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Abstract

The regulation of stomatal movements is crucial for plants to optimize gas exchange and water balance. The plant
hormone abscisic acid (ABA) triggers stomatal closure in response to drought, effectively minimizing water loss to
prevent hydraulic failure. However, it significantly constrains photosynthesis, restricting plant growth and productivity.
Therefore, rapid post-drought stomatal opening is crucial for earlier photosynthetic recovery. This review explores how
phytohormones or plant growth regulators reverse ABA-induced stomatal closure. Phytomelatonin, 5-aminolevulinic
acid, and brassinosteroids promote stomatal reopening by either ABA degradation or suppressing its biosynthesis
through the downregulation of corresponding genes. This results in less ABA-induced H,O, accumulation in guard
cells, which lowers H,O,-triggered Ca*" levels in guard cells, and promotes the opening of KAT1 (K*, channels).
Insights from this review highlight the potential mechanisms of stomatal reopening for earlier post-drought gas
exchange recovery, offering potential avenues to enhance plant productivity under changing environmental conditions.
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Introduction

Plants in nature consistently encounter environmental
stresses (Sharma ez al. 2022, Zhang et al. 2022). Drought is
amajor environmental stressor thatnegatively impacts plant
physiology (Abid et al. 2018), considerably diminishing
crop yield and presenting a significant challenge to
agricultural production (Zhang et al. 2024). Plants have
evolved integrated physiological, molecular, and defense
mechanisms to mitigate the harmful consequences of
drought stress, allowing them to detect and respond
promptly to unfavorable environmental changes (Huber
etal. 2019, Hasan et al. 2021a, Waseem et al. 2021, 2024).
Among these, stomatal closure is a prevalent adaptive
response vital for reducing transpiration, thus maintaining
water status and preventing xylem hydraulic dysfunction
(Blackman et al. 2009, Pirasteh-Anosheh et al. 2016).

The plant hormone abscisic acid (ABA) regulates
stomatal movements during water-deficient conditions
(Long et al. 2019, Hsu et al. 2021, Hasan et al. 2022).
ABA triggers the activation of guard cell membrane
channels and transporters, reducing turgor pressure and
inducing stomatal closure (Brodribb and McAdam 2013).
This strategy allows plants to minimize water loss, thereby
sustaining cellular functions and delaying hydraulic
dysfunction and, therefore, plant death (Brodribb e al.
2021). However, excessive accumulation of ABA may
result in the overproduction of reactive oxygen species
(ROS) (Li et al. 2015), causing oxidative damage
such as lipid peroxidation, electrolyte leakage, and
chlorophyll degradation (Demidchik et al. 2014, Sachdev
et al. 2021). Prolonged stomatal closure also implies
a sustained decline in photosynthetic activity, leading to
stunted growth and lower crop yields, adversely affecting
the overall plant health and productivity (Damour ez al.
2009). Stomatal closure for an extended period can also
result in leaf overheating (Marchin et al. 2022). Thus,
controlling stomatal opening is equally critical as closure,
and plants need to optimize stomatal behavior to balance
water conservation with carbon fixation (Zhang et al.
2024).

During the post-drought period, plants must efficiently
reopen their stomata to resume photosynthesis, allowing
them to accumulate additional assimilates to endure
subsequent water scarcities (Trifilo et al. 2017, Tomasella
et al. 2019). While plant water potential can fully recover
within hours to days after re-watering (Hasan e al. 2021b),
stomatal conductance can remain suppressed (Lovisolo
et al. 2008, Ruehr et al. 2019). For short-term recovery,
elevated ABA or ethylene levels may restrict stomatal
re-opening (Duan er al. 2020, Hasan et al. 2024).
Over the longer term, the extent of stomatal recovery
is increasingly thought to correlate with the level of
hydraulic damage in the xylem, such that persistent
embolism formation limits or delays stomatal conductance
restoration (Rehschuh et al. 2020, Wagner et al. 2023, Flor
et al. 2025).

Several studies have examined whether high ABA
contents persistently inhibit stomatal recovery after
drought. In the grapevine, for example, stomatal closure
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can be triggered by hydraulic signals and subsequently
maintained by ABA (Tombesi et al. 2015). Similarly,
in poplar, a sustained post-drought elevation in ABA
content was associated with carbohydrate mobilization and
hydraulic recovery (Brunetti et al. 2020), suggesting that
ABA accumulation can modulate stomatal conductance
well beyond the immediate stress period. However,
other research highlights potential species-specific
differences. In Scots pine saplings, stomatal behavior
during rewatering was largely independent of variations
in ABA or cytokinins (Zlobin et al. 2023). Likewise, Liu
et al. (2024) observed that in maize leaves, factors such as
drought severity thresholds and hydraulic constraints can
override the inhibitory effects of ABA on gas exchange
during recovery. These contrasting findings indicate that
the role of ABA in inhibiting long-term stomatal reopening
may vary with species.

