Photosynthetica 2000, 38(4):571-579 | DOI: 10.1023/A:1012413524395

Postharvest Imaging of Chlorophyll Fluorescence from Lemons Can Be Used to Predict Fruit Quality

L. Nedbal1,2, J. Soukupová1,3, J. Whitmarsh4,5, M. Trtílek5
1 Laboratory of Applied Photobiology & Bio-Imaging, Institute of Landscape Ecology, Academy of Science of the Czech Republic, Nové Hrady, Czech Republic
2 Photosynthesis Research Center, Faculty of Biological Sciences, University of South Bohemia, České Budějovice, Czech Republic
3 Photosynthesis Research Center, Faculty of Biological Sciences, University of South Bohemia, České Budějovice, Czech Republic
4 Department of Biochemistry, University of Illinois, USA
5 Photosynthesis Research Unit, Agricultural Research Service/USDA, Urbana, USA

We demonstrate the feasibility of assaying and predicting post-harvest damage in lemons by monitoring chlorophyll (Chl) fluorescence. Fruit quality was assayed using a commercial instrument that determines photosynthetic performance by imaging Chl fluorescence parameters under different irradiances. Images of Chl fluorescence from individual lemons reveal that photosynthesis is active throughout the post-harvest ripening process. Because photosynthesis is highly sensitive to biotic and abiotic stress, variations in Chl fluorescence parameters over the surface of a lemon fruit can be used to predict areas that will eventually exhibit visible damage. The technique is able to distinguish between mould-infected areas that eventually spread over the surface of the fruit, and damaged areas that do not increase in size during ripening. This study demonstrates the potential for using rapid imaging of Chl fluorescence in post-harvest fruit to develop an automated device that can identify and remove poor quality fruit long before visible damage appears.

Additional key words: Citrus limon; mould; Penicillium digitatum

Prepublished online: August 1, 2000; Published: November 1, 2000  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Nedbal, L., Soukupová, J., Whitmarsh, J., & Trtílek, M. (2000). Postharvest Imaging of Chlorophyll Fluorescence from Lemons Can Be Used to Predict Fruit Quality. Photosynthetica38(4), 571-579. doi: 10.1023/A:1012413524395
Download citation

