induced oxidative stress in wheat leaves. – *Biol. Plantarum* **62**: 750-762, 2018a.

Li Y.Q., Zhang H.D., Dong F.Y. *et al.*: Multiple roles of wheat calmodulin genes during stress treatment and TaCAM2-D as a positive regulator in response to drought and salt tolerance. – *Int. J. Biol. Macromol.* **220**: 985-997, 2022.

Lionetti D., Agapie T.: How calcium affects oxygen formation. – *Nature* **513**: 495-496, 2014.

Lu C.M., Jiang G.M., Wang B.S., Kuang T.Y.: Photosystem II photochemistry and photosynthetic pigment composition in salt-adapted halophyte *Artemisia anethifolia* grown under outdoor conditions. – *J. Plant Physiol.* **160**: 403-408, 2003.

Lu T., Yu H., Li Q. *et al.*: Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (*Solanum lycopersicum* L.) seedlings. – *Front. Plant Sci.* **10**: 490, 2019.

Ma Y., Wang P., Zhou T. *et al.*: Role of Ca^{2+} in phenolic compound metabolism of barley (*Hordeum vulgare* L.) sprouts under NaCl stress. – *J. Sci. Food Agr.* **99**: 5176-5186, 2019.

Miao L.-F., Li D.-D., Yang F., Tan Z.-H.: Sex-specific responses of *Populus deltoids* to combined salinity and calcium under waterlogging conditions. – *Biol. Plantarum* **64**: 753-763, 2020.

Mukhopadhyay R., Sarkar B., Jat H.S. *et al.*: Soil salinity under climate change: Challenges for sustainable agriculture and food security. – *J. Environ. Manage.* **280**: 111736, 2021.

Nomura H., Komori T., Uemura S. *et al.*: Chloroplast-mediated activation of plant immune signalling in *Arabidopsis*. – *Nat. Commun.* **3**: 926, 2012.

Ouerghi Z., Cornic G., Roudani M. *et al.*: Effect of NaCl on photosynthesis of two wheat species (*Triticum durum* and *T. aestivum*) differing in their sensitivity to salt stress. – *J. Plant Physiol.* **156**: 335-340, 2000.

Patanè C., Saita A., Sortino O.: Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. – *J. Agron. Crop Sci.* **199**: 30-37, 2013.

Rasouli F., Kiani-Pouya A., Tahir A. *et al.*: A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions. – *Environ. Exp. Bot.* **181**: 104300, 2021.

Reddy M.P., Vora A.B.: Changes in pigment composition, Hill reaction activity and saccharides metabolism in bajra (*Pennisetum typhoides* S & H) leaves under NaCl salinity. – *Photosynthetica* **20**: 50-55, 1986.

Ritchie R.J., Sma-Air S., Limsathapornkul N. *et al.*: Photosynthetic electron transport rate (ETR) in the littoral herb *Launaea sarmentosa* known as mole crab in Thailand. – *Photosynth. Res.* **150**: 327-341, 2021.

Sankari M., Hridya H., Sneha P. *et al.*: Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of *Bixa orellana* L. – *Funct. Integr. Genomic.* **19**: 565-574, 2019.

Schwartz A., Ilan N., Grantz D.A.: Calcium effects on stomatal movement in *Commelina communis* L.: Use of EGTA to modulate stomatal response to light, KCl and CO_2 . – *Plant Physiol.* **87**: 583-587, 1988.

Sehar Z., Masood A., Khan N.A.: Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (*Triticum aestivum* L.) under salt stress. – *Environ. Exp. Bot.* **161**: 277-289, 2019.

Shafi M., Bakht J., Hassan M.J. *et al.*: Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (*Triticum aestivum* L.). – *B. Environ. Contam. Tox.* **82**: 772-776, 2009.

Sheteiwly M.S., An J.Y., Yin M.Q. *et al.*: Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of *Oryza sativa* seedlings. – *Protoplasma* **256**: 79-99, 2019.