Therefore, comprehending the mechanisms underlying
rapid post-drought stomatal reopening and photosynthetic
recovery is essential for promoting the development of
drought-resilient crops. To date, much research has focused
on elucidating the mechanisms underlying stomatal
closure in response to drought, with comparatively less
attention given to post-drought stomatal recovery. This
review summarizes the signaling pathways involved in
ABA-inducedstomatal closure and explores the interactions
of melatonin, 5-aminolevulinic acid, and brassinosteroids
with ABA signaling pathways, with a particular focus
on possible mechanisms for post-drought reversal of
ABA-mediated stomatal closure by these bioactive
compounds. In addition, we elucidate the physiological
significance of reversing ABA-induced stomatal closure in
the context of plant recovery and stress resilience.

Signaling mechanisms of ABA-induced stomatal
closure

Abscisic acid (ABA), a plant hormone, is pivotal in
regulating stomatal movements and enhancing plant
resilience to water-deficit conditions (Fig. 1). During
restricted water supply, ABA accumulates in the leaves,
aided by the enzyme 9-cis-epoxycarotenoid dioxygenase
(NCED), which drives ABA biosynthesis (Li et al. 2015,
Long et al. 2019). This accumulation results in decreased
turgor pressure, narrowing the stomatal pore aperture,
and ultimately leading to stomatal closure (Brodribb and
McAdam 2013). ABA significantly enhances the activity
of NADPH oxidase, resulting in increased H,O, synthesis
(Jiang and Zhang 2002, Postiglione and Muday 2023),
a reactive oxygen species (ROS) that directly facilitates
ABA-induced stomatal closure. It also activates Ca?"
channels in the plasma membrane, leading to elevated
cytoplasmic Ca?* contents in the guard cells (Neill et al.
2002). H>O»-induced stomatal closure has been documented
in various vascular plant groups, encompassing woody
plants (Deuner et al. 2011) and herbs (Zhang et al. 2001).
Consequently, both ABA and H,O, are pivotal in stomatal
closure.

The buildup of ABA in plant tissues is governed by
the interplay between its biosynthesis and breakdown
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Fig. 1. Proposed schematic diagram illustrating the ABA-induced stomatal closure and possible mechanisms by which phytomelatonin,
5-aminolevulinic acid (ALA), and brassinosteroids (BRs) may reverse ABA-induced stomatal closure during the post-drought
phase. — represents a positive effect, and —| represents a negative effect. ABA — absicisic acid; ALA — 5-aminolevulinic acid;
BRs — brassinosteroids; SOD — superoxide dismutase; POD — peroxidase; CAT — catalase; GSH — glutathione; P — phosphorylation;
NCEDs — 9-cis-epoxycarotenoid dioxygenase; CYP707A — ABA 8'-hydroxylase; H,O, — hydrogen peroxide; AKSs — ABA-responsive
kinase substrates; PYRI/PYLs/RCARs — PYRABACTIN RESISTANCE/PYRABACTIN RESISTANCE-LIKE/REGULATORY
COMPONENTS OF THE ABSCISIC ACID RECEPTOR; SnRK2.6 — SNF1-regulated protein kinase 2.6; OST1 — OPEN STOMATA 1;
PP2C — protein phosphatase 2C; Ca*" — calcium ions; KAT1 — potassium channel protein; GORK — guard cell outward-rectifying K*
channel, PP2A — protein phosphatase 2A; SLAC1 — Slow Anion Channel-Associated 1.