References

  1. Allen, K.D., Staehelin, L.A.: Biochemical characterization of photosystem II antenna polypeptides in grana and stroma membranes of spinach.-Plant Physiol. 100: 1517-1526, 1992. Go to original source...
  2. Anderson, J.M., Waldron, J.C., Thore, S.W.: Chlorophyll-protein complexes of spinach and barley thylakoids. Spectral characterization of six complexes resolved by an improved electrophoretic procedure.-FEBS Lett. 92: 227-233, 1978. Go to original source...
  3. Baker, N.R., East, T.M., Long, S.P.: Chilling damage to photosynthesis in young Zea mays. II. Photochemical function of thylakoids in vivo.-J. exp. Bot. 34: 189-197, 1983. Go to original source...
  4. Balachandran, S., Osmond, C.B., Daley, P.F.: Diagnosis of the earliest strain-specific interactions between tobacco mosaic virus and chloroplasts of tobacco leaves in vivo by means of chlorophyll fluorescence imaging.-Plant Physiol. 104: 1059-1065, 1994. Go to original source...
  5. Balota, M., Lichtenthaler, H.K.: Red chlorophyll fluorescence as an ecophysiological method to assess the behaviour of wheat genotypes under drought and heat.-Cereal Res. Commun. 27: 179-187, 1999. Go to original source...
  6. Beaudry, R.M., Armstrong, P.R., Song, J., Deng, W.: Non-destructive method and apparatus for detection of fruit and vegetable quality.-US Patent 5,822,068, 1998.
  7. Berg, D., Maier, K., Otteken, D., Terjung, F.: Picosecond fluorescence decay studies on water-stressed pea leaves: energy transfer and quenching processes in photosystem 2.-Photosynthetica 34: 97-106, 1997. Go to original source...
  8. Blackwell, J.R., Gilmour, D.J.: Physiological response of the unicellular green alga Chlorococcum submarinum to rapid changes in salinity.-Arch. Microbiol. 157: 86-91, 1991. Go to original source...
  9. Bolhàr-Nordenkampf, H.R., Lechner, E.G.: Winter stress and chlorophyll fluorescence in Norway spruce (Picea abies, L., Karst.).-In: Lichtenthaler, H.K. (ed.): Applications of Chlorophyll Fluorescence. Pp. 173-180. Kluwer Academic Publ., Dordrecht-Boston-London 1988. Go to original source...
  10. Bose, S.: Chlorophyll fluorescence in green plants and energy transfer pathways in photosynthesis.-Photochem. Photobiol. 36: 725-731, 1982. Go to original source...
  11. Bowyer, W.J., Ning, L., Daley, L.S., Strobel, G.A., Edwards, G.E., Callis, J.B.: In vivo fluorescence imaging for detection of damage to leaves by fungal phytotoxins.-Spectroscopy 13: 36, 1998.
  12. Briantais, J.-M., Dacosta, J., Goulas, Y., Ducruet, J.-M., Moya, I.: Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F0: A time-resolved analysis.-Photosynth. Res. 48: 189-196, 1996. Go to original source...
  13. Bro, E., Meyer, S., Genty, B.: Heterogeneity of leaf CO2 assimilation during photosynthetic induction.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. V. Pp. 607-610. Kluwer Academic Publishers, Dordrecht-Boston-London 1995. Go to original source...
  14. Brown, G.K., Sarig, Y.: Non-destructive Technologies for Quality Evaluation of Fruits and Vegetables.-Pp. 120-147. Amer. Soc. Agr. Eng., St.Joseph 1994.
  15. Carter, G.A., Miller, R.L.: Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands.-Remote Sens. Environ. 50: 295-302, 1994. Go to original source...
  16. Cerovic, Z.G., Goulas, Y., Gorbunov, M., Briantais, J.-M., Camenen, L., Moya, I.: Fluorosensing of water in plants-diurnal changes of the mean lifetime and yield of chlorophyll fluorescence, measured simultaneously and at distance with a tau-LIDAR and a modified PAM-fluorimeter, in maize, sugar beet, and Kalanchoe.-Remote Sens. Environ. 58: 311-321, 1996. Go to original source...
  17. Chakir, S., Jensen, M.: How does Lobaria pulmonaria regulate photosystem II during progressive desiccation and osmotic water stress? A chlorophyll fluorescence study at room temperature and at 77 K.-Physiol. Plant. 105: 257-265, 1999. Go to original source...
  18. Csintalan, Z., Proctor, M.C.F., Tuba, Z.: Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. &; Tayl. and Grimmia pulvinata (Hedw.) Sm.-Ann. Bot. 84: 235-244, 1999. Go to original source...
  19. Daley, P.F.: Chlorophyll fluorescence analysis and imaging in plant stress and disease.-Can. J. Plant Pathol. 17: 167-173, 1995. Go to original source...
  20. Daley, P.F., Raschke, K., Ball, J.T., Berry, J.A.: Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence.-Plant Physiol. 90: 1233-1238, 1989. Go to original source...
  21. Darr, S.C., Arntzen, C.J.: Reconstitution of the light harvesting chlorophyll a/b pigment-protein complex into developing chloroplast membranes using a dialyzable detergent.-Plant Physiol. 80: 931-937, 1986. Go to original source...
  22. Dau, H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence.-Photochem. Photobiol. 60: 1-23, 1994. Go to original source...
