Photosynthetica 2022, 60(1):102-109 | DOI: 10.32615/ps.2022.005

Sensing and classification of rice (Oryza sativa L.) drought stress levels based on chlorophyll fluorescence

Q. XIA1, L.J. FU1, H. TANG1, L. SONG2, J.L. TAN3, Y. GUO1, 3
1 Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
2 Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 225009 Yangzhou, China
3 Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA

Sensing and classification of drought stress levels are very important to agricultural production. In this work, rice drought stress levels were classified based on the commonly used chlorophyll a fluorescence (ChlF) parameter (Fv/Fm), feature data (induction features), and the whole OJIP induction (induction curve) by using a Support Vector Machine (SVM). The classification accuracies were compared with those obtained by the K-Nearest Neighbors (KNN) and the Ensemble model (Ensemble) correspondingly. The results show that the SVM can be used to classify drought stress levels of rice more accurately compared to the KNN and the Ensemble and the classification accuracy (86.7%) for the induction curve as input is higher than the accuracy (43.9%) with Fv/Fm as input and the accuracy (72.7%) with induction features as input. The results imply that the induction curve carries important information on plant physiology. This work provides a method of determining rice drought stress levels based on ChlF.

Additional key words: chlorophyll a fluorescence; drought stress; Ensemble model; K-Nearest Neighbors; Support vector machine.

Received: July 21, 2021; Revised: January 4, 2022; Accepted: January 25, 2022; Prepublished online: February 28, 2022; Published: March 18, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
XIA, Q., FU, L.J., TANG, H., SONG, L., TAN, J.L., & GUO, Y. (2022). Sensing and classification of rice (Oryza sativa L.) drought stress levels based on chlorophyll fluorescence. Photosynthetica60(SPECIAL ISSUE 2022), 102-109. doi: 10.32615/ps.2022.005
Download citation

