Photosynthetica 2024, 62(2):168-179 | DOI: 10.32615/ps.2024.012

Selenite foliar application increased the accumulation of medicinal components in Paeonia ostii by promoting antioxidant capacity, reducing oxidative stress, and improving photosynthetic capacity

L.X. ZHANG1, †, Q.S. CHANG2, †, Y.L. HE1, X.L. ZHAO1, W. LIU1, Q. GUO1, K. CHEN1, X.G. HOU1
1 College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
2 College of Horticulture and Plant Protection, Henan University of Science and Technology, 471003 Luoyang, China

The effects of selenite (0, 15, 30, 45 mg L-1) on physiological characteristics and medicinal components of Paeonia ostii were analyzed. The results showed that selenite application promoted the activity of superoxide dismutase and the contents of soluble sugar, proline, carotenoids, total flavonoids, and total polyphenols, and decreased the contents of reactive oxygen species, relative electrical conductivity, and malondialdehyde. In addition, selenite also increased chlorophyll content, improved electron transfer ability, PSI and PSII performance, and the coordination between PSI and PSII, which significantly improved photosynthetic capacity. Moreover, selenite treatment also greatly increased the contents of gallic acid, catechin, albiflorin, paeoniflorin, benzoic acid, and paeonol in Moutan cortex radicis (MCR). These results showed that selenite effectively protected the photosynthetic apparatus from photooxidative damage by enhancing antioxidant capacity, improving photosynthetic capacity, and increasing the content of the medicinal compounds in MCR.

Additional key words: chlorophyll fluorescence; Paeonia ostii; photosynthesis; secondary metabolites; selenite.

Received: October 18, 2023; Revised: January 23, 2024; Accepted: February 6, 2024; Prepublished online: March 21, 2024; Published: June 27, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, L.X., CHANG, Q.S., HE, Y.L., ZHAO, X.L., LIU, W., GUO, Q., CHEN, K., & HOU, X.G. (2024). Selenite foliar application increased the accumulation of medicinal components in Paeonia ostii by promoting antioxidant capacity, reducing oxidative stress, and improving photosynthetic capacity. Photosynthetica62(2), 168-179. doi: 10.32615/ps.2024.012
Download citation