  23. DeEll, J.R., Prange, R.K., Murr, D.P.: Chlorophyll fluorescence as a potential indicator of controlled-atmosphere disorders in 'Marshall' McIntosh apples.-HortScience 30: 1084-1085, 1995. Go to original source...
  24. Duysens, L.N.M., Sweers, H.E.: Mechanism of two photochemical reactions in algae as studied by means of fluorescence.-In: Studies on Microalgae and Photosynthetic Bacteria. Pp. 353-372. University of Tokyo Press, Tokyo 1963.
  25. Endo, T., Schreiber, U., Asada, K.: Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii.-Plant Cell Physiol. 36: 1253-1258, 1995.
  26. Gandul-Rojas, B., Cepero, M.R.L., Mínguez-Mosquera, M.I.: Chlorophyll and carotenoid patterns in olive fruits, Olea europaea cv. Arbequina.-J. agr. Food Chem. 47: 2207-2212, 1999. Go to original source...
  27. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  28. Genty, B., Meyer, S.: Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging.-Aust. J. Plant Physiol. 22: 277-284, 1994. Go to original source...
  29. Gilmore, A.M., Govindjee: How higher plants respond to excess light: Energy dissipation in photosystem II.-In: Singhal, G.S., Renger, G., Irrgang, K.-D., Govindjee (ed.): Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Pp. 513-548. Narosa Publishers, Delhi-Madras-Bombay-Calcuta-London; Kluwer Academic Publ., Boston-Dordrecht-London 1999. Go to original source...
  30. Govindjee: Sixty-three years since Kautsky: Chlorophyll a fluorescence.-Aust. J. Plant Physiol. 22: 131-160, 1995. Go to original source...
  31. Gross, J., Flugel, M.: Pigment changes in peel of the ripening banana (Musa cavendishi).-Gartenbauwissenschaft 47: 62-64, 1982.
  32. Havaux, M.: Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat, and photoinhibition stresses.-Plant Physiol. 100: 424-432, 1992. Go to original source...
  33. Havaux, M., Lannoye, R.: Effects of chilling temperatures on prompt and delayed chlorophyll fluorescence in maize and barley leaves.-Photosynthetica 18: 117-127, 1984.
  34. Heisel, F., Sowinska, M., Miehé, J.A., Lang, M., Lichtenthaler, H.K.: Detection of nutrient deficiencies of maize by laser induced fluorescence imaging.-J. Plant Physiol. 148: 622-631, 1996. Go to original source...
  35. Jagtap, V., Bhargava, S., Streb, P., Feierabend, J.: Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench.-J. exp. Bot. 49: 1715-1721, 1998. Go to original source...
  36. Jefferies, R.A.: Drought and chlorophyll fluorescence in field-grown potato (Solanum tuberosum).-Physiol. Plant. 90: 93-97, 1994. Go to original source...
  37. Jimenez, M.S., Gonzalez-Rodriguez, A.M., Morales, D., Cid, M.C., Socorro, A.R., Caballero, M.: Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses.-Photosynthetica 33: 291-301, 1997. Go to original source...
  38. Krause, G.H.: Photoinhibition of photosynthesis. An avaluation of damaging and protective mechanisms.-Physiol. Plant. 74: 566-574, 1988. Go to original source...
  39. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991. Go to original source...
  40. Lang, M., Lichtenthaler, H.K., Sowinska, M., Heisel, F., Miehé, J.A.: Fluorescence imaging of water and temperature stress in plant leaves.-J. Plant Physiol. 148: 613-621, 1996. Go to original source...
  41. Lebedev, N.N., Šiffel, P., Pakshina, E.V., Krasnovskiï, A.A.: The effect of acidification on absorption and fluorescence spectra of French bean chloroplasts and the kinetics of pheophytin formation.-Photosynthetica 20: 124-130, 1986.
  42. Lorenzini, G., Guidi, L., Nali, C., Soldatini, G.F.: Quenching analysis in poplar clones exposed to ozone.-Tree Physiol. 19: 607-612, 1999. Go to original source...
  43. Malkin, S., Kok, B.: Fluorescence induction studies in isolated chloroplast. I. Number of components involved in the reaction and quantum yields.-Biochim. biophys. Acta 126: 413-432, 1966. Go to original source...
  44. Merzlyak, M.N., Gitelson, A.A., Pogosyan, S.I., Lekhimena, L., Chivkunova, O.B.: Light-induced pigment degradation in leaves and ripening fruits studied in situ with reflectance spectroscopy.-Physiol. Plant. 104: 661-667, 1998. Go to original source...
  45. Meyer, S., Genty, B.: Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance of Ci estimated from leaf gas exchange.-Plant Physiol. 116: 947-957, 1998. Go to original source...
  46. Mínguez-Mosquera, M.I., Gallardo-Guerrero, L.: Disappearance of chlorophylls and carotenoids during the ripening of the olive.-J. Sci. Food Agr. 69: 1-6, 1995. Go to original source...
  47. Mínguez-Mosquera, M.I., Hornero-Méndez, D.: Formation and transformation of pigments during the fruit ripening of Capsicum annuum cv. Bola and Agridulce.-J. Agr. Food Chem. 42: 38-44, 1994. Go to original source...
  48. Mott, K.A., Cardon, Z.G., Berry, J.A.: Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity.-Plant Cell Environ. 16: 25-34, 1993. Go to original source...
