Photosynthetica 2022, 60(4):521-528 | DOI: 10.32615/ps.2022.045

Evidence of photosynthetic acclimation to self-shading in sugarcane canopies

R.L. ALMEIDA1, 2, N.M. SILVEIRA1, M.T. MIRANDA1, 2, V.S. PACHECO2, L.P. CRUZ2, M.A. XAVIER3, E.C. MACHADO1, R.V. RIBEIRO2
1 Laboratory of Plant Physiology 'Coaracy M. Franco', Center for Agricultural and Post-Harvest Biosystems, Agronomic Institute (IAC), Campinas, SP, Brazil
2 Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
3 Center R&D in Sugarcane, IAC, Ribeirão Preto, SP, Brazil

Increasing the efficiency of photosynthesis in sugarcane canopies is the key for improving crop yield. Herein, we evaluated the photosynthetic performance along the canopy of ten sugarcane cultivars and three Saccharum species. Canopy morphological traits were evaluated, and leaf gas exchange was measured in the first (sun-exposed, +1) and the fourth (shaded, +4) fully expanded leaves and under low- and high-light conditions. Similar photosynthetic capacity was found in leaves +1 and +4 under high light in genotypes with a high leaf area index and a high fraction of the sky blocked by the foliage (> 85%). Interestingly, such canopy characteristics cause low light availability to leaves +4, suggesting the photosynthetic acclimation of these leaves to self-shading in some genotypes. We highlight IACCTC06-8126 and CTC4 as those genotypes with higher canopy photosynthetic capacity, presenting high leaf area, high photosynthetic rates in sun-exposed leaves, and high responsiveness of shaded leaves to increasing light availability.

Additional key words: light; photosynthesis; plant canopy; Saccharum spp.

Received: August 23, 2022; Revised: August 23, 2022; Accepted: September 29, 2022; Prepublished online: October 20, 2022; Published: December 21, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ALMEIDA, R.L., SILVEIRA, N.M., MIRANDA, M.T., PACHECO, V.S., CRUZ, L.P., XAVIER, M.A., MACHADO, E.C., & RIBEIRO, R.V. (2022). Evidence of photosynthetic acclimation to self-shading in sugarcane canopies. Photosynthetica60(4), 521-528. doi: 10.32615/ps.2022.045
Download citation