Shu S., Yuan L.-Y., Guo S.-R. *et al.*: Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in *Cucumis sativus* L. under salt stress. – *Plant Physiol. Biochem.* **63**: 209-216, 2013.

Tabatabaei S., Ehsanzadeh P.: Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. – *Photosynthetica* **54**: 340-350, 2016.

Vafadar F., Amooaghaie R., Ehsanzadeh P. *et al.*: Melatonin and calcium modulate the production of rosmarinic acid, luteolin,

and apigenin in *Dracocephalum kotschy* under salinity stress. – *Phytochemistry* **177**: 112422, 2020.

Villalobo A., Berchtold M.W.: The role of calmodulin in tumor cell migration, invasiveness, and metastasis. – *Int. J. Mol. Sci.* **21**: 765, 2020.

Wang C., Teng Y.B., Zhu S. *et al.*: NaCl- and cold-induced stress activate different Ca^{2+} -permeable channels in *Arabidopsis thaliana*. – *Plant Growth Regul.* **87**: 217-225, 2019a.

Wang Q., Yang S., Wan S.B., Li X.G.: The significance of calcium in photosynthesis. – *Int. J. Mol. Sci.* **20**: 1353, 2019b.

Wu D., Chen C.L., Liu Y.F. *et al.*: Iso-osmotic calcium nitrate and sodium chloride stresses have differential effects on growth and photosynthetic capacity in tomato. – *Sci. Hortic.-Amsterdam* **312**: 111883, 2023.

Xu D., Wang W., Gao T. *et al.*: Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in *Calligonum mongolicum*. – *Conserv. Physiol.* **5**: cox060, 2017.

Xu Y.L., Zhang Y., Li J.M. *et al.*: Comparison of antioxidant enzyme activity and gene expression in two new spring wheat cultivars treated with salinity. – *Biol. Plantarum* **65**: 131-144, 2021.

Yan F.Y., Zhang J.Y., Li W.W. *et al.*: Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. – *Plant Physiol. Biochem.* **163**: 367-375, 2021.

Yang F., Dong F.-S., Hu F.-H. *et al.*: Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (*CAMTA*) gene family in wheat (*Triticum aestivum* L.). – *BMC Genet.* **21**: 105, 2020.

Yang Y.J., Yu L., Wang L.P., Guo S.R.: Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress. – *J. Plant Physiol.* **186-187**: 50-58, 2015.

Yin Z.P., Lu J.Z., Meng S.D. *et al.*: Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. – *J. Plant Interact.* **14**: 453-463, 2019.

Yuan L., Shu S., Sun J. *et al.*: Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in *Cucumis sativus* L. under $\text{Ca}(\text{NO}_3)_2$ stress. – *Photosynth. Res.* **112**: 205-214, 2012.

Zeng H.Q., Xu L.Q., Singh A. *et al.*: Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. – *Front Plant Sci.* **6**: 600, 2015.

Zhang J.M., Deng L., Jiang H. *et al.*: The effects of elevated CO_2 , elevated O_3 , elevated temperature, and drought on plant leaf gas exchanges: a global meta-analysis of experimental studies. – *Environ. Sci. Pollut. Res.* **28**: 15274-15289, 2021.

Zhao G.Q., Ma B.L., Ren C.Z.: Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. – *Crop Sci.* **47**: 123-131, 2007.

Zhao X., Chen T.T., Feng B.H. *et al.*: Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. – *Front. Plant Sci.* **7**: 1968, 2017.

Zhou X.T., Zhao H.L., Cao K. *et al.*: Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. – *Front. Plant Sci.* **7**: 1823, 2016.

Zhu Y.-F., Wu Y.-X., Hu Y. *et al.*: Tolerance of two apple rootstocks to short-term salt stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. – *Acta Physiol. Plant.* **41**: 87, 2019.

Zielinski R.E.: Calmodulin and calmodulin-binding proteins in plants. – *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **49**: 697-725, 1998.