  49. Murata, N., Satoh, K.: Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll-protein complexes.-In: Govindjee, Amesz, J., Fork, D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 137-159. Academic Press, Orlando-San Diego-New York-Austin-Boston-London-Sydney-Tokyo-Toronto 1986. Go to original source...
  50. Nauš, J., Kuropatwa, R., Klinkovský, T., Ilík, P., Lattová, J., Pavlová, Z.: Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve.-Biochim. biophys. Acta 1101: 359-362, 1992. Go to original source...
  51. Nedbal, L., Masojídek, J., Komenda, J., Prášil, O., Šetlík, I.: Three types of photosystem II photoinactivation. 2. Slow processes.-Photosynth. Res. 24: 89-97, 1990. Go to original source...
  52. Nedbal, L., Soukupová, J., Kaftan, D., Whitmarsh, J., Trtílek, M.: Kinetic imaging of chlorophyll fluorescence using modulated light.-Photosynth. Res. 38: in press, 2000. Go to original source...
  53. Ning, L., Edwards, G.E., Strobel, G.A., Daley, L.S., Callis, J.B.: Imaging fluorometer to detect pathological change in plants.-Appl. Spectrosc. 49: 1381-1389, 1995. Go to original source...
  54. Niyogi, K.K., Björkman, O., Grossman, A.R.: Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching.-Plant Cell 9: 1369-1380, 1997. Go to original source...
  55. Niyogi, K.K., Grossman, A.R., Björkman, O.: Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.-Plant Cell 10: 1121-1134, 1998. Go to original source...
  56. Osmond, C.B., Kramer, D., Lüttge, U.: Reversible, water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses.-Plant Biol. 1: 618-624, 1999. Go to original source...
  57. Oxborough, K., Baker, N.R.: An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization.-Plant Cell Environ. 20: 1473-1483, 1997a. Go to original source...
  58. Oxborough, K., Baker, N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-Calculation of qP and Fv'/Fm' without measuring Fo'.-Photosynth. Res. 54: 135-142, 1997b. Go to original source...
  59. Peterson, R.B., Aylor, D.E.: Chlorophyll fluorescence induction in leaves of Phaseolus vulgaris infected with bean rust (Uromyces appendiculatus).-Plant Physiol. 108: 163-171, 1995. Go to original source...
  60. Raschke, K., Patzke, J., Daley, P.F., Berry, J.A.: Spatial and temporal heterogeneities of photosynthesis detected through analysis of chlorophyll-fluorescence images of leaves.-In: Baltscheffsky, M. (ed.): Current Research in Photosynthesis. Vol. IV. Pp. 573-578. Kluwer Academic Publ., Dordrecht-Boston-London 1990. Go to original source...
  61. Roggero, J.P., Coen, S., Ragonnet, B.: High-performance liquid-chromatography survey on changes in pigment content in ripening grapes of syrah-an approach to anthocyanin metabolism.-Amer. J. Enol. Viticult. 37: 77-83, 1986. Go to original source...
  62. Satoh, K.: F-695 emission from the purified photosystem II chlorophyll a-protein complex.-FEBS Lett. 110: 53-56, 1980. Go to original source...
  63. Satoh, K., Butler, W.L.: Low temperature spectral properties of subchloroplasts fraction purified from spinach.-Plant Physiol. 61: 373-379, 1978. Go to original source...
  64. Scholes, J.D., Rolfe, S.A.: Photosynthesis in localized regions of oat leaves infected with crown rust (Puccinia coronata)-Quantitative imaging of chlorophyll fluorescence.-Planta 199: 573-582, 1996. Go to original source...
  65. Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.-Photosynth. Res. 10: 51-62, 1986. Go to original source...
  66. Seaton, G.G.R., Hurry, V.M., Rohozinski, J.: Novel amplification of non-photochemical chlorophyll fluorescence quenching following viral infection in Chlorella.-FEBS Lett. 389: 319-323, 1996. Go to original source...
  67. Siebke, K., Weis, E.: Imaging of chlorophyll-a-fluorescence in leaves: Topography of photosynthetic oscillations in leaves of Glechoma hederacea.-Photosynth. Res. 45: 225-237, 1995. Go to original source...
  68. Siefermann-Harms, D., Ninnemann, H.: Differences in acid stability of the chlorophyll-protein complexes in intact thylakoids.-Photobiochem. Photobiophys. 6: 85-91, 1983.
  69. Strand, M., Öquist, G.: Inhibition of photosynthesis by freezing temperatures and high light levels in cold-acclimated seedlings of Scots pine (Pinus sylvestris). I. Effects on the light-limited and light-saturated rates of CO2 assimilation.-Physiol. Plant. 64: 425-430, 1985. Go to original source...
  70. Tuba, Z.: The changes of the photosynthetic pigment system of two paprika (red pepper) varieties from the fully developed vegetative stage to the ripening of the fruit.-Bot. Közlem. 68: 123-131, 1981.
  71. Yerkes, C.T., Kramer, D.M., Fenton, J.M., Crofts, A.R.: UV-photoinhibition: Studies in vitro and in intact plants.-In: Baltscheffsky, M. (ed.): Current Research in Photosynthesis. Vol. II. Pp. 381-384. Kluwer Academic Publ., Dordrecht-Boston-London 1990. Go to original source...