References

  1. Alam S., Kwon G.-R: Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM. - Int. J. Imag. Syst. Tech. 27: 133-143, 2017. Go to original source...
  2. Banks J.M.: Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. - Environ. Exp. Bot. 155: 118-127, 2018. Go to original source...
  3. Bano H., Athar H.U.R., Zafar Z.U. et al.: Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. - Physiol. Plantarum 172: 1244-1254, 2021. Go to original source...
  4. Brestic M., Zivcak M., Kunderlikova K. et al.: Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. - Photosynth. Res. 125: 151-166, 2015. Go to original source...
  5. Cai S., Jiang G., Ye N. et al.: A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. -PLoS ONE 10: e0116646, 2015. Go to original source...
  6. Carrijo D.R., Akbar N., Reis A.F.B. et al.: Impacts of variable soil drying in alternate wetting and drying rice systems on yields, grain arsenic concentration and soil moisture dynamics. - Field Crop. Res. 222: 101-110, 2018. Go to original source...
  7. Faraloni C., Cutino I., Petruccelli R. et al.: Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. - Environ. Exp. Bot. 73: 49-56, 2011. Go to original source...
  8. Faseela P., Sinisha A.K., Brestič M., Puthur J.T.: Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. - Photosynthetica 58: 293-300, 2020. Go to original source...
  9. Feng S., Fu L., Xia Q. et al.: Modelling and simulation of photosystem II chlorophyll fluorescence transition from dark-adapted state to light-adapted state. - IET Syst. Biol. 12: 289-293, 2018. Go to original source...
  10. Fu L., Xia Q., Tan J. et al.: Modelling and simulation of chlorophyll fluorescence from PSII of a plant leaf as affected by both illumination light intensities and temperatures. - IET Syst. Biol. 13: 327-332, 2019. Go to original source...
  11. Guerrero J.M., Pajares G., Montalvo M. et al.: Support vector machines for crop/weeds identification in maize fields. - Expert Syst. Appl. 39: 11149-11155, 2012. Go to original source...
  12. Guo Y., Tan J.: Recent advances in the application of chlorophyll a fluorescence from photosystem II. - Photochem. Photobiol. 91: 1-14, 2015. Go to original source...
  13. Haboudane D., Miller J.R., Pattey E. et al.: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. - Remote Sens. Environ. 90: 337-352, 2004. Go to original source...
  14. Ignat T., Schmilovitch Z., Feföldi J. et al.: Nonlinear methods for estimation of maturity stage, total chlorophyll, and carotenoid content in intact bell peppers. - Biosyst. Eng. 114: 414-425, 2013. Go to original source...
  15. Iturbe-Ormaetxe I., Escuredo P.R., Arrese-Igor C., Becana M.: Oxidative damage in pea plants exposed to water deficit or paraquat. - Plant Physiol. 116: 173-181, 1998. Go to original source...
  16. Jiao W., Tian C., Chang Q. et al.: A new multi-sensor integrated index for drought monitoring. - Agr. Forest Meteorol. 268: 74-85, 2019. Go to original source...
  17. Karimi Y., Prasher S.O., Patel R.M., Kim S.H.: Application of support vector machine technology for weed and nitrogen stress detection in corn. - Comput. Electron. Agr. 51: 99-109, 2006. Go to original source...
  18. Kour V.P., Arora A.S.: Particle swarm optimization based support vector machine (P-SVM) for the segmentation and classification of plants. - IEEE Access 7: 29374-29385, 2019. Go to original source...
  19. Kumar A., Lata C., Kumar P. et al.: Salinity and drought induced changes in gas exchange attributes and chlorophyll fluorescence characteristics of rice (Oryza sativa) varieties. - Indian J. Agr. Sci. 86: 718-726, 2016. Go to original source...
  20. Kumar S.V., Peters-Lidard C.D., Mocko D. et al.: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. - J. Hydrometeorol. 15: 2446-2469, 2014. Go to original source...
  21. Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. - Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  22. Maghsoudi K., Emam Y., Ashraf M.: Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. - Turk. J. Bot. 39: 625-634, 2015. Go to original source...
  23. Marcos-Garcia P., Lopez-Nicolas A., Pulido-Velazquez M.: Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin. - J. Hydrol. 554: 292-305, 2017. Go to original source...
  24. Melandri G., AbdElgawad H., Riewe D. et al.: Biomarkers for grain yield stability in rice under drought stress. - J. Exp. Bot. 71: 669-683, 2020. Go to original source...
  25. Meravi N., Prajapati S.K.: Temporal variation in chlorophyll fluorescence of different tree species. - Biol. Rhythm Res. 51: 331-337, 2020. Go to original source...
  26. Miyashita K., Tanakamaru S., Maitani T., Kimura K.: Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. - Environ. Exp. Bot. 53: 205-214, 2005. Go to original source...
  27. Mukherjee S., Mishra A., Trenberth K.E.: Climate change and drought: a perspective on drought indices. - Curr. Clim. Change Rep. 4: 145-163, 2018. Go to original source...
  28. Oukarroum A., El Madidi S., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  29. Qiao X., Bao J., Zhang H. et al.: Underwater sea cucumber identification based on Principal Component Analysis and Support Vector Machine. - Measurement 133: 444-455, 2019. Go to original source...
  30. Rosegrant M.W., Cline S.A.: Global food security: challenges and policies. - Science 302: 1917-1919, 2003. Go to original source...
  31. Saglam A., Terzi R., Demiralay M.: Effects of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance. - Acta Biol. Hung. 65: 178-188, 2014. Go to original source...
  32. Sánchez N., González-Zamora Á., Martínez-Fernández J. et al.: Integrated remote sensing approach to global agricultural drought monitoring. - Agr. Forest Meteorol. 259: 141-153, 2018. Go to original source...
  33. Sayed O.H.: Chlorophyll fluorescence as a tool in cereal crop research. - Photosynthetica 41: 321-330, 2003. Go to original source...
  34. Stirbet A., Govindjee G.: On the relation between the Kautsky effect, chlorophyll a fluorescence induction and photosystem II: basics and applications of the OJIP fluorescence transient. -J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  35. Timsorn K., Lorjaroenphon Y., Wongchoosuk C.: Identification of adulteration in uncooked Jasmine rice by a portable low-cost artificial olfactory system. - Measurement 108: 67-76, 2017. Go to original source...
  36. Urban L., Aarrouf J., Bidel L.P.R.: Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. - Front. Plant Sci. 8: 2068, 2017. Go to original source...
  37. Wang F.Z., Wang Q.B., Kwon S.Y. et al.: Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. - J. Plant Physiol. 162: 465-472, 2005. Go to original source...
  38. Wang S., Tang H., Xia Q. et al.: Modeling and simulation of photosynthetic activities in C3 plants as affected by CO2. - IET Syst. Biol. 13: 101-108, 2019. Go to original source...
  39. Wang Y., Hu X., Hou Z. et al.: Discrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imaging. - J. Sci. Food Agr. 98: 4659-4664, 2018. Go to original source...
  40. Webber H., Ewert F., Olesen J.E. et al.: Diverging importance of drought stress for maize and winter wheat in Europe. - Nat. Commun. 9: 4249, 2018. Go to original source...
  41. West H., Quinn N., Horswell M.: Remote sensing for drought monitoring & impact assessment: progress, past challenges and future opportunities. - Remote Sens. Environ. 232: 111291, 2019. Go to original source...
  42. Woo N.S., Badger M.R., Pogson B.J.: A rapid, noninvasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. - Plant Methods 4: 27, 2008. Go to original source...
  43. Xia Q., Tan J., Ji X. et al.: Modelling and simulation of chlorophyll fluorescence from photosystem II as affected by temperature. - IET Syst. Biol. 12: 304-310, 2018. Go to original source...
  44. Xu Q., Ma X., Lv T. et al.: Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. - Water 12: 289, 2020. Go to original source...
  45. Yang X., Wang B., Chen L. et al.: The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. - Sci. Rep.-UK 9: 3742, 2019. Go to original source...
  46. Zendonadi N.D.S., Piepho H.P., Condorelli G.E. et al.: High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought. - Plant Cell Environ. 44: 2858-2878, 2021. Go to original source...
  47. Zivcak M., Brestic M., Balatova Z. et al.: Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. - Photosynth. Res. 117: 529-546, 2013. Go to original source...