Photosynthetica 2022, 60(4):508-520 | DOI: 10.32615/ps.2022.031
Higher activity of PSI compared to PSII accounts for the beneficial effect of silicon on barley (Hordeum vulgare L.) plants challenged with salinity
- 1 Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
- 2 Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- 3 Department of Natural Resources and Agricultural Engineering, Faculty of Agriculture, Damanhour University, Egypt
This study was conducted to assess whether silicon (Si) supply can alleviate the harmful effects of severe salinity in barley (Hordeum vulgare). Plants were grown on non-saline (0 mM NaCl) or saline (200 mM NaCl) nutrient media supplemented or not with 0.5 mM Si. Salinity impacted plant morphology and induced sodium and chloride accumulation within plant tissues. It significantly affected almost all measured parameters. Interestingly, Si supply alleviated salt stress effects on plant morphology, growth (up to +59%), water status (up to +74%), membrane integrity (up to +35%), pigment contents (up to +121%), and the activity of the two photosystems (PSI and PSII) by improving their yields, and by reducing their energy dissipation. Si beneficial effect was more pronounced on PSI as compared to PSII. As a whole, data inferred from the present study further confirmed that silicon application is an effective approach to cope with salinity.
Additional key words: chlorophyll fluorescence; growth; malondialdehyde; PSI oxidation; potassium nutrition.
Received: March 29, 2022; Revised: May 23, 2022; Accepted: June 30, 2022; Prepublished online: September 7, 2022; Published: December 21, 2022 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
| Download file | Falouti_2908_supplement.docx File size: 2.49 MB |
References
- Abdelaal K.A.A., Mazrou Y.S.A., Hafez Y.M.: Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. - Plants-Basel 9: 733, 2020.
Go to original source... - Abdelly C., Debez A., Smaoui A., Grignon C.: Halophyte-fodder species association may improve nutrient availability and biomass production of the Sabkha ecosystem. - In: Öztürk M., Böer B., Barth H.J. et al. (ed.): Sabkha Ecosystems. Tasks for Vegetation Science. Vol. 46. Pp. 85-94. Springer, Dordrecht 2010.
Go to original source... - Adhikari N.D., Simko I., Mou B.: Phenomic and physiological analysis of salinity effects on lettuce. - Sensors-Basel 19: 4814, 2019.
Go to original source... - Akhter M.S., Noreen S., Mahmood S. et al.: Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll a fluorescence. - J. King Saud Univ. Sci. 33: 101239, 2021.
Go to original source... - Akhter M.S., Noreen S., Saleem N. et al.: Silicon can alleviate toxic effect of NaCl stress by improving K+ and Si uptake, photosynthetic efficiency with reduced Na+ toxicity in barley (Hordeum vulgare L.). - Silicon 14: 4991-5000, 2022.
Go to original source... - Al Murad M., Khan A.L., Muneer S.: Silicon in horticultural crops: cross-talk, signaling, and tolerance mechanism under salinity stress. - Plants-Basel 9: 460, 2020.
Go to original source... - Al-aghabary K., Zhu Z., Shi Q.: Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. - J. Plant Nutr. 27: 2101-2115, 2005.
Go to original source... - Alzahrani Y., Kuºvuran A., Alharby H.F. et al.: The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. - Ecotox. Environ. Safe. 154: 187-196, 2018.
Go to original source... - Ashraf M.: Some important physiological selection criteria for salt tolerance in plants. - Flora 199: 361-376, 2004.
Go to original source... - Attia H., Alamer K., Algethami B. et al.: Gibberellic acid interacts with salt stress on germination, growth and polyamine gene expression in fennel (Foeniculum vulgare Mill.) seedlings. - Physiol. Mol. Biol. Pla. 28: 607-622, 2022.
Go to original source... - Bandehagh A., Salekdeh G.H., Toorchi M.: Comparative proteomic analysis of canola leaves under salinity stress. - Proteomics 11: 1965-1975, 2011.