References

  1. Ahmad Z., Anjum S., Skalicky M. et al.: Selenium alleviates the adverse effect of drought in oilseed crops camelina (Camelina sativa L.) and canola (Brassica napus L.). - Molecules 26: 1699, 2021. Go to original source...
  2. Alyemeni M.N., Ahanger M.A., Wijaya L. et al.: Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. - Protoplasma 255: 459-469, 2018. Go to original source...
  3. Azimi F., Oraei M., Gohari G. et al.: Chitosan-selenium nanoparticles (Cs-Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. - Plant Physiol. Biochem. 167: 257-268, 2021. Go to original source...
  4. Balasundram N., Sundram K., Samman S.: Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. - Food Chem. 99: 191-203, 2006. Go to original source...
  5. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  6. Cai H.L., Xie P.F., Zeng W.A. et al.: Root-specific expression of rice OsHMA3 reduces shoot cadmium accumulation in transgenic tobacco. - Mol. Breeding 39: 49, 2019. Go to original source...
  7. Chalanika De Silva H.C., Asaeda T.: Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. - J. Plant Interact. 12: 228-236, 2017.
  8. Chang Q.S., Zhang L.X., Chen S.C. et al.: Exogenous melatonin enhances the yield and secondary metabolite contents of Prunella vulgaris by modulating antioxidant system, root architecture and photosynthetic capacity. - Plants-Basel 12: 1129, 2023. Go to original source...
  9. Chauhan R., Awasthi S., Srivastava S. et al.: Understanding selenium metabolism in plants and its role as a beneficial element. - Crit. Rev. Env. Sci. Tec. 49: 1937-1958, 2019. Go to original source...
  10. Cheeseman J.M.: Hydrogen peroxide concentrations in leaves under natural conditions. - J. Exp. Bot. 57: 2435-2444, 2006. Go to original source...
  11. Chen H.U., Cheng Q., Chen Q.L. et al.: Effects of selenium on growth and selenium content distribution of virus-free sweet potato seedlings in water culture. - Front. Plant Sci. 13: 965649, 2022. Go to original source...
  12. Chen Y.H., Zhang X.R., Guo Q.S. et al.: Plant morphology, physiological characteristics, accumulation of secondary metabolites and antioxidant activities of Prunella vulgaris L. under UV solar exclusion. - Biol. Res. 52: 17, 2019. Go to original source...
  13. Cruz J.A., Avenson T.J.: Photosynthesis: A multiscopic view. - J. Plant Res. 134: 665-682, 2021. Go to original source...
  14. de Almeida H.J., Carmona V.V., Dutra A.F., Filho A.B.C.: Growth and physiological responses of cabbage cultivars biofortified with inorganic selenium fertilizers. - Sci. Hortic.-Amsterdam 302: 111154, 2022. Go to original source...
  15. Dong F., Wang C.Z., Sun X.D. et al.: Sugar metabolic changes in protein expression associated with different light quality combinations in tomato fruit. - Plant Growth Regul. 88: 267-282, 2019. Go to original source...
  16. Dong Z., Xiao Y., Wu H.: Selenium accumulation, speciation, and its effect on nutritive value of Flammulina velutipes (Golden needle mushroom). - Food Chem. 350: 128667, 2021. Go to original source...
  17. Feng S.M., Luo Z.S., Zhang Y.B. et al.: Phytochemical contents and antioxidant capacities of different parts of two sugarcane (Saccharum officinarum L.) cultivars. - Food Chem. 151: 452-458, 2014. Go to original source...
  18. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  19. Guo Y.Y., Li H.J., Liu J. et al.: Melatonin alleviates drought-induced damage of photosynthetic apparatus in maize seedlings. - Russ. J. Plant Physiol. 67: 312-322, 2020. Go to original source...
  20. Hasanuzzaman M., Raihan M.R.H., Masud A.A.C. et al.: Regulation of reactive oxygen species and antioxidant defense in plants under salinity. - Int. J. Mol. Sci. 22: 9326, 2021. Go to original source...
  21. Hawrylak-Nowak B.: Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. - Biol. Trace Elem. Res. 132: 259-269, 2009. Go to original source...
  22. Hu L., Wang X.L., Zou Y.T. et al.: Effects of inorganic and organic selenium intervention on resistance of radish to arsenic stress. - Ital. J. Food Sci. 34: 44-58, 2022. Go to original source...
  23. Jucá M.M., Cysne Filho F.M.S., de Almeida J.C. et al.: Flavonoids: biological activities and therapeutic potential. - Nat. Prod. Res. 34: 692-705, 2020. Go to original source...
