Photosynthetica 2020, 58(3):846-852 | DOI: 10.32615/ps.2020.034

Comparison of leaves and stems of Paederia scandens (Lour.) Merr. in tolerance to low temperature

M.L. CAI, Q.L. ZHANG, X.T. ZHENG, J.J. ZHAI, C.L. PENG
Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, 510631 Guangzhou, China

Low temperature is an important environmental factor that affects plant growth and development. To determine the adaptability of different organs of Paederia scandens (Lour.) Merr. to low temperature, the chlorophyll (Chl) fluorescence parameters as well as the Chl, malondialdehyde (MDA), soluble sugar, and anthocyanin contents of leaves and stems were measured under low temperature. The results confirmed that the Chl fluorescence parameters and Chl content of the leaves and stems of P. scandens tended to decrease consistently, while the MDA content increased, and the change range of the stems was much lower than that of the leaves. The soluble sugar and anthocyanin contents rapidly increased in the leaves and stems to cope with low temperature. Our results suggest that stems are more tolerant than leaves during winter and may continue to grow during that time, which could provide theoretical guidance for clonal propagation of plants to study stem tolerance in the future.

Additional key words: cold; non-leaf photosynthetic organs; osmoprotectants; photosynthesis.

Received: August 24, 2019; Revised: March 18, 2020; Accepted: April 14, 2020; Prepublished online: May 25, 2020; Published: June 11, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
CAI, M.L., ZHANG, Q.L., ZHENG, X.T., ZHAI, J.J., & PENG, C.L. (2020). Comparison of leaves and stems of Paederia scandens (Lour.) Merr. in tolerance to low temperature. Photosynthetica58(3), 846-852. doi: 10.32615/ps.2020.034
Download citation