(Kushiro et al. 2004). The NCED enzyme catalyzes
the cleavage of the 11, 12 double bonds of a C40 carotenoid
(Car), resulting in the production of xanthoxin (Qin and
Zeevaart 1999). Among Arabidopsis's five NCED family
members, AINCED3 is essential for ABA production in
response to drought (Tuchi ef al. 2001). ABA undergoes
catabolism to produce 8'-hydroxy ABA via hydroxylation
by ABA 8'-hydroxylase (Nambara and Marion-Poll 2005).
The hydroxylation occurring at the 8'-position appears
to be the crucial step in the breakdown of ABA. This is
facilitated by CYP707A, an ABA 8'-hydroxylase from
the class of cytochrome P450 monooxygenase (Saito
et al. 2004). Research indicates that MACYP707A1 and
MdACYP707A2 are responsible for the regulation of ABA
metabolism in apple under drought conditions (Kondo
et al. 2012). Overall, these enzymes help plants withstand
water stress by regulating ABA contents. ABA-induced
stomatal closure typically involves the ion efflux from
guard cells. This movement of ions subsequently induces
osmotic water efflux, leading to decreased turgor pressure
of the guard cells, ultimately causing stomatal closure.
The activation of S-type (slow) and R-type (rapid) anion
channels is crucial during this process (Keller ef al. 1989,
Schroeder and Hagiwara 1989), facilitating the efflux
of anions from guard cells and contributing to plasma
membrane depolarization. This subsequently triggers
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the activation of potassium efflux channels. The sustained
activation of both S-type anion channels and potassium
efflux channels for extended periods allows efficient solute
release from guard cells and causes stomatal closing
(Schroeder and Hagiwara 1989).

The key elements involved in ABA signaling during
stomatal movement include clade A type-2C protein
phosphatases (PP2Cs) (Park er al. 2009), SNF1-related
protein kinases 2 (SnRK2s), specifically SnRK2.2,
SnRK2.3, and SnRK2.6/OST1 (Takahashi et al. 2020),
and the Pyrabactin Resistance, Pyrabactin Resistance-
Like, and Regulatory Components of the Abscisic
Acid Receptor (PYR/PYL/RCAR) (Raghavendra et al.
2010). Additionally, ion channels such as Slow Anion
Channel-Associated 1 (SLACI1) (Geiger et al. 2009) and
SLACI1 homolog 3 (SLAH3) (Hedrich and Geiger 2017)
are integral to the process. Various factors modulate
the activity of these signaling components (Chen et al.
2020). Under non-stress conditions (i.e., without ABA),
clade A PP2C phosphatases inhibit protein kinases such
as SnRK2s (Park ef al. 2009, Raghavendra et al. 2010)
and Guard Cell Hydrogen Peroxide-Resistantl (GHR1)
(Hua et al. 2012) by directly interacting with them.
During drought stress, however, ABA receptors from
the PYRI/PYLs/RCAR family bind to ABA, creating
a complex with PP2Cs that suppresses their activity



(Park et al. 2009). This suppression allows other kinases,
such as Raf-like MAPKKKSs (Saruhashi et al. 2015), to
phosphorylate and activate SnRK2s, triggering downstream
ABA signaling pathways. The activation of SnRK2s is
apivotal step in this process (Mustilli et al. 2002, Takahashi
et al. 2017). Of the ten SnRK2 genes in Arabidopsis,
SnRK2.2, SnRK2.3, and OST1/SnRK2.6, are strongly
activated by ABA (Boudsocq ef al. 2004; Fig. 1).

Among kinases, OST1 stands out as a key activator
of NADPH oxidase, significantly increasing ROS levels
in guard cells (Bharath et al. 2021). This kinase promotes
the activation of Respiratory Burst Oxidase Homolog D
and F (RBOH D/F), resulting in elevated levels of ROS,
nitric oxide (NO), and calcium (Ca?*). The subsequent rise
in Ca?* triggers the activation of Ca*"-dependent protein
kinases (CDPKs), which, in turn, stimulate slow anion
channel 1 (SLAC1), S-type anion channel 3 (SLAH3),
and outward-rectifying potassium channels (K*o,). This
coordinated ion efflux from guard cells causes stomatal
closure (Montillet ez al. 2013, Ye et al. 2015). Additionally,
SnRK2.2 and SnRK2.3 are thought to contribute to longer-
term drought responses in guard cells (Virlouvet and
Fromm 2015).

Phytomelatonin triggers the reopening of stomata
through ABA degradation and scavenging of ROS

Phytomelatonin, chemically identified as N-acetyl-
5-methoxytryptamine, is an indole hormone that was
first reported independently by Dubbels ef al. (1995) and
Hattori ef al. (1995). Research has revealed substantial
concentrations of endogenous phytomelatonin in various
plant organs (Posmyk and Janas 2009, Stege et al. 2010,
Korkmaz et al. 2014), and multiple functional roles of
phytomelatonin have been reported (Back 2021, Wang
et al. 2022; Table 1). In plants, tryptophan serves as
the precursor for melatonin biosynthesis and tryptamine
is formed through the catalytic activity of tryptophan
decarboxylase (TDC) in cytoplasm. Subsequently,
tryptamine undergoes hydroxylation mediated by
tryptamine 5-hydroxylase (T5H) to produce serotonin
in endoplasmic reticulum. Serotonin is then transformed
into N-acetylserotonin through the enzymatic activity of
serotonin N-acetyletransferase (SNAT) in chloroplasts
or into 5-methoxytryptamine via the action of
N-acetylserotonin methyltransferase (ASMT)/caffeic acid
O-methyltransferase (COMT) in cytoplasm. Consequently,
both N-acetylserotonin and 5-methoxytryptamine are
converted into melatonin through enzymatic reactions
catalyzed by ASMT/COMT and SNAT, respectively
(Tan et al. 2015, Back et al. 2016, Liu et al. 2022; Fig. 14).