  24. Kalaei M.H.R., Abdossi V., Danaee E.: Evaluation of foliar application of selenium and flowering stages on selected properties of Iranian Borage as a medicinal plant. - Sci. Rep.-UK 12: 12568, 2022. Go to original source...
  25. Kápolna E., Laursen K.H., Husted S., Larsen E.H.: Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se. - Food Chem. 133: 650-657, 2012. Go to original source...
  26. Khalofah A., Migdadi H., El-Harty E.: Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa Willd) to exogenous selenium application. - Plants-Basel 10: 719, 2021. Go to original source...
  27. Lanza M.G.D.B., Reis A.R.D.: Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. - Plant Physiol. Biochem. 164: 27-43, 2021. Go to original source...
  28. Li L., Wu S., Wang S. et al.: Molecular mechanism of exogenous selenium affecting the nutritional quality, species and content of organic selenium in mustard. - Agronomy 13: 1425, 2023. Go to original source...
  29. Li L.L., Yu J., Li L. et al.: Treatment of Ginkgo biloba with exogenous sodium selenite affects its physiological growth, changes its phytohormones, and synthesizes its terpene lactones. - Molecules 27: 7548, 2022a. Go to original source...
  30. Li L.L., Yu J., Yuan H.H. et al.: High-Density kinetic analysis of the metabolomic and transcriptomic response of Ginkgo biloba flavonoids biosynthesis to selenium treatments. - Not. Bot. Horti. Agrobo. 47: 792-803, 2019. Go to original source...
  31. Li X.N., Brestic M., Tan D.X. et al.: Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. - J. Pineal Res. 64: e12453, 2018. Go to original source...
  32. Li Y., Xiao Y., Hao J. et al.: Effects of selenate and selenite on selenium accumulation and speciation in lettuce. - Plant Physiol. Biochem. 192: 162-171, 2022b. Go to original source...
  33. Li Y.-T., Xu W.-W., Ren B.-Z. et al.: High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II. - J. Agron. Crop Sci. 206: 548-564, 2020. Go to original source...
  34. Lichtenthaler H.K.: Chlorophyll and carotenoids: Pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987. Go to original source...
  35. Liu L., Wang L.X., Lv L.H. et al.: Improvement of growth and quality and regulation of the antioxidant system and lipid peroxidation in Chinese cabbage (Brassica pekinensis (Lour.) Rupr.) by exogenous sodium selenite. - Appl. Ecol. Env. Res. 18: 7473-7481, 2020. Go to original source...
  36. Longchamp M., Castrec-Rouelle M., Biron P., Bariac T.: Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. - Food Chem. 182: 128-135, 2015. Go to original source...
  37. Malagoli M., Schiavon M., dall'Acqua S., Pilon-Smits E.A.H.: Effects of selenium biofortification on crop nutritional quality. - Front. Plant Sci. 6: 280, 2015. Go to original source...
  38. Malik Z., Afzal S., Dawood M. et al.: Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress. - Environ. Geochem. Hlth. 44: 1451-1469, 2022. Go to original source...
  39. Morales-Espinoza M.C., Cadenas-Pliego G., Pérez-Alvarez M. et al.: Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. - Molecules 24: 3030, 2019. Go to original source...
  40. Poggi V., Arcioni A., Filippini P., Pifferi P.G.: Foliar application of selenite and selenate to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. - J. Agr. Food Chem. 48: 4749-4751, 2000. Go to original source...
  41. Puccinelli M., Pezzarossa B., Rosellini I., Malorgio F.: Selenium enrichment enhances the quality and shelf life of basil leaves. -Plants-Basel 9: 801, 2020. Go to original source...
  42. Rahmanto A.S., Davies M.J.: Selenium-containing amino acids as direct and indirect antioxidants. - IUBMB Life 64: 863-871, 2012. Go to original source...
  43. Rider S.A., Davies S.J., Jha A.N. et al.: Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. - J. Anim. Physiol. Anim. Nutr. 94: 99-110, 2010. Go to original source...
  44. Sattar A., Cheema M.A., Sher A. et al.: Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. - Acta Physiol. Plant. 41: 146, 2019. Go to original source...
  45. Souza A.F.C., Martins J.P.R., Gontijo A.B.P.L., Falqueto A.R.: Selenium improves the transport dynamics and energy conservation of the photosynthetic apparatus of in vitro grown Billbergia zebrina (Bromeliaceae). - Photosynthetica 57: 931-941, 2019. Go to original source...
  46. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  47. Sun J., Chen T., Liu M. et al.: Analysis and functional verification of PoWRI1 gene associated with oil accumulation process in Paeonia ostii. - Int. J. Mol. Sci. 22: 6996, 2021. Go to original source...
  48. Varghese N., Alyammahi O., Nasreddine S. et al.: Melatonin positively influences the photosynthetic machinery and antioxidant system of Avena sativa during salinity stress. - Plants-Basel 8: 610, 2019. Go to original source...
  49. Wang G., Wu L.Y., Zhang H. et al.: Regulation of the phenylpropanoid pathway: A mechanism of selenium tolerance in peanut (Arachis hypogaea L.) seedlings. - J. Agr. Food Chem. 64: 3626-3635, 2016. Go to original source...
  50. Wang H., Cui X.X., Zhao X.G. et al.: Differences of biochemical constituents and contents of eight cultivars flowers of Camellia sinensis. - J. Essent. Oil Bear. Pl. 18: 320-328, 2015. Go to original source...
  51. Wang M., Ali F., Wang M. et al.: Understanding boosting selenium accumulation in wheat (Triticum aestivum L.) following foliar selenium application at different stages, forms, and doses. - Environ. Sci. Pollut. R. 27: 717-728, 2020a. Go to original source...
  52. Wang Q.D., Hu J.K., Hu H.F. et al.: Integrated eco-physiological, biochemical, and molecular biological analyses of selenium fortification mechanism in alfalfa. - Planta 256: 114, 2022. Go to original source...
  53. Wang Z.Q., He C.N., Peng Y. et al.: Origins, phytochemistry, pharmacology, analytical methods and safety of cortex moutan (Paeonia suffruticosa Andrew): a systematic review. -Molecules 22: 946, 2017. Go to original source...
  54. Wang Z.Q., Zhu C.J., Liu S.S. et al.: Comprehensive metabolic profile analysis of the root bark of different species of tree peonies (Paeonia Sect. Moutan). - Phytochemistry 163: 118-125, 2019. Go to original source...
  55. Wang Z.Y., Li S.Y., Ge S.H., Lin S.L.: Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. - J. Agr. Food Chem. 68: 3330-3343, 2020b. Go to original source...
  56. Xu X., Wang J., Wu H. et al.: Effects of selenium fertilizer application and tomato varieties on tomato fruit quality: A meta-analysis. - Sci. Hortic.-Amsterdam 304: 111242, 2022. Go to original source...
  57. Yang H., Zhang J.T., Zhang H.W. et al.: Effect of 5-aminolevulinic acid (5-ALA) on leaf chlorophyll fast fluorescence characteristics and mineral element content of Buxus megistophylla grown along urban roadsides. - Horticulturae 7: 95, 2021. Go to original source...
  58. Yu K., Wang Y.W., Cheng Y.Y.: Determination of the active components in Chinese herb cortex moutan by MEKC and LC. - Chromatographia 63: 359-364, 2006. Go to original source...
  59. Zhang L.X., Chang Q.S., Hou X.G. et al.: Biochemical and photosystem characteristics of wild-type and Chl b-deficient mutant in tree peony (Paeonia suffruticosa). - Photosynthetica 59: 256-265, 2021. Go to original source...
  60. Zhang L.X., Chang Q.S., Hou X.G. et al.: The effect of high temperature stress on the physiological indexes, chloroplast ultrastructure, photosystems of two herbaceous peony cultivars. - J. Plant Growth Regul. 42: 1631-1646, 2023. Go to original source...
  61. Zhang M., Tang S.H., Huang X. et al.: Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). - Environ. Exp. Bot. 107: 39-45, 2014. Go to original source...
  62. Zhang X., He H., Xiang J.Q. et al.: Selenium-containing proteins/peptides from plants: A review on the structures and functions. - J. Agr. Food Chem. 68: 15061-15073, 2020. Go to original source...
  63. Zhang Z.S., Liu M.J., Scheibe R. et al.: Contribution of the alternative respiratory pathway to PSII photoprotection in C3 and C4 plants. - Mol. Plant 10: 131-142, 2017. Go to original source...
  64. Zhu L.X., Wang P., Zhang W.J. et al.: Effects of selenium application on nutrient uptake and nutritional quality of Codonopsis lanceolata. - Sci. Hortic.-Amsterdam 225: 574-580, 2017. Go to original source...
  65. Zhu S., Du C.D., Yu T. et al.: Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. - J. Food Sci. 84: 3504-3511, 2019. Go to original source...