Supplementary files

Download fileCai 2367 supplement.doc

File size: 232.5 kB

References

  1. Aschan G., Pfanz H.: Non-foliar photosynthesis - a strategy of additional carbon acquisition. - Flora 198: 81-97, 2003. Go to original source...
  2. Awasthi R., Bhandari K., Nayyar H.: Temperature stress and redox homeostasis in agricultural crops. - Front. Env. Sci. 3: 11, 2015. Go to original source...
  3. Borowski E., Blamowski Z.K.: The effects of triacontanol ʻTRIAʼ and Asahi SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. - Folia Hortic. 21: 39-48, 2009. Go to original source...
  4. Bressan R., Bohnert H., Zhu J.K.: Abiotic stress tolerance: from gene discovery in model organisms to crop improvement. - Mol. Plant 2: 1-2, 2009. Go to original source...
  5. Carmona L., Alquézar B., Marques V.V., Peña L.: Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures. - Food Chem. 237: 7-14, 2017. Go to original source...
  6. Chang K.G., Fechner G.H., Schroeder H.A.: Anthocyanins in autumn leaves of quaking aspen in Colorado. - For. Sci. 35: 229-236, 1989. Go to original source...
  7. Chen W.P., Li P.H., Chen T.H.H.: Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxi-dation in Zea mays. - Plant Cell Environ. 23: 609-618, 2000. Go to original source...
  8. Chen Z., Kolb T.E., Clancy K.M.: Mechanisms of Douglas-fir resistance to western spruce budworm defoliation: bud burst phenology, photosynthetic compensation and growth rate. - Tree Physiol. 21: 1159-1169, 2001. Go to original source...
  9. Couée I., Sulmon C., Gouesbet G., El Amrani A.: Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. - J. Exp. Bot. 57: 449-459, 2006. Go to original source...
  10. Cui B., Cheng S.L., Yuan X.Y. et al.: [Effects of low temperature stress on the photosynthetic characteristics and chlorophyll fluorescence parameters of Bletilla striata.] - Chin. J. Trop. Crops 40: 891-897, 2019. [In Chinese] doi: 10.3969/ j.issn.1000-2561.2019.05.009. Go to original source...
  11. de Zelicourt A., Colcombet J., Hirt H.: The role of MAPK modules and ABA during abiotic stress signaling. - Trends Plant Sci. 21: 677-685, 2016. Go to original source...
  12. Fu W., Li P., Wu Y.: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. -Sci. Hortic.-Amsterdam 135: 45-51, 2012. Go to original source...
  13. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  14. Glaszmann J.C., Kaw R.N., Khush G.S.: Genetic divergence among cold tolerant rices (Oryza sativa L). - Euphytica 45: 95-104, 1990. Go to original source...
  15. Hatfield J.L., Prueger J.H.: Temperature extremes: effect on plant growth and development. - Weather Clim. Extrem. 10: 4-10, 2015. Go to original source...
  16. He Y.H., Guo L.S., Tian Y.L.: [Photosynthetic rates and chlorophyll fluorescence of Nitraria tangutorum at different leaf water potentials.] - Acta Bot. Bor.-Occident. Sin. 25: 2226-2233, 2005. [In Chinese] doi: 10.3321/j.issn:1000-4025.2005.11.016. Go to original source...
  17. Hodges D.M., DeLong J.M., Forney C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. - Planta 207: 604-611, 1999. Go to original source...
  18. Korn M., Gärtner T., Erban A. et al.: Predicting Arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. - Mol. Plant 3: 224-235, 2010. Go to original source...
  19. Kubien D.S., Sage R.F.: Low-temperature photosynthetic performance of a C4 grass and a co-occurring C3 grass native to high latitudes. - Plant Cell Environ. 27: 907-916, 2004. Go to original source...
  20. Kuk Y.I., Shin J.S., Jung H.I. et al.: Mechanism of paraquat tolerance in cucumber leaves of various ages. - Weed Sci. 54: 6-15, 2006. Go to original source...
  21. Liu W., Yu K., He T. et al.: The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. - Sci. World J. 2013: 658793, 2013. Go to original source...
  22. Liu W.Y., Zhang Y.F., Zhang D.X.: [Study on cold resistant genes in plants.] - J. Shanxi Datong Normal Univ. Nat. Sci. Ed. 28: 52-55, 2012. [In Chinese] doi: 10.3969/j.issn.1674-0874.2012.06.019. Go to original source...
  23. Lu L.H., Hu Y.K., Li Y.M.: [Free proline accumulation dynamics of two wheat cultivars with different drought-resistance under water stress.] - Acta Agric. Bor.-Sin. 21: 75-78, 2006. [In Chinese] doi: 10.3321/j.issn.1000-7091.2006.02.018. Go to original source...
  24. Ma Y., Mao Y., Fu J.X.: [Study on the composition of the volatile oil from Paederia scandens.] - Acta Bot. Bor.-Occident. Sin. 20: 145-148, 2000. [In Chinese] doi: 10.3321/j.issn.1000-4025.2000.01.023. Go to original source...
  25. Melis M., Spangfort M., Andersson B.: Light-absorption and electron-transport balance between photosystem II and photosystem I in spinach chloroplasts. - Photochem. Photobiol. 45: 129-136, 1987. Go to original source...
  26. Nariyuki I., Yang Z.Q., Yoshitama K., Kurosawa K.: Flavonol glycosides from Paederia scandens var. mairei. - Z. Naturforsch. 45: 1081-1084, 1990. Go to original source...
  27. O'Neill S.D.: Osmotic adjustment and the development of freezing resistance in Fragaria virginiana. - Plant Physiol. 72: 938-944, 1983. Go to original source...