Phytomelatonin acts as a primary defensive molecule
against oxidative stress by directly scavenging harmful free
radicals and enhancing the activity of genes responsible
for producing antioxidant enzymes (Tan et al. 2012, Khan
et al. 2020). Recent studies have reported its remarkable
antioxidant properties compared to other molecules, as
one molecule of melatonin can neutralize approximately
ten free radicals (Ressmeyer ef al. 2003), providing
robust protection against abiotic stresses (Zhang et al.
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2013). Moreover, phytomelatonin interacts with other
plant hormones, such as ABA, to facilitate the reversal
of ABA-induced stomatal closure (Li ez a/. 2015). Under
drought stress, increased expression of the NCED gene,
involved in ABA biosynthesis (Qin and Zeevaart 1999,
Kondo et al. 2012), results in elevated ABA contents in
guard cells, triggering stomatal closure (Iuchi er al.
2001). However, pretreatment with exogenous melatonin
upregulates melatonin synthetic genes such as tryptophan
decarboxylase (TDC), tryptamine 5-hydroxylase (75H),
arylalkylamine  N-acetyltransferase = (44ANAT), and
N-acetylserotonin methyltransferase (4SMT), leading to
a significant increase in endogenous melatonin contents
(Zheng et al. 2017, Erland et al. 2019). Then, this
melatonin suppresses the upregulation of the NCED gene
(ABA biosynthesis) while promoting the upregulation of
CYP7074 (ABA catabolism). Consequently, it reduces
ABA accumulation in guard cells and induces reopening
of stomata (Li et al. 2015, 2021; Table 1). These findings
suggest that melatonin application during the post-drought
phase could promote stomatal reopening and facilitate
earlier recovery of gas exchange by inhibiting ABA
biosynthesis genes and promoting those involved in ABA
catabolism.

Pretreatment with melatonin also preserves chlorophyll
contents by scavenging H,O, and O, molecules (Li et al.
2021), suggesting that melatonin acts as an antioxidant.
Melatonin enhances the activity of antioxidant enzymes,
particularly catalase (CAT), peroxidase (POD), and
ascorbate peroxidase (APX) (Dai et al. 2020), as well
as nonenzymatic antioxidants like glutathione (GSH)
(Hasanuzzaman et al. 2017), which are effective in
degrading H,O, (Li et al. 2012, Park et al. 2013) and
scavenges H,O, molecules (Tan ez al. 2000, 2007; Reiter
et al. 2007). Consequently, the decreased contents of both
ABA and H,O, synergistically promote stomata reopening
under drought conditions (Fig. 2). The antioxidant effects
of melatonin have been reported in apple (Wang et al.
2012), grapes (Vitalini et al. 2013), rice (Park er al.
2013), and maize (Jiang et al. 2016), where it facilitates
the reversal of stomatal closure. In apple leaves,
exogenously applied melatonin helps maintain high
turgor pressure in the guard cells and keeps stomata open
(Li et al. 2015).

Several studies have shown that the expression levels
of melatonin synthesis genes are higher in drought-
sensitive species, e.g., Malus hupehensis, compared to
drought-tolerant species, e.g., Malus prunifolia, indicating
that melatonin expression is stress-inducible (Tan ez al.
2012, Arnao and Hernandez-Ruiz 2013). However, Li
et al. (2015) showed that drought-sensitive species (Malus
hupehensis) may be less efficient in melatonin biosynthesis
due to genetic mutations affecting key biosynthetic
enzymes. Despite this, exogenous melatonin application
has been shown to enhance the expression of melatonin
biosynthetic genes, potentially compensating for enzymatic
inefficiencies and leading to increased endogenous
melatonin production. This endogenous melatonin also
increases the expression of specific stress-responsive
genes, indicating their potential role in enhancing drought
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Table 1. Summary of studies investigating the effects of exogenous melatonin, 5-aminolevulinic acid (ALA), and brassinosteroids (BRs)
on stomatal opening in various plant species.