Go to original source... - Ben-Abdallah S., Zorrig W., Amyot L. et al.: Potential production of polyphenols, carotenoids and glycoalkaloids in Solanum villosum Mill. under salt stress. - Biologia 74: 309-324, 2019.
Go to original source... - Benslima W., Ellouzi H., Zorrig W. et al.: Beneficial effects of silicon on growth, nutrient dynamics, and antioxidative response in barley (Hordeum vulgare L.) plants under potassium deficiency. - J. Soil Sci. Plant Nutr. 22: 2633-2646, 2022.
Go to original source... - Benslima W., Zorrig W., Bagues M. et al.: Silicon mitigates potassium deficiency in Hordeum vulgare by improving growth and photosynthetic activity but not through polyphenol accumulation and the related antioxidant potential. - Plant Soil, 2021.
Go to original source... - Bosnic P., Bosnic D., Jasnic J., Nikolic M.: Silicon mediates sodium transport and partitioning in maize under moderate salt stress. - Environ. Exp. Bot. 155: 681-687, 2018.
Go to original source... - Challabathula D., Analin B., Mohanan A., Bakka K.: Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. - J. Plant Physiol. 268: 153583, 2022.
Go to original source... - Chen D., Yin L., Deng X., Wang S.: Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.). - Acta. Physiol. Plant. 36: 2531-2535, 2014.
Go to original source... - Coskun D., Deshmukh R., Sonah H. et al.: The controversies of silicon's role in plant biology. - New Phytol. 221: 67-85, 2019.
Go to original source... - Debez A., Ben Slimen I.D., Bousselmi S. et al.: Comparative analysis of salt impact on sea barley from semi-arid habitats in Tunisia and cultivated barley with special emphasis on reserve mobilization and stress recovery aptitude. - Plant Biosyst. 154: 544-552, 2020.
Go to original source... - Deshmukh R., Sonah H., Belanger R.R.: New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. - J. Exp. Bot. 71: 6775-6788, 2020.
Go to original source... - Dhiman P., Rajora N., Bhardwaj S. et al.: Fascinating role of silicon to combat salinity stress in plants: An updated overview. - Plant Physiol. Bioch. 162: 110-123, 2021.
Go to original source... - El Moukhtari A., Carol P., Mouradi M. et al.: Silicon improves physiological, biochemical, and morphological adaptations of alfalfa (Medicago sativa L.) during salinity stress. - Symbiosis 85: 305-324, 2021a.
Go to original source... - El Moukhtari A., Lamsaadi N., Oubenali A. et al.: Exogenous silicon application promotes tolerance of legumes and their N2 fixing symbiosis to salt stress. - Silicon, 2021b. (In press)
Go to original source... - El-khawaga H.A.: Effect of silica on physiological and ultrastructure characters in barley (Hordeum vulgare L.) - Al Azhar Bull. Sci. 29: 1-17, 2018.
Go to original source... - Epstein E.: The anomaly of silicon in plant biology. - P. Natl. Acad. Sci. USA 91: 11-17, 1994.
Go to original source... - Epstein E.: Silicon. - Annu. Rev. Plant Phys. 50: 641-664, 1999.
Go to original source... - Eraslan F., Inal A., Savasturk O., Gunes A.: Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. - Sci. Hortic.-Amsterdam 114: 5-10, 2007.
Go to original source... - Faisal S., Callis K.L., Slot M., Kitajima K.: Transpiration-dependent passive silica accumulation in cucumber (Cucumis sativus) under varying soil silicon availability. - Botany 90: 1058-1064, 2012.
Go to original source... - Farouk S., Elhindi K.M., Alotaibi M.A.: Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. - Ecotox. Environ. Safe. 206: 111396, 2020.
Go to original source... - Fricke W., Akhiyarova G., Veselov D., Kudoyarova G.: Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. - J. Exp. Bot. 55: 1115-1123, 2004.