Supplementary files

Download fileAlmeida_2951_supplement.docx

File size: 794.65 kB

References

  1. Almeida R.L., Silveira N.M., Pacheco V.S. et al.: Variability and heritability of photosynthetic traits in Saccharum complex. - Theor. Exp. Plant Phys. 33: 343-355, 2021. Go to original source...
  2. Bellasio C., Griffiths H.: Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy. - J. Exp. Bot. 65: 3725-3736, 2014. Go to original source...
  3. Cheavegatti-Gianotto A., de Abreu H.M.C., Arruda P. et al.: Sugarcane (Saccharum × officinarum): a reference study for the regulation of genetically modified cultivars in Brazil. - Trop. Plant Biol. 4: 62-89, 2011. Go to original source...
  4. Collison R.F., Raven E.C., Pignon C.P., Long S.P.: Light, not age, underlies the maladaptation of maize and Miscanthus photosynthesis to self-shading. - Front. Plant Sci. 11: 783, 2020. Go to original source...
  5. Cruz L.P., Machado E.C., Ribeiro R.V.: Estimating the light conversion efficiency by sugarcane: the segmented approach. - An. Acad. Bras. Ciênc. 94: e20211317, 2022. Go to original source...
  6. Cruz L.P., Pacheco V.S., Silva L.M. et al.: Morpho-physiological bases of biomass production by energy cane and sugarcane: A comparative study. - Ind. Crop. Prod. 171: 113884, 2021. Go to original source...
  7. Davey C.L., Jones L.E., Squance M. et al.: Radiation capture and conversion efficiencies of Miscanthus sacchariflorus, M. sinensis and their naturally occurring hybrid M. × giganteus. - GCB Bioenergy 9: 385-399, 2017. Go to original source...
  8. Edwards G.E., Baker N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? - Photosynth. Res. 37: 89-102, 1993. Go to original source...
  9. Irvine J.E.: Photosynthesis in sugarcane varieties under field conditions. - Crop Sci. 7: 297-300, 1967. Go to original source...
  10. Irvine J.E.: Relations of photosynthetic rates and leaf and canopy characters to sugarcane yield. - Crop Sci. 15: 671-676, 1975. Go to original source...
  11. Irvine J.E.: Sugarcane. - In: Smith W.H., Banta S.J. (ed.): Potential Productivity of Field Crops Under Different Environments. Pp. 361-381. International Rice Research Institute, Los Banos 1983.
  12. Jackson P., Basnayake J., Inman-Bamber G. et al.: Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm. - J. Exp. Bot. 67: 861-871, 2016. Go to original source...
  13. Jaikumar N.S., Stutz S.S., Fernandes S.B. et al.: Can improved canopy light transmission ameliorate loss of photosynthetic efficiency in the shade? An investigation of natural variation in Sorghum bicolor. - J. Exp. Bot. 72: 4965-4980, 2021. Go to original source...
  14. JASP Team: JASP, version 0.15, 2021. Available at: https://jasp-stats.org/.
  15. Kromdijk J., G³owacka K., Leonelli L. et al.: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. - Science 354: 857-861, 2016. Go to original source...
  16. Lawlor D.W.: Photosynthesis, productivity and environment. - J. Exp. Bot. 46: 1449-1461, 1995. Go to original source...
  17. Li C., Jackson P., Lu X. et al.: Genotypic variation in transpiration efficiency due to differences in photosynthetic capacity among sugarcane related clones. - J. Exp. Bot. 68: 2377-2385, 2017. Go to original source...
  18. Long S.P., Zhu X., Naidu S.L., Ort D.R.: Can improvement in photosynthesis increase crop yields? - Plant Cell Environ. 29: 315-330, 2006. Go to original source...
  19. Lopes M.S., Araus J.L., van Heerden P.D.R., Foyer C.H.: Enhancing drought tolerance in C4 crops. - J. Exp. Bot. 62: 3235-3153, 2011. Go to original source...
  20. Machado E.C., Pereira A.R., Fahl J.I. et al.: Índices biométricos de duas variedades de cana-de-açúcar. [Biometric indices of two sugarcane varieties]. - Pesqui. Agropecu. Bras. 17: 1323-1329, 1982. [In Portuguese]
  21. Marchiori P.E.R., Machado E.C., Ribeiro R.V.: Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. - Field Crop. Res. 155: 30-37, 2014. Go to original source...
  22. Marchiori P.E.R., Ribeiro R.V., da Silva L. et al.: Plant growth, canopy photosynthesis and light availability in three sugarcane varieties. - Sugar Tech 12: 160-166, 2010. Go to original source...
  23. Miranda M.T., da Silva S.F., Silveira N.M. et al.: Root osmotic adjustment and stomatal control of leaf gas exchange are dependent on citrus rootstocks under water deficit. - J. Plant Growth Regul. 40: 11-19, 2021. Go to original source...
  24. Moore P.H., Paterson A.H., Tew T.: Sugarcane: the crop, the plant, and domestication. - In: Moore P.H., Botha F.C. (ed.): Sugarcane: Physiology, Biochemistry, and Functional Biology. Pp. 1-17. Wiley-Blackwell, Oxford 2014. Go to original source...
  25. Pignon C.P., Jaiswal D., McGrath J.M., Long S.P.: Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops? - J. Exp. Bot. 68: 335-345, 2017. Go to original source...
  26. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2021. Available at: https://www.r-project.org/.
  27. Ray D.K., Mueller N.D., West P.C., Foley J.A.: Yield trends are insufficient to double global crop production by 2050. - PLoS ONE 8: e66428, 2013. Go to original source...
  28. Robertson M.J., Wood A.W., Muchow R.C.: Growth of sugarcane under high input conditions in tropical Australia. I. Radiation use, biomass accumulation and partitioning. - Field Crop. Res. 48: 11-25, 1996. Go to original source...
  29. Sales C.R.G., Ribeiro R.V., Hayashi A.H. et al.: Flexibility of C4 decarboxylation and photosynthetic plasticity in sugarcane plants under shading. - Environ. Exp. Bot. 149: 34-42, 2018. Go to original source...
  30. Salter W.T., Merchant A.M., Richards R.A. et al.: Rate of photosynthetic induction in fluctuating light varies widely among genotypes of wheat. - J. Exp. Bot. 70: 2787-2796, 2019. Go to original source...
  31. Slattery R.A., Grennan A.K., Sivaguru M. et al.: Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. - J. Exp. Bot. 67: 4697-4709, 2016. Go to original source...
  32. Tejera N.A., Rodés R., Ortega E. et al.: Comparative analysis of physiological characteristics and yield components in sugarcane cultivars. - Field Crop. Res. 102: 64-72, 2007. Go to original source...
  33. van Raij B., Cantarella H., Quaggio J.A. et al. (ed.): Recomendações de adubação e calagem para o Estado de São Paulo. [Recommendations for fertilization and liming for the State of São Paulo]. Boletim técnico 100. Pp. 237-239. Instituto Agronômico, Campinas 1996. [In Portuguese]
  34. Waclawovsky A.J., Sato P.M., Lembke C.G. et al.: Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. - Plant Biotechnol. J. 8: 263-276, 2010. Go to original source...
  35. Waldron J.C, Glasziou K.T., Bull T.A.: The physiology of sugar-cane. IX. Factors affecting photosynthesis and sugar storage. - Aust. J. Biol. Sci. 20: 1043-1052, 1967. Go to original source...
  36. Walker B.J., Drewry D.T., Slattery R.A. et al.: Chlorophyll can be reduced in crop canopies with little penalty to photo­synthesis. - Plant Physiol. 176: 1215-1232, 2018. Go to original source...
  37. Zhu X.-G., Long S.P., Ort D.R.: What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? - Curr. Opin. Biotech. 19: 153-159, 2008. Go to original source...
  38. Zhu X.-G., Long S.P., Ort D.R.: Improving photosynthetic efficiency for greater yield. - Annu. Rev. Plant Biol. 61: 235-261, 2010. Go to original source...