Plant hormone Plant name Mechanism of action References
Phytomelatonin Apple Downregulates ABA synthetic gene (MdNECD3), Liet al. (2015)
s (Malus hupehensis)  upregulates ABA catabolic genes (MdCYP707A1,
g o (Malus prunifolia) MdCYP707A42), and upregulates the expression of
NHX( : melatonin synthetic genes (MdTDC1, MdAANAT?2,
) ) MdAT5H4, and MdASMT]I), causing opening of stomata
NH Maize Inhibits upregulation of ABA synthesis-related gene Li et al. (2020)
(Zea mays) (NECD1), promotes upregulation of ABA catabolic

5-aminolevulinic acid (ALA)

Arabidopsis thaliana

Melon
(Cucumis melo)

Apple
(Malus domestica)

Pepper
(Capsicum annuum)

Oilseed rape
(Brassica napus)
Apple

(Malus domestica)

genes (ABA8ox1 and ABA8ox3) and increases
endogenous melatonin levels, thus opening stomata

Decreases ABA-induced H,O, and cytosolic Ca**
accumulation in guard cells to inhibit the stomatal
closure

An et al. (2016)

Increases stomatal conductance and photosynthetic rate  Wang et al. (2004)
as well as apparent quantum yield and carboxylation
efficiency

Flavonols induced by ALA inhibit ABA-induced
stomatal closure via decreasing ROS accumulation
in guard cells

Liu et al. (2016)

Increases relative water content, stomatal conductance,Korkmaz ez al. (2010)
and superoxide dismutase (SOD) activity, thus improves

plant growth

Improves plant growth, photosynthetic gaseous exchangeNaeem et al. (2010)
capacity, water potential, and chlorophyll content
Promotes Malus domestica protein phosphatases 2A
catalytic subunit (MdPP2AC) enzyme activity that

Chen et al. (2023)

enhances stomatal opening by reducing Ca*" and H,O,
levels but increasing flavonol levels in guard cells

Brassinosteroids (BRs) Arabidopsis thaliana

Mediates sufficient K" uptake via K*i, channel

Inoue et al. (2017)

expression in guard cells that results in inhibition
of ABA-induced stomatal closure

Arabidopsis thaliana

Downregulates ABA biosynthetic genes that reduces

Ha et al. (2018)

ABA accumulation in guard cells, leading
to the inhibition of ABA-induced stomatal closure

tolerance (Supriya et al. 2022). Enhanced stress tolerance
reduces electrolyte leakage, preserves photosynthetic
pigments, and improves photosynthesis efficiency by
facilitating stomatal reopening (Jones 1998, Yang et al.
2022), highlighting its potential agricultural applications
for improving crop performance.

5-aminolevulinic acid reverses ABA-induced stomatal
closure via reducing H,O, and Ca”* contents

5-aminolevulinic acid (ALA) is a critical precursor in
tetrapyrrole biosynthesis, producing essential compounds
such as chlorophyll and heme in plants (An ef al. 2016).
Since its discovery by Bindu and Vivekanandan (1998),
ALA has been recognized for its hormonal activities in
plant tissue culture. Over the past two decades, extensive
research has highlighted ALA's significance as a pivotal
intermediate in biological metabolism and a vital plant
growth regulator (Wu et al. 2019). It modulates various
key physiological processes, including promoting plant
growth and enhancing plant stress tolerance (Akram and
Ashraf 2013).
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For the biosynthesis of ALA, the C5-pathway serves
as the predominant process among higher plants (Jiang
et al. 2022; Fig. 2B). L-glutamate serves as the precursor
for ALA synthesis in the C5-pathway, where it undergoes
ligation with tRNAS" to form L-glutamyl-tRNA, mediated
by glutamyl-tRNA synthetase (GluTS) enzyme (Czarnecki
and Grimm 2012). Subsequently, GIuTR catalyzes
the conversion of the carboxyl group of Glu-tRNA into
a formyl group, leading to the formation of L-glutamic
acid 1-semialdehyde (GSA) (Tanaka and Tanaka 2007).
Finally, ALA is synthesized via transamination catalyzed
by glutamate-1-semialdehyde aminotransferase (GSAT)
(Akram and Ashraf 2013, Wu et al. 2019; Fig 1B). All
these enzymatic reactions take place within the chloroplast
stroma (Wang and Grimm 2015). GluTR plays a crucial
role in the ALA synthesis pathway, regulating ALA
contents and acting as a rate-limiting factor in its synthesis
(Zhao et al. 2014). In higher plants, this reductase is
encoded by the HEMA 1 gene (Nagahatenna et al. 2015).