  28. Öquist G.: Effects of low temperature on photosynthesis. - Plant Cell Environ. 6: 281-300, 1983. Go to original source...
  29. Oxborough K., Baker N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photo-chemical and non-photochemical components-calculation of qp and Fv'/Fm' without measuring F0'. - Photosynth. Res. 54: 135-142, 1997. Go to original source...
  30. Popov V.N., Antipina O.V., Trunova T.I.: Lipid peroxidation during low-temperature adaptation of cold-sensitive tobacco leaves and roots. - Russ. J. Plant Physl+ 57: 144-147, 2010. Go to original source...
  31. Sanghera G.S., Wani S.H., Hussain W., Singh N.B.: Engineering cold stress tolerance in crop plants. - Curr. Genomics 12: 30-43, 2011. Go to original source...
  32. Sasaki H., Ichimura K., Oda M.: Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings. - Ann. Bot.-London 78: 365-369, 1996. Go to original source...
  33. Shahandashti S.S.K., Amiri R.M., Zeinali H., Ramezanpour S.S.: Change in membrane fatty acid compositions and cold-induced responses in chickpea. - Mol. Biol. Rep. 40: 893-903, 2013. Go to original source...
  34. Sharma E., Sharma R., Borah P. et al.: Emerging roles of auxin in abiotic stress responses. - In: Pandey G.K. (ed.): Elucidation of abiotic stress signaling in plants: Functional genomics perspectives. Pp. 299-328. Springer, New York 2015. Go to original source...
  35. Sun Q.F., Yu X.C., Gao J.J. et al.: [Effect of carboxymethyl chitosan on chilling tolerance in cucumber seedlings.] - Sci. Agr. Sin. 37: 1660-1665, 2004. [In Chinese] doi: 10.3321/j.issn:0578-1752.2004.11.013 Go to original source...
  36. Tambussi E.A., Bort J., Guiamet J.J. et al.: The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. - Crit. Rev. Plant Sci. 26: 1-16, 2007. Go to original source...
  37. Vágújfalvi A., Kerepesi I., Galiba G. et al.: Frost hardiness depending on carbohydrate changes during cold acclimation in wheat. - Plant Sci. 144: 85-92, 1999. Go to original source...
  38. Vanderklein D.W, Reich P.B.: European larch and eastern white pine respond similarly during three years of partial defoliation. -Tree Physiol. 20: 283-287, 2000. Go to original source...
  39. Wellburn A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. - J. Plant Physiol. 144: 307-313, 1994. Go to original source...
  40. Wu X.X., Zha D.S., Tai X.: [Effects of low temperature stress on growth, activities of antioxidant enzymes and osmotic substance of eggplant seedlings.] - Jiangsu J. Agric. Sci. 24: 471-475, 2008. [In Chinese] doi: 10.3969/j.issn.1000-4440.2008.04.018. Go to original source...
  41. Xu W., Rosenow D.T., Nguyen H.T.: Stay green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. - Plant Breeding 119: 365-367, 2000. Go to original source...
  42. Yang F.J., He H.S., Wang W.J. et al.: [Different characteristics of photosynthesis in stems and leaves of Mikania micrantha.] -Acta Phytoecol. Sin. 6: 998-1004, 2006. [In Chinese] doi: 10.17521/cjpe.2006.0128. Go to original source...
  43. Yin G.H., Wang M.Y., Zhang H.C.: [GC-MS analysis of essential oil of leaves in Paederia scandens with supercritical CO2 extraction.] - Food Sci. Tech. 12: 303-304, 2009. [In Chinese] doi: 10.3321/j.issn:1001-4454.2001.11.012. Go to original source...
  44. Zhan D.X., Yang Y., Hu Y.Y. et al.: Contributions of nonleaf organs to the yield of cotton grown with different water supply. - Sci. World J. 2014: 602747, 2014. Go to original source...
  45. Zhang J.C., Yang D.H.: [Activity of SOD, CAT, POD and content of MDA in Microsorium pteropus caused by glyphosate stress at normal and low temperature.] - Natur. Sci. J. Harbin Normal Univ. 26: 90-93, 2010. [In Chinese] doi: 10.3969/ j.issn.1000-5617.2010.04.029. Go to original source...
  46. Zhang Q., Zhai J.J., Shao L. et al.: Accumulation of anthocyanins: An adaptation strategy of Mikania micrantha to low temperature in winter. - Front. Plant Sci. 10: 1049, 2019. Go to original source...
  47. Zhang S.X.: [Analysis of nutritional components of Paederia scandens.] - Food Res. Dev. 3: 154-155, 2006. [In Chinese] doi: 10.3969/j.issn.1005-6521.2006.03.058. Go to original source...
  48. Zhang T.J., Chow W.S., Liu X.T. et al.: A magic red coat on the surface of young leaves: anthocyanins distributed in trichome layer protect Castanopsis fissa leaves from photoinhibition. - Tree Physiol. 36: 1296-1306, 2016. Go to original source...
  49. Zhao S.J., Xu C.C., Zou Q. et al.: [Improvements of method for measurement of malondialdehyde in plant tissues.] - Plant Physiol. Commun. 30: 207-210, 1994. [In Chinese] doi: 10.13592/j.cnki.ppj.1994.03.016. Go to original source...
  50. Zhu H., Zhang T.J., Zheng J. et al.: Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter. - Photosynthetica 56: 445-454, 2018. Go to original source...
  51. Zwack P.J., Rashotte A.M.: Interactions between cytokinin signalling and abiotic stress responses. - J. Exp. Bot. 66: 4863-4871, 2015. Go to original source...