Photosynthetica 2023, 61(2):138-147 | DOI: 10.32615/ps.2022.036
Influence of phytochromes on microRNA expression, phenotype, and photosynthetic activity in A. thaliana phy mutants under light with different spectral composition
- 1 K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- 2 Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
Light-induced changes in miRNAs, morphogenesis, and photosynthetic processes in phytochrome-deficient mutant plants grown under different light qualities were studied. miRNA activity in many processes is regulated by phytochromes and phytochrome-interacting factors (PIFs). The reduced content of photoreceptors in phytochrome mutants affects the PIF-microRNA interaction. In plants grown under red light (RL) and white light (WL), the phenotype of phyb mutant was distorted; however, under blue light (BL) conditions, the phyb phenotype was normalized. The photosynthetic rates of both the mutants and wild type were higher under BL than under RL and WL. The expression of most studied miRNAs increased in phyaphyb mutants under BL conditions, which is probably one of the reasons for the normalization of the phenotype, the increase in PSII activity, and the photosynthetic rate. MicroRNAs under BL can partially improve photosynthesis and phenotype of the mutants, which indicates the conjugation of the functioning of phytochromes in miRNA formation.
Additional key words: Arabidopsis thaliana phytochrome mutants; microRNA; photomorphogenesis; photosynthesis.
Received: June 28, 2022; Revised: July 25, 2022; Accepted: July 28, 2022; Prepublished online: August 25, 2022; Published: June 6, 2023 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
| Download file | Pashkovskiy_2940_supplement.docx File size: 57.49 kB |
References
- Chaves I., Pokorny R., Byrdin M. et al.: The cryptochromes: blue light photoreceptors in plants and animals. - Annu. Rev. Plant Biol. 62: 335-364, 2011.
Go to original source... - Cho S.K., Chaabane S.B., Shah P. et al.: COP1 E3 ligase protects HYL1 to retain microRNA biogenesis. - Nat. Commun. 5: 5867, 2014.
Go to original source... - Gavassi M.A., Monteiro C.C., Campos M.L. et al.: Phytochromes are key regulators of abiotic stress responses in tomato. - Sci. Hortic.-Amsterdam 222: 126-135, 2017.
Go to original source... - Goltsev V.N., Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. - Russ. J. Plant Physiol. 63: 869-893, 2016.
Go to original source... - Gou J., Felippes F.F., Liu C. et al.: Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. - Plant Cell 23: 1512-1522, 2011.
Go to original source... - Hayes S., Velanis C.N., Jenkins G.I., Franklin K.A.: UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. - P. Natl. Acad. Sci. USA 111: 11894-11899, 2014.
Go to original source... - Hernando C.E., Garcia C., Mateos J.L.: Casting away the shadows: elucidating the role of light-mediated posttranscriptional control in plants. - Photochem. Photobiol. 93: 656-665, 2017.
Go to original source... - Hiltbrunner A., Viczián A., Bury E. et al.: Nuclear accumulations of the phytochrome A photoreceptor requires FHY1. - Curr. Biol. 15: 2125-2130, 2005.
Go to original source... - Hornitschek P., Kohnen M.V., Lorrain S. et al.: Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. - Plant J. 71: 699-711, 2012.
Go to original source... - Jang I.-C., Henriques R., Chua N.-H.: Three transcription factors, HFR1, LAF1 and HY5, regulate largely independent signaling pathways downstream of phytochrome A. - Plant Cell Physiol. 54: 907-916, 2013.
Go to original source... - Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016.
Go to original source... - Kong S.-G., Okajima K.: Diverse photoreceptors and light responses in plants. - J. Plant Res. 129: 111-114, 2016.
Go to original source... - Kreslavski V.D., Lankin A.V., Vasilyeva G.K. et al.: Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. - Plant Physiol. Bioch. 81: 135-142, 2014.
Go to original source... - Kreslavski V.D., Los D.A., Schmitt F.-J. et al.: The impact of the phytochromes on photosynthetic processes. - BBA-Bioenergetics 1859: 400-408, 2018.
Go to original source... - Kreslavski V.D., Strokina V.V., Pashkovskiy P.P. et al.: Deficiencies in phytochromes A and B and cryptochrome 1 affect the resistance of the photosynthetic apparatus to high-intensity light in Solanum lycopersicum. - J. Photoch. Photobio. B 210: 111976, 2020.