ALA has been proven to enhance plant photosynthesis
by increasing chlorophyll biosynthesis (Wu et al
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Fig. 2. Simplified biosynthetic pathways of (4) melatonin, (B) S-aminolevulinic acid (ALA), and (C) brassinosteroids (BRs)
in plants, highlighting enzymatic reactions and subcellular localizations. The enzymes involved in melatonin biosynthesis are:
TDC (tryptophan decarboxylase), TSH (tryptamine 5-hydroxylase), ASMT (N-acetylserotonin methyltransferase), COMT (caffeic
acid O-methyltransferase), and SNAT (serotonin N-acetyle transferase). The enzymes responsible for ALA biosynthesis are
GluTS (glutamyl-tRNA synthetase), GluTR (glutamyl-tRNA reductase), and GSAT (glutamate-1-semialdehyde aminotransferase).
The enzymes and cytochrome P450s (CYP450s) responsible for the biosynthesis of brassinolide are steroid 5Sa-reductase, CYP90BI1,

CYPI90CI, CYP90OD1, CYP85A1, and CYPS5A2.

2019) and by increasing stomatal conductance in both
non-stressed and stressful environments, thereby promoting
plant growth and development (Liu ef a/. 2011, Akram and
Ashraf 2013, An et al. 2016). H,O, and Ca*" are important
signaling molecules in guard cells for ABA-induced
stomatal closure, which limits plant photosynthesis and
growth (Pei et al. 2000, Wang et al. 2014). Interestingly,
in many species (Wang et al. 2004, Youssef and Awad
2008, Korkmaz et al. 2010), the exogenous application of
ALA eliminates H,O, molecules through its antioxidant
defense system and reduces Ca*" in guard cells. Thus,
the elimination of H,O, reduces the stomatal limitation and
significantly promotes stomatal reopening, suggesting that
ALA has significant potential for use in agriculture and
forestry production.

Exogenous application of ALA reduces ABA-induced
H,0, accumulation through the degradation of ABA or

by disrupting ABA signaling (An et al. 2016; Table 1).
Furthermore, it has been shown that ALA reduces
cytoplasmic Ca?*" in guard cells by suppressing Ca?*
channel activity. This effect is similar to that of ethylene
glycol tetraacetic acid (EGTA), a Ca-chelating agent,
and AICl;, a blocker of Ca?" channels. As a result, ALA
significantly inhibits the closure of stomata by decreasing
cytoplasmic Ca®* contents (Schwartz 1985, Zhao et al.
2007). ALA also employs some H,O,-independent signal
pathways for decreasing cytoplasmic Ca?*, such as P-type
Ca?*-ATPase, which reduces Ca®* contents by removing
cytosolic Ca** and hence reducing Ca*" content (Fig. 2)
(Kollist et al. 2014).

The SNF1-regulated protein kinase 2s (SnRK2s) is
known to be a key component in the signaling pathways
of ABA-induced stomatal closure (Tajdel ez al. 2016, Li
et al. 2021, Hasan et al. 2022). The SnRK2.6, after being
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phosphorylated, activates the subsequent elements of ABA
signaling (Pei et al. 2000, Fujii and Zhu 2009). In contrast,
serine/threonine protein phosphatase 2A (PP2A) acts as
an inhibitory factor in ABA-mediated signal transduction.
PP2A plays a critical role in the dephosphorylation of
SnRK?2.6, thereby affecting its kinase activity and ABA
signal transduction pathways. In apple (Xiong et al. 2018)
and Arabidopsis (An et al. 2020), ALA enhances the PP2A
enzyme activity and simultaneously suppresses SnRK2.6
activity (Table 1; Chen ef al. 2023). Furthermore, PP2A
interacts with SnRK2.6 for its dephosphorylation and
subsequent inhibition of ABA signaling, which ultimately
leads to the reopening of stomata (Fig. 2; Chen et al. 2023).
Xiong et al. (2018) showed that treatment with the PP2A
inhibitor okadaic acid enhances ABA-induced stomatal
closure. This suggests that ALA may facilitate stomatal
reopening by activating PP2A. Based on these findings,
ALA promotes the re-opening of stomata by inhibiting
SnRK?2.6 kinase activity through its dephosphorylation via
activated PP2A.