Go to original source... - Ghassemi-Golezani K., Lotfi R.: The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. - Russ. J. Plant Physiol. 62: 611-616, 2015.
Go to original source... - Gong H.J., Randall D.P., Flowers T.J.: Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. - Plant Cell Environ. 29: 1970-1979, 2006.
Go to original source... - Hafsi C., Lakhdhar A., Rabhi M. et al.: Interactive effects of salinity and potassium availability on growth, water status, and ionic composition of Hordeum maritimum. - J. Plant Nutr. Soil Sci. 170: 469-473, 2007.
Go to original source... - Hewitt E.J.: Sand and Water Culture Methods Used in the Study of Plant Nutrition. Pp. 202-232. Commonwealth Agricultural Bureau, England 1966.
- Hmidi D., Messedi D., Corratgé-Faillie C. et al.: Investigation of Na+ and K+ transport in halophytes: Functional analysis of the HmHKT2;1 transporter from Hordeum maritimum and expression under saline conditions. - Plant Cell Physiol. 60: 2423-2435, 2019.
Go to original source... - Hurtado A.C., Chiconato D.A., de Mello Prado R. et al.: Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. - Plant Physiol. Bioch. 142: 224-233, 2019.
Go to original source... - Isayenkov S., Hilo A., Rizzo P. et al.: Adaptation strategies of halophytic barley Hordeum marinum ssp. marinum to high salinity and osmotic stress. - Int. J. Mol. Sci. 21: 9019, 2020.
Go to original source... - Jarvis S.C.: The uptake and transport of silicon by perennial ryegrass and wheat. - Plant Soil 97: 429-437, 1987.
Go to original source... - Jiao P., Wu Z., Wang X. et al.: Short-term transcriptomic responses of Populus euphratica roots and leaves to drought stress. - J. Forestry Res. 32: 841-853, 2021.
Go to original source... - Khan A., Khan A.L., Muneer S. et al.: Silicon and salinity: crosstalk in crop-mediated stress tolerance mechanisms. - Front. Plant Sci. 10: 1429, 2019.
Go to original source... - Khan W.U.D., Aziz T., Hussain I. et al.: Silicon: a beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress. - Arch. Agron. Soil Sci. 63: 599-611, 2017.
Go to original source... - Klughammer C., Schreiber U.: Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. - PAM Appl. Notes 1: 27-35, 2008a.
- Klughammer C., Schreiber U.: Saturation pulse method for assessment of energy conversion in PS I. - PAM Appl. Notes 1: 11-14, 2008b.
- Ksiaa M., Farhat N., Rabhi M. et al.: Silicon (Si) alleviates iron deficiency effects in sea barley (Hordeum marinum) by enhancing iron accumulation and photosystem activities. - Silicon 14: 6697-6712, 2022.
Go to original source... - Laifa I., Hajji M., Farhat N. et al.: Beneficial effects of silicon (Si) on sea barley (Hordeum marinum Huds.) under salt stress. - Silicon 13: 4501-4517, 2021.
Go to original source... - Li Z., Song Z., Yan Z. et al.: Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. - Agron. Sustain. Dev. 38: 26, 2018.
Go to original source... - Liang Y.C.: Effect of silicon on leaf ultrastructure, chlorophyll content and photosynthetic activity of barley under salt stress. - Pedosphere 8: 289-296, 1998.
- Liang Y., Chen Q., Liu Q. et al.: Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). - J. Plant Physiol. 160: 1157-1164, 2003.
Go to original source... - Liang Y., Shen Q., Shen Z., Ma T.: Effects of silicon on salinity tolerance of two barley cultivars. - J. Plant Nutr. 19: 173-183, 1996.
Go to original source... - Liang Y., Si J., Römheld V.: Silicon uptake and transport is an active process in Cucumis sativus. - New Phytol. 167: 797-804, 2005.
Go to original source... - Liang Y., Zhang W., Chen Q. et al.: Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). - Environ. Exp. Bot. 57: 212-219, 2006.
Go to original source... - Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987.
Go to original source... - Liu B., Soundararajan P., Manivannan A.: Mechanisms of silicon-mediated amelioration of salt stress in plants. - Plants-Basel 8: 307, 2019.
Go to original source... - Ma J.F., Miyake Y., Takahashi E.: Silicon as a beneficial element for crop plants. - In: Datnoff L.E., Snyder G.H., Korndörfer G.H. (ed.): Studies in Plant Science. Vol. 8. Pp. 17-39. Elsevier, Amsterdam 2001.
Go to original source... - Ma J.F., Takahashi E.: Soil, Fertilizer, and Plant Silicon Research in Japan. Pp. 281. Elsevier Science, Amsterdam 2002.
Go to original source... - Mahdieh M., Habibollahi N., Amirjani M.R. et al.: Exogenous silicon nutrition ameliorates salt-induced stress by improving growth and efficiency of PSII in Oryza sativa L. cultivars. - J. Soil Sci. Plant Nutr. 15: 1050-1060, 2015.
Go to original source... - Mahmoud L.M., Dutt M., Shalan A.M. et al.: Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata 'Grand Nain') under simulated water deficit or salinity stress. - S. Afr. J. Bot. 132: 155-163, 2020.
Go to original source... - Mitani N., Ma J.F.: Uptake system of silicon in different plant species. - J. Exp. Bot. 56: 1255-1261, 2005.
Go to original source... - Mittler R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405-410, 2002.
Go to original source... - Munns R., Schachtman D.P., Condon A.G.: The significance of a two-phase growth response to salinity in wheat and barley. - Funct. Plant Biol. 22: 561-569, 1995.
Go to original source... - Nikolic M., Nikolic N., Liang Y. et al.: Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. - Plant Physiol. 143: 495-503, 2007.
Go to original source... - Noctor G., Mhamdi A., Foyer C.H.: The roles of reactive oxygen metabolism in drought: Not so cut and dried. - Plant Physiol. 164: 1636-1648, 2014.
Go to original source... - Okur B., Örçen N.: Soil salinization and climate change. - In: Prasad M.N.V., Pietrzykowski M. (ed.): Climate Change and Soil Interactions. Pp. 331-350. Elsevier, Amsterdam 2020.
Go to original source... - Pan T., Liu M., Kreslavski V.D. et al.: Non-stomatal limitation of photosynthesis by soil salinity. - Crit. Rev. Environ. Sci. Technol. 51: 791-825, 2021.
Go to original source... - Perreault F., Ali N.A., Saison C. et al.: Dichromate effect on energy dissipation of photosystem II and photosystem I in Chlamydomonas reinhardtii. - J. Photoch. Photobio. B 96: 24-29, 2009.
Go to original source... - Pottosin I., Shabala S.: Transport across chloroplast membranes: Optimizing photosynthesis for adverse environmental conditions. - Mol. Plant 9: 356-370, 2016.
Go to original source... - Rains D.W., Epstein E., Zasoski R.J., Aslam M.: Active silicon uptake by wheat. - Plant Soil 280: 223-228, 2006.
Go to original source... - Romero-Aranda M.R., Jurado O., Cuartero J.: Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. - J. Plant. Physiol. 163: 847-855, 2006.
Go to original source... - Santos C.V.: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. - Sci. Hortic.-Amsterdam 103: 93-99, 2004.
Go to original source... - Savant N.K., Korndörfer G.H., Datnoff L.E., Snyder G.H.: Silicon nutrition and sugarcane production: a review. - J. Plant Nutr. 22: 1853-1903, 1999.
Go to original source... - Schreiber U., Klughammer C.: Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer. - Plant Cell Physiol. 57: 1454-1467, 2016.
Go to original source... - Shen X., Zhou Y., Duan L. et al.: Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. - J. Plant Physiol. 167: 1248-1252, 2010.