Go to original source... - Li J., Li G., Gao S. et al.: Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. - Plant Cell 22: 3634-3649, 2010.
Go to original source... - Liao X., Liu W., Yang H., Jenkins G.I.: A dynamic model of UVR8 photoreceptor signalling in UV-B acclimated Arabidopsis. - New Phytol 227: 857-866, 2020.
Go to original source... - Lin M.-C., Tsai H.-L., Lim S.-L. et al.: Unraveling multifaceted contributions of small regulatory RNAs to photomorphogenic development in Arabidopsis. - BMC Genomics 18: 559, 2017.
Go to original source... - Lin R., Ding L., Casola C. et al.: Transposase-derived transcription factors regulate light signaling in Arabidopsis. -Science 318: 1302-1305, 2007.
Go to original source... - Möglich A., Yang X., Ayers R.A., Moffat K.: Structure and function of plant photoreceptors. - Annu. Rev. Plant Biol. 61: 21-47, 2010.
Go to original source... - Pashkovskiy P.P., Kartashov A.V., Zlobin I.E. et al.: Blue light alters miR167 expression and microRNA-targeted auxin response factor genes in Arabidopsis thaliana plants. - Plant Physiol. Bioch. 104: 146-154, 2016.
Go to original source... - P.P., Ryazansky S.S.: Biogenesis, evolution, and functions of plant microRNAs. - Biochemistry-Moscow 78: 627-637, 2013.
Go to original source... - Quail P.H.: Phytochromes. - Curr. Biol. 20: R504-R507, 2010.
Go to original source... - Samad A.F.A., Sajad M., Nazaruddin N. et al.: MicroRNA and transcription factor: key players in plant regulatory network. - Front. Plant Sci. 8: 565, 2017.
Go to original source... - Sánchez-Retuerta C., Suaréz-López P., Henriques R.: Under a new light: regulation of light-dependent pathways by non-coding RNAs. - Front. Plant Sci. 9: 962, 2018.
Go to original source... - Smith K.M., Sancar G., Dekhang R. et al.: Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. - Eukaryotic Cell 9: 1549-1556, 2010.
Go to original source... - Su J., Liu B., Liao J. et al.: Coordination of cryptochrome and phytochrome signals in the regulation of plant light responses. - Agronomy 7: 25, 2017.
Go to original source... - Sullivan J.A., Deng X.W.: From seed to seed: the role of photoreceptors in Arabidopsis development. - Dev. Biol. 260: 289-297, 2003.
Go to original source... - Sun W., Xu X.H., Wu X. et al.: Genome-wide identification of microRNAs and their targets in wild type and phyb mutant provides a key link between microRNAs and the phyb-mediated light signaling pathway in rice. - Front. Plant Sci. 6: 372, 2015.
Go to original source... - Sun Z., Li M., Zhou Y. et al.: Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4. - PLoS Genet. 14: e1007247, 2018.
Go to original source... - Sunkar R., Li Y.-F., Jagadeeswaran G.: Functions of microRNAs in plant stress responses. - Trends Plant Sci. 17: 196-203, 2012.
Go to original source... - Taylor R.S., Tarver J.E., Hiscock S.J., Donoghue P.C.J.: Evolutionary history of plant microRNAs. - Trends Plant Sci. 19: 175-182, 2014.
Go to original source... - Tsai H.-L., Li Y.-H., Hsieh W.-P. et al.: HUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis. - Plant Cell 26: 2858-2872, 2014.
Go to original source... - Voinnet O.: Origin, biogenesis, and activity of plant microRNAs. - Cell 136: 669-687, 2009.
Go to original source... - Voitsekhovskaja O.V.: Phytochromes and other (photo)receptors of information in plants. - Russ. J. Plant Physiol. 66: 351-364, 2019.
Go to original source... - Xie Y., Liu Y., Wang H. et al.: Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. - Nat. Commun. 8: 348, 2017.
Go to original source... - Yu Y., Jia T., Chen X.: The 'how' and 'where' of plant microRNAs. - New Phytol. 216: 1002-1017, 2017.
Go to original source... - Zhang H., He H., Wang X. et al.: Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. - Plant J. 65: 346-358, 2011.
Go to original source...