The enhancement of stomatal opening by ALA also
depends on the formation of flavonols in guard cells
(Liu et al. 2016). It has been demonstrated that PP2A
overexpression reduces Ca*" and H,O, contents, whereas it
significantly increases flavonol contents. In an experiment
by Chen ef al. (2023), when the expression of PP2A was
partially silenced, it resulted in the overexpression of
SnRK2.6 and showed opposite effects by increasing Ca?*
and H,O, contents in guard cells and reducing flavonol
contents. Flavonols act as negative regulators of ABA-
induced stomatal closure by modulating ROS contents in
guard cells, thereby promoting stomatal opening (Watkins
et al. 2014). In addition, during ABA-mediated signaling
of stomatal closure, the expression of SnRK2.6 blocks
KAT1 (K%, channel), whereas promotes the opening
of SLAC1 and GORK (K%, channel), thus reducing
K" in guard cells. ALA causes the opening of KAT1
(K*in channel) and the closing of SLACI and GORK,
leading to reduced cytoplasmic Ca**, H,O,, and increased
flavonols and K* into guard cells to open stomata (An
et al. 2016; Fig. 2).

Brassinosteroids (BR) inhibit stomatal closure
through opening of K*;, channels and repression
of ABA-biosynthetic genes

Brassinosteroids (BRs) are important plant steroidal
hormones that control various physiological processes
in plants, including growth, development, and stress
resistance (Nolan et al. 2020). Mitchell ez al. (1970) isolated
brassinolide, the first identified BR, from Brassica napus
pollen. The biosynthetic pathway of BRs in plants begins
with campesterol, a sterol precursor, which is synthesized
from squalene through a series of enzymatic reactions in
the cytosol and endoplasmic reticulum. Campesterol is
converted to campestanol through the action of the steroid
So-reductase enzyme, which is encoded by the DET?2 gene.
Campestanol (CN) undergoes a series of modifications,
including hydroxylation and oxidation reactions catalyzed
by cytochrome P450 enzymes, leading to the sequential
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formation of  6-deoxocathasterone  (6-deoxoCT),
6-deoxoteasterone  (6-deoxoTE), 6-deoxocastasterone
(6-deoxoCS), castasterone (CS), and ultimately
brassinolide (BL), one of the most biologically active
brassinosteroids in plants. In addition to brassinolide,
various other brassinosteroids are synthesized through
similar enzymatic steps (Fujioka and Yokota 2003, Chung
and Choe 2013, Oh et al. 2015; Fig. 1C).

Recent studies have uncovered that BRs have
the potential to reverse ABA-induced stomatal closure
by repressing ABA biosynthetic genes or promoting
the activity of K%, channels (Table 1; Inoue et al. 2017,
Ha et al. 2018). For example, BR treatment downregulates
the expression of ABA-biosynthetic genes, such
as NECDs and AAO3, that leads to reduced ABA
accumulation, thereby promoting stomatal reopening (Ha
et al. 2018). Some studies have shown that phytohormone
BR is perceived by the extracellular domain of the
BRASSINOSTEROID INSENSITIVE 1 (BRII) receptor
located on the cell surface (He ef al. 2000, Wang et al.
2001). Upon activation of the BRI receptor, subsequent
components start intracellular signaling, which regulates
the expression of BR-responsive genes (Belkhadir and
Chory 2006, Clouse 2011). This regulation results in
the opening of K*;, channels, triggering an influx of K" ions
(Kwak et al. 2001, Lebaudy et al. 2008). BRs also have
been shown to enhance plasma membrane H*-ATPase
activation, leading to an increase in the hyperpolarization
of the guard cell plasma membrane (Assmann et al. 1985,
Shimazaki et al. 1986). The hyperpolarization of guard
cells facilitates the uptake of potassium ions through
K% channels (Dietrich et al. 2001, Marten ez al. 2010).
As a result, potassium ions reduce the water potential
of guard cells, leading to the absorption of water and
the subsequent opening of stomata (Inoue ef al. 2010).
Thus, BRs may regulate the stomatal aperture by
modulating the K*;, channels (Fig. 2).

Physiological role of reversal of ABA-induced stomatal
closure

Stomatal resistance is a major limiting factor to
photosynthesis and plant growth under non-stressed and
drought conditions (Yang et al. 2012, Wang et al. 2014,
Gago et al. 2019). However, few attempts have been made
to stimulate stomatal opening to improve photosynthesis,
likely because of the challenge of balancing CO, absorption
and water loss (Inoue ef al. 2017, Chen et al. 2023),
especially in the face of xylem hydraulic dysfunction by
cavitation under drought stress (Choat et al. 2018). For
example, although the SLAC/ mutant in rice possesses
stomata that remain open for extended periods, facilitating
increased CO, absorption for photosynthesis under well-
watered conditions, the mutation did not ultimately impact
plant growth, as plants experienced increased water loss
due to open stomata, making them more susceptible to
drought (Kusumi et al. 2012).

Earlier stomatal reopening and subsequent recovery
of gas exchange after the drought period can significantly
benefit plants by (/) enabling them to continue



photosynthesis and recover their productivity (Gago ef al.
2020), (2) establishing a transpiration stream that enables
the absorption of mineral nutrients by roots and their
distribution across various plant tissues, vital for growth
(Shimazaki et al. 2007), (3) assisting plants in regulating
leaf temperature via evaporative cooling (Urban et al.
2017, Marchin et al. 2022), (4) mitigating the risks of
carbon starvation and enabling plants to allocate resources
for repairing drought-induced cellular damage while
restoring physiological functions (Peltier er al. 2023).
An early reopening of stomata also enhances CO, fixation,
hence diminishing photorespiration and avoiding oxidative
damage caused by ROS (Sierla ef al. 2016). Plants that can
rapidly reverse stomatal closure can quickly take advantage
of favorable conditions, such as increased soil moisture
and atmospheric CO, availability. Thus, crops engineered
for accelerated reversal of ABA-induced stomatal closure
could achieve high yields by resuming photosynthesis and
biomass accumulation sooner.

Nevertheless, forcibly inducing stomatal opening in
plants with severe hydraulic damage can exacerbate water
deficits within the leaf if xylem embolism is widespread
(Rehschuh er al. 2020, Wagner et al. 2023). In such
scenarios, leaf water consumption may surpass the capacity
of xylem water supply, intensifying further hydraulic
damage and potentially jeopardizing survival (Brodribb
et al. 2021). Therefore, the net benefit of promoting
stomatal reopening hinges on both the plant's capacity to
recover its hydraulic functions and the extent of drought-
induced xylem embolism. Facilitating earlier post-drought
stomatal recovery requires an understanding that hydraulic
recovery capacity varies among species, and even among
different varieties within the same species, depending
on their structural and physiological traits (Duan et al.
2022). In species capable of efficient development of new
conductive tissues, promoting stomatal reopening after
drought can accelerate photosynthetic recovery; however,
in species with limited hydraulic recovery capacity, early
stomatal opening is not advisable as it may increase
the risk of hydraulic failure. As such, these traits should
be carefully considered in breeding programs aimed at
optimizing post-drought recovery.

Effective methods for post-drought rapid stomatal
recovery and stress tolerance are crucial in the face of global
climate change and food insecurity. Recently, upregulation
of stomatal opening by application of phytohormones or
plant growth regulators to improve drought tolerance
has been demonstrated, indicating promising potential in
agriculture and forestry (Li ef al. 2015, Chen ef al. 2023).
Thus, it is possible to enhance plant photosynthesis as
well as resilience to many abiotic stressors by applying
melatonin, ALA, and BRs during a post-drought recovery
phase. The application of these bioactive compounds
can restore stomatal function and facilitate the transition
from stomatal closing to opening. However, to optimize
their effectiveness, it is essential to select the appropriate
timing of application, ensuring that stomatal opening is
promoted without causing excessive water loss, which
could compromise xylem hydraulic integrity (Brodribb
et al. 2021) and therefore plant survival.

POST-DROUGHT STOMATAL REOPENING

Concluding remarks and future perspectives

This review sheds light on the potential mechanisms
underlying the post-drought reversal of ABA-induced
stomatal closure, highlighting its role in enhancing
photosynthesis after drought stress in plants. We
have provided insights into the molecular aspects
of these physiological processes. The application of
phytomelatonin, ALA, and BRs can effectively inhibit
or reverse ABA-induced stomatal closure by reducing
the contents of H,O, and Ca®', opening K", channels,
and repressing ABA biosynthetic genes. Furthermore,
their application increases the endogenous concentration
of phytomelatonin, ALA, and BRs through respective
biosynthetic gene activation. Therefore, we anticipate that
applying these phytohormones or genetically modifying
the biosynthesis of these phytohormones has the potential to
enhance plant photosynthesis and growth. Understanding
the precise mechanisms controlling stomatal opening is
crucial to ensure the correct application of substances that
induce this process. This knowledge will help maximize
their benefits for plant growth and photosynthesis while
minimizing the potential negative effects of prolonged
stomatal closure. Future research should focus on
optimizing these treatments under field conditions to
enhance their practical applicability in improving drought
resilience. This information can then be utilized for
breeding programs aimed at developing crop varieties with
enhanced drought resilience by early opening of stomata
during the post-drought phase.
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