Go to original source... - Shin Y.K., Bhandari S.R., Jo J.S. et al.: Response to salt stress in lettuce: changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. - Agronomy 10: 1627, 2020.
Go to original source... - Srinieng K., Saisavoey T., Karnchanatat A.: Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. - Pak. J. Bot 47: 1-10, 2015.
- Takagi D., Ishizaki K., Hanawa H.: Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. -Physiol. Plantarum 161: 56-74, 2017.
Go to original source... - Takahashi E., Ma J., Miyake Y.: The possibility of silicon as an essential element for higher plants. - Comments Agric. Food Chem. 2: 99-102, 1990.
- Thorne S.J., Hartley S.E., Maathuis F.J.M.: Is silicon a panacea for alleviating drought and salt stress in crops? - Front. Plant Sci. 11: 1221, 2020.
Go to original source... - Tomaz A., Palma P., Alvarenga P., Gonçalves M.C.: Soil salinity risk in a climate change scenario and its effect on crop yield. - In: Prasad M.N.V., Pietrzykowski M. (ed.): Climate Change and Soil Interactions. Pp. 351-396. Elsevier, Amsterdam 2020.
Go to original source... - Tuna A.L., Kaya C., Higgs D. et al.: Silicon improves salinity tolerance in wheat plants. - Environ. Exp. Bot. 62: 10-16, 2008.
Go to original source... - Vandegeer R.K., Zhao C., Cibils-Stewart X. et al.: Silicon deposition on guard cells increases stomatal sensitivity as mediated by K+ efflux and consequently reduces stomatal conductance. - Physiol. Plantarum 171: 358-370, 2021.
Go to original source... - Wada S., Takagi D., Miyake C. et al.: Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction centre chlorophyll of photosystem I, P700, under drought and high temperatures in rice. - Int. J. Mol. Sci. 20: 2068, 2019.
Go to original source... - Xue W., Yan J., Jiang Y. et al.: Genetic dissection of winter barley seedling response to salt and osmotic stress. - Mol. Breeding 39: 137, 2019.
Go to original source... - Yan G., Fan X., Peng M. et al.: Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. - Front. Plant Sci. 11: 260, 2020.
Go to original source... - Yaneff A., Vitali V., Amodeo G.: PIP1 aquaporins: Intrinsic water channels or PIP2 aquaporin modulators? - FEBS Lett. 589: 3508-3515, 2015.
Go to original source... - Yasar F., Ellialtioglu S., Yildiz K.: Effect of salt stress on antioxidant defence systems, lipid peroxidation, and chlorophyll content in green bean. - Russ. J. Plant Physiol. 55: 782-786, 2008.
Go to original source... - Yin J., Jia J., Lian Z. et al.: Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. - Ecotox. Environ. Safe. 169: 8-17, 2019.
Go to original source... - Zhang Y., Shi Y., Gong H.J. et al.: Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. - J. Integr. Agr. 17: 2151-2159, 2018.
Go to original source... - Zhou R., Kan X., Chen J.: Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. - Environ. Exp. Bot. 158: 51-62, 2019.
Go to original source... - Zhu J.K.: Plant salt tolerance. - Trends Plant Sci. 6: 66-71, 2001.
Go to original source... - Zhu Y.X., Xu X.B., Hu Y.H.: Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. - Plant Cell Rep. 34: 1629-1646, 2015.
Go to original source... - Zivcak M., Brestic M., Kunderlikova K. et al.: Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. - Photosynth. Res. 126: 449-463, 2015.
Go to original source... - Zorrig W., Cornu J.Y., Maisonneuve B.: Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa). - Plant Physiol. Bioch. 136: 67-73, 2019.
Go to original source... - Zorrig W., Rouached A., Shahzed Z.: Identification of three relationships linking cadmium accumulation to cadmium tolerance to zinc and citrate accumulation in lettuce. - J. Plant Physiol. 167: 1239-1247, 2010.
Go